NEWTON POLYHEDRA AND FACTORIAL RINGS

Igor DOLGACHEV

Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Communicated by P.J. Freyd Received 10 August 1979

1. Introduction

Let

$$F = \sum a_{i_1 \cdots i_n} T_1^{i_1} \cdots T_n^{i_n} \in k[T_1, T_1^{-1}, \cdots, T_n, T_n^{-1}] = k[T, T^{-1}]$$

be a Laurent polynomial over a field k. The convex hull of the set $\{(i_1, \ldots, i_n) \in \mathbb{Z}^n : a_{i_1 \cdots i_n} \neq 0\}$ in \mathbb{R}^n is called the Newton polyhedron of F and will be denoted by Δ_F . Following Hovanskii [5] we say that F is nondegenerate if for any face Δ' of Δ_F the hypersurface $\sum_{(i_1, \ldots, i_n) \in \Delta'} a_{i_1 \cdots i_n} x_1^{i_1} \cdots x_n^{i_n} = 0$ is non-singular in \overline{k}^{*n} (\overline{k} is the algebraic closure of the field k). The main result of the present paper is the following:

1.1. Theorem. Assume that F is nondegenerate and dim $\Delta_F \ge 4$. Then the factor ring $A_F = k[T, T^{-1}]/(F)$ is factorial (= UFD).

For ordinary polynomials $F \in k[T_1, \ldots, T_n] = k[T]$ we have

1.2. Corollary. Assume that F is nondegenerate as a Laurent polynomial, dim $\Delta_F \ge 4$ and Δ_F intersects each coordinate hyperplane in \mathbb{R}^n . Then the factor ring k[T]/(F) is factorial.

It is easy to see that the second condition for Δ_F says that F cannot be represented in the form $F = T_i F'$ for any i = 1, ..., n. Certainly, this condition is necessary for k[T]/(F) to be a domain.

If F is a homogeneous polynomial, then the hypotheses of the corollary mean that $n \ge 5$ and the hypersurface F = 0 in \overline{k}^n has an isolated singularity at the origin. In that case the result is well known ([1]).

Now let Δ be any compact convex polyhedron in \mathbb{R}^n whose vertices have integral coordinates. The set of all Laurent polynomials $F \in k[T, T^{-1}]$ such that $\Delta_F \subset \Delta$ is a vector space of dimension $\#\Delta \cap Z^n$, we denote it by $\Gamma(\Delta)$. It is shown in [5] that for an algebraically closed field k of characteristic zero almost all Laurent polynomials

 $F \in \Gamma(\Delta)$ are nondegenerate (as usually, "almost" means belonging to some open subset of $\Gamma(\Delta)$ in the Zarisky topology).

Conjecture. If $k = \overline{k}$ and char(k) = 0, then for any Δ of dimension ≤ 3 and almost all $F \in \Gamma(\Delta)$ the divisor class group $C(A_F)$ does not depend on F and can be computed via Δ only.

For ordinary polynomials we have a similar conjecture for the divisor class group C(k[T]/(F)) assuming additionally that Δ intersects each coordinate hyperplane. The only case where I know that this conjecture has been verified is the homogeneous case: $\Delta = \{(t_1, \ldots, t_n) \in \mathbb{R}^n : t_1 + \cdots + t_n = d\}$. Here $\Gamma(\Delta)$ is the space of homogeneous polynomials of degree d. For dim $\Delta = 3$ and almost all such F we have (see [1]) C(k[T]/(F)) = 0 for d = 1, $d \ge 4$, $= \mathbb{Z}^6$ for d = 3 and $= \mathbb{Z}$ for d = 2. Also the homogeneous case shows that one can expect that this conjecture is valid for Δ of smaller dimension.

2. Grothendieck's Lefschetz type theorem

Let A be any noetherian normal commutative ring, $X = \operatorname{Spec}(A)$. Recall that A is factorial if and only if C(X) = 0 ([3]). Here for any locally noetherian scheme X, C(X) denotes the divisor class group of X, that is the free abelian group generated by the set $X^{(1)}$ of points $x \in X$ such that dim $\mathcal{O}_{X,x} = 1$ modulo the subgroup of principal divisors $(f) = \sum_{x \in X^{(1)}} \nu_x(f)x$ (f is a rational function on X, $\nu_x(f)$ is the value at f of the discrete valuation defined by the ring $\mathcal{O}_{X,x}$). If all local rings of X are factorial (e.g. X is a regular scheme), then C(X) coincides with the Picard group $\operatorname{Pic}(X)$, the group of isomorphism classes of invertible sheaves on X.

