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"I ventotto anni trascorsi cola [a Bologna] furono forse i piu
lieti e fecondi della sua vita. In quella dotta citta, dove lo
spazio ristretto rende facili e frequenti i contatti tra i
professori delle varie facolta, egli trovo l'ambiente piu
favorevole per lo scambio delle idee e l'incremento della sua

b e cultura..."

G. Castelnuovo, "Commemorazione di F. Enriques”,
Atti Accad. Naz. Lincei, 1947.

Introduction. =

In many aspects this talk repeats my recent talk at a conference in Cortona [Do3]. As
is appropriate for the occasion, more emphasis is placed on the history of Enriques surfaces. It
is easy to guess that Enriques surfaces were introduced first by Federigo Enriques. We begin
with a brief story of how he was led to the discovery of such surfaces.

It is known that a rational algebraic curve X is characterized by the condition that its
genus is equal to zero. This was first proven by A. Clebsch [CG]. Following Riemann the
genus was defined as the maximal number of linearly independent differential 1-forms of the
first kind (i.e. regular everywhere). At éhat time a standard model of a curve was a plane one,
ie. X was defined by an equation F(x,y) = 0, or, in homogeneous coordinates, by a
homogeneous equation Fy(x,y,z) = 0, where F,, is an irreducible homogeneous polynomial of

degree n. A differential form of the first kind can be written in the form D(x,y)dy/Fy(x,y),
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where @(x,y) = 0 is the affine equation of a curve of degree n-3 which passes through singt
points (including those infinitely near) of multiplicity m > 1 with order m-1. Each such a cu
was called an adjoint curve to X. Since passing through a point with order k imposes k(k-]
conditions, the expected value of the genus is given by the formula: ‘
g = (n-1)(n-2)/2-Zmp(mp-1)/2,

where the sum is taken over all singular points pe X including those infinitely near, and
denotes the corresponding multiplicity. It was proven by Max Noether [No1] that this is
right number, that is, there are no excessive adjoint curves. Also it was shown that
definition coincides with the topological definition of the genus given by B. Riemann. In |
Clebsch generalizes-this definition to the case of surfaces which were considered as the
Fp(x,y,z,w) = 0 in the projective 3-dimensional space. The genus ("Flachengeschlecht")
defined as the maximal number of linearly independent double integrals of the first kind.
geometrically, as the maximal number of linearly independent adjoints. Similarily to the cas
curves, an adjoint surface is a surface of degree n-4 passing with order m-1 through
singular curve of X of multiplicity m, and passing with order r-2 through any singular poir
multiplicity r of X. In [No1] Noether proved that the genus is a birational invariant. A;
there is a formula as above (called a postulation formula) which gives the expected numbe
such adjoints. For example, if the singular locus of X consists of an irreducible curv
degree d and genus p with t double points and T triple points (that can always be achieve:

projecting a nonsingular model of a surface from IPS), the formula looks like:

g= (nél) - (n-4) d+2t+T+p-1.
However, it is not true anymore that this number is always equal to the number of line
independent adjoints. For example, if X is a ruled surface, the number g is negative. For
reason, the first number was called the numerical genus and denoted by by pp and the nur
of adjoints was called the geometric genus and denoted by pg. The first example of a surfa
with pp = pg, and p, 2 0 was constructed by Castelnuovo in 1891 [Cal]. In modern te
the difference pg - pn is equal to g, the irregularity of the surface, and the numerical gem
is equal to p,-1, where py = %(X,0x) is the arithmetic genus of X. For every rational su:
X, both pp and pg are equal to zero, hence a natural question arose as to whether
characterizes a rational surface. In Spring of 1894, Castelnuovo started his investigation o
question by using his idea of termination of adjoints. To prove the theorem he needed to v
that if the linear system of curves |2C| is contained in the linear system |2C'|, where C'
adjoint curve, then |C| is contained in |C'|. At the same time, Enriques showed tha

bicanonical linear system |2K| = |2C-2C] is invariant with respect to birational transforma
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hence its dimension P, called the bigenus, is a birational invariant of a surface [Enl]. Thus the
problem led to the question of whether there exists a non-rational surface with py = pg=0,P=
0. Castelnuovo asked Enriques for help with this question, and, in July of the same year,
Enriques suggested that he consider a surface of degree 6 passing doubly through the edges of
the coordinate tetrahedron. The paper of Castelnuovo, containing his famous rationality
criterion (X is rational if and only if py = pg = P = 0) appeared in 1896 [Ca2]. In it, he
presented the examples of Enriques. These surfaces can be given by homogeneous equations:
Fa(x2X3X4,X1X3X4,X 1 X2X4,X 1 X2X3) +X 1 XX 3X4G (X1, X2.X3,X4) = O,

where F; and G; are homogeneous polynomials of degree 2. It is easy to see that these
equations represent a 10-dimensional family (up to a linear transformation of variables). For
every m# 1, the m-candnical linear system |mK]| of this surface has dimension 0. Castelnuovo
gave another example, this time his own, of a non-rational surface with py, = pg = 0. In his
example P = dim|/mK] is unbounded. It turned out later, in course of the classification of
surfaces, that Enriques's example is essentially the only one for non-rational surfaces with the
properties that pp = pg = 0 and dim |mK] is bounded (in modern terms, of Kodaira dimension
0). The Castelnuovo example belongs to another class of surfaces, for which dim ImK| is
unbounded but grows at most linearly (of Kodaira dimension 1). These surfaces always
contain an elliptic pencil. Their theory, founded by Enriques himself, was completed in the
works of K. Kodaira and I. Shafarevich in the sixties of this century. It allows one to classify
all such surfaces (cf. [Dol], [CD3]). Only much later, in 1932, L. Campedelli and L.
Godeaux have found independently different examples of surfaces with Pn = Pg = 0 for which
dim |mK] grows quadratically (of Kodaira dimension 2). The classification of such surfaces is

very far from being completed (cf. [Dol], [BPV]).

1. Models. Most of the classical results about Enriques surfaces, which from now on mean
non-rational surfaces with py = pg = 0 and of Kodaira dimension 0, were obtained by Enriques
himself [En1],[En2], and later summarized in his book [Ené6]. In [En2] he starts with
proving that every Enriques surface contains a pencil of elliptic curves [F| without base points
(in modern terminology, an elliptic fibration ). In fact, by a very ingenious method, he proves
that every curve on an Enriques surface S is linearly equivalent to a positive linear combination
of elliptic or smooth rational curves. Every