The following result is the main ingredient of the proof of our theorem.

- **2.1. Theorem** (Grothendieck [4]). Let X be a locally noetherian scheme, \mathcal{F} a quasi-coherent sheaf of ideals on X, $Y = V(\mathcal{F})$ the corresponding closed subscheme of X. Suppose that the following conditions are satisfied:
- (i) for any point $x \in X Y$ the local ring $\mathcal{O}_{X,x}$ is factorial of depth ≥ 3 (for example, X is regular of dimension ≥ 3);
 - (ii) $H^{i}(X, \mathcal{I}^{n+1}/\mathcal{I}^{n+2}) = 0$ for i = 1, 2 and $n \ge 0$.

Then the restriction homomorphism $r: Pic(X) \rightarrow Pic(Y)$ is bijective.

3. A construction of Hovanskii

To deduce our main result from the Grothendieck theorem we need the following construction of Hovanskii [5] which is based in its turn on the theory of torical varieties (see [2, 7]).

Let Δ be a compact convex polyhedron in \mathbb{R}^n whose vertices v_1, \ldots, v_m have integral coordinates. The function $f_{\Delta}: \mathbb{R}^n \to \mathbb{R}$,

$$f_{\Delta}(x) = \min_{y \in \Delta} \langle x, y \rangle = \min_{i} \langle x, v_{i} \rangle$$

is called the supporting function of the polyhedron Δ .

- **3.1. Definition.** A finite set $\Sigma = {\{\sigma_{\alpha}\}_{\alpha} \text{ of convex rational polyhedron cones in } \mathbb{R}^n}$ is said to be a Δ -fan if the following conditions are satisfied:
 - (i) if σ is a face of some σ_{α} , then $\sigma = \sigma_{\beta}$ for some β ;
 - (ii) for any α , β , $\sigma_{\alpha} \cap \sigma_{\beta}$ is a face of σ_{α} and σ_{β} ;
 - (iii) $\bigcup_{\alpha} \sigma_{\alpha} = \mathbf{R}^{n}$;
 - (iv) each σ_{α} has a vertex (i.e. $\pm x \in \sigma_{\alpha}$ implies x = 0);
 - (v) $f_{\perp}|\sigma_{\alpha}$ is a linear function for each α .

The first three conditions say that Σ is a finite rational polyhedral decomposition of \mathbf{R}^n in terms of [7] or a complete fan in terms of [2]. Given a Δ -fan Σ let X_{Σ} be the corresponding torical variety. Recall that X_{Σ} is constructed as a glueing of affine varieties $X_{\sigma_{\alpha}} = \operatorname{Spec}(A_{\alpha})$, where A_{α} is the subalgebra of the group algebra $k[\mathbf{Z}^n]$ generated by e', $\langle r, x \rangle \ge 0$ any $x \in \sigma_{\alpha}$. The natural injection $A_{\alpha} \hookrightarrow k[\mathbf{Z}^n]$ defines an open embedding of $T^n = \operatorname{Spec}(k[\mathbf{Z}^n])$ into $X_{\sigma_{\alpha}}$ for each α , they are glued to an open embedding of T^n (n-torus) into X_{Σ} . Condition (iii) of 3.1 implies that X_{Σ} is a complete algebraic variety.

For each $\sigma_{\alpha} \in \Sigma$ let M_{α} be a A_{σ} -submodule of $k[\mathbf{Z}^n]$ spanned by the e''s, $\langle r, x \rangle \geqslant f_{\Delta}(x)$ for all $x \in \sigma_{\alpha}$. It can be checked that the M_{α} 's are glued to a coherent sheaf \mathscr{L}_{Σ} on X_{Σ} , a subsheaf of the constant sheaf $(k[\mathbf{Z}^n])_{X_{\Sigma}}$. Condition (v) of 3.1 implies that each M_{α} is a cyclic A_{σ} -module generated by any e', where $f_{\Delta}(x) = \langle r, x \rangle$, $x \in \sigma_{\alpha}$. Thus, \mathscr{L}_{Σ} is an invertible sheaf.

- 3.2. Lemma (Hovanskii). For any Δ -fan Σ
 - (a) $H^0(X_{\Sigma}, \mathcal{L}_{\Sigma}) = k[\Delta \cap \mathbb{Z}^n]$, the subspace of $k[\mathbb{Z}^n]$ spanned by $e', r \in \Delta$;
 - (b) $H^i(X_{\Sigma}, \mathcal{L}_{\Sigma}^{\otimes k}) = 0, 0 < i < \dim \Delta, k \in \mathbb{Z}.$

Proof. (a) Clearly,

$$H^{0}(X_{\Sigma}, \mathcal{L}_{\Sigma}) = \bigcap_{\alpha} M_{\alpha} = \bigoplus_{\substack{r: (r,x) \geq f_{\Delta}(x) \\ \text{for all } x \in \mathbb{R}^{n}}} ke^{r}.$$

Obviously, for any $r \in \Delta$, $\langle r, x \rangle \ge f_{\Delta}(x)$, $x \in \mathbb{R}^n$, then by the supporting hyperplane lemma of H. Weyl there exists a point x and a number b such that $\langle r, x \rangle < b$ and $\langle y, x \rangle \ge b$ for all $y \in \Delta$. This shows that for such x, $\langle r, x \rangle < f_{\Delta}(x)$. The assertion is proven.

(b) In notation of [7, Ch. I] the sheaf $\mathcal{L}_{\Sigma}^{\otimes k}$ coincides with the sheaf \mathcal{F}_{f_k} associated with the function $f_k = kf_{\Delta}$, the supporting function of the polyhedron $k\Delta = \{kx, x \in \Delta\}$. If $k \ge 0$, then f_k is convex upward and hence by loc. cit. $H^i(X_{\Sigma}, \mathcal{F}_{f_k}) = 0$ for i > 0. If k < 0, then we have

$$H^{i}(X_{\Sigma}, \mathscr{F}_{f_{k}}) = \bigoplus_{s \in \mathbb{Z}^{n}} H^{i}_{Y_{s}}(\mathbb{R}^{n}; k),$$

where $Y_s = \{x \in \mathbb{R}^n : \langle x, s \rangle \ge f_k(x) \}$. Using the standard sequence of local cohomology

$$\cdots \rightarrow H_{Y_{\bullet}}^{i}(\mathbb{R}^{n}) \rightarrow H^{i}(\mathbb{R}^{n}) \rightarrow H^{i}(\mathbb{R}^{n} - Y_{s}) \rightarrow H_{Y_{\bullet}}^{i+1}(\mathbb{R}^{n}) \rightarrow \cdots$$

we easily get that $H_{Y_s}^i(\mathbb{R}^n) = 0$ $(H^0(\mathbb{R}^n) \to H^0(\mathbb{R}^n - Y_s)$ is always surjective) and

$$H_{V}^{i}(\mathbf{R}^{n}) = H^{i-1}(\mathbf{R}^{n} - Y_{s}), i \ge 2.$$

Now

$$Y_s = \{x \in \mathbf{R}^n : \langle x, s \rangle \geqslant k \min_i \langle x, v_i \rangle \} = \{x \in \mathbf{R}^n : \langle x, s - kv_i \rangle \geqslant 0, i = 1, \dots, m \}$$

is a convex cone such that the maximal vector subspace contained in it coincides with the space

$$E_s = \{x \in \mathbb{R}^n : \langle x, s - kv_i \rangle = 0, i = 1, ..., m\}.$$

We easily compute its dimension

dim
$$E_s = \begin{cases} n - \dim \Delta & \text{if } s \text{ belongs to the affine hull of } k\Delta, \\ n - \dim \Delta - 1 & \text{otherwise.} \end{cases}$$

Retracting \mathbb{R}^n onto the unit sphere S^{n-1} and applying the Alexander duality we obtain

$$H^{i-1}(\mathbf{R}^n - Y_s) = H^{i-1}(S^{n-1} - Y_s \cap S^{n-1}) = H_{n-1-i}(Y_s \cap S^{n-1})$$
$$= H_{n-1-i}(E_s \cap S^{n-1}) = H_{n-1-i}(S^{\dim E_s - 1}) = 0, \quad \text{if } i < \dim \Delta.$$

Consequently we get for $i \ge 2$

$$H_{Y_s}^i(\mathbf{R}^n) = H^{i-1}(\mathbf{R}^n - Y_s) = 0, \quad i < \dim \Delta; s \in \mathbf{Z}^n,$$

and hence $H^{i}(X_{\Sigma}, \mathscr{F}_{f_{k}}) = 0$ for $0 < i < \dim \Delta$.

Remark. The assertions of the lemma were stated in [5], proofs were omitted there. Let us identify the algebra $k[\mathbb{Z}^n]$ with the algebra of Laurent polynomials $k[T, T^{-1}]$ by assigning e' to $T' = T_1'^1 \cdots T_n'^n$, $r = (r_1, \ldots, r_n)$. Then we may identify the spaces $k[\Delta \cap \mathbb{Z}^n]$ and $\Gamma(\Delta)$ (resp. Laurent polynomials $F \in \Gamma(\Delta)$ and global sections s_F of \mathscr{L}_{Σ}). Let Y_F^{Σ} be the closed subscheme of X_{Σ} defined by the section s_F and $U_F^{\Sigma} = Y_F^{\Sigma} \cap T^n$ be its intersection with the open subset T^n of X_{Σ} . It follows immediately from our constructions that

$$(3.2) U_F^{\Sigma} \simeq \operatorname{Spec}(A_F)$$

and hence does not depend on the choice of a Δ -fan Σ .

3.3. Lemma (Hovanskii [5]). Suppose that $F \in \Gamma(\Delta)$ is a nondegenerate Laurent polynomial. Then there exists a Δ -fan Σ such that X_{Σ} and Y_F^2 are non-singular.

4. Proof of the main result

Let F be a nondegenerate polynomial with dim $\Delta_F \ge 4$. Choose some Δ_F -fan Σ satisfying the assertion of Lemma 3.3, let $X = X_{\Sigma}$, $Y = Y_F^{\Sigma}$, $U_F = U_F^{\Sigma}$, $\mathcal{L} = \mathcal{L}_{\Sigma}$. Since by Lemma 3.1 $H^i(X, \mathcal{L}^{\otimes k}) = 0$ for k < 0 and $i < \dim \Delta_F$ we easily get that the conditions of theorem 2.1 are satisfied for the pair (X, Y) (obviously, $Y = V(\mathcal{L}^{\otimes -1})$). Thus the restriction homomorphism $r: \operatorname{Pic}(X) \to \operatorname{Pic}(Y)$ is bijective. Now, X contains as an open dense subset the n-torus T^n , since $\operatorname{Pic}(T^n) = 0$ we get that each divisor on X is linearly equivalent to a divisor supported in $X - T^n$. This implies that each divisor on Y is linearly equivalent to a divisor supported in $Y - Y \cap T^n = Y - U_F$. Next, we have a canonical surjection $C(Y) \to C(U_F)$ whose kernel is generated by the classes of divisors supported in $Y - U_F$ [3, Corollary 7.2]. Because Y is non-singular $C(Y) = \operatorname{Pic}(Y)$ and we get that the above surjection is trivial, thus $C(U_F) = C(A_F) = 0$.

To get Corollary 1.2 we notice that under its hypotheses the singular locus of the variety F = 0 in \bar{k}^n has codimension ≥ 2 . By the Krull-Serre normality criterion [3, Theorem 4.1] this implies that the ring k[T]/(F) is normal. It remains to consider the canonical restriction homomorphism $C(K[T]/(F)) \to C(A_F)$ and apply [3, Corollary 7.3] to get that C(k[T])/(F) is zero as soon as $C(A_F)$ is zero.

Remark. The similar technique is applied to the case of complete intersection rings $k[T, T^{-1}]/(F_1, \ldots, F_r)$ (see the needed definitions and facts in [5]).

Acknowledgements

This paper arose as a by-product of my lectures devoted to beautiful papers of Hovanskii [5, 6] and Danilov [2]. It owes them very much.

References

- [1] A. Andreotti and P. Salmon, Anneli con unica decomposibilita in fattori primi, Monatsh. Math. 61 (1957) 97-142.
- [2] V. Danilov, Geometry of torical varieties, Uspehi Mat. Nauk. 33 (1978) 85-134 (in Russian; Engl. transl.: Russian Math. Surveys, 33 (1978)).
- [3] R. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 74 (Springer-Verlag, Berlin-Heidelberg-New York, 1973).
- [4] A. Grothendieck, Cohomologie locale des faisceaux coherents et théorèmes de Lefschetz locaux et globaux [SGA II] (North-Holland, Paris-Amsterdam, 1969).

- [5] A. Hovanskii, Newton polyhedra and torical varieties, Funkt. Analiz i Ego Prilozhenia, 11 (1977) 56-67 (in Russian; Engl. transl.: Funct. Anal. Appl. 11 (1977) 289-296).
- [6] A. Hovanskii, Newton polyhedra and the genus of complete intersections, Funkt. Analiz i Ego Prilozhenia 12 (1978) 51-61 (in Russian; Engl. Transl.: Funct. Anal. Appl. 12 (1978) 38-46).
- [7] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings, Lect. Notes in Math., Vol. 339 (Springer-Verlag, Berlin-Heidelberg-New York, 1972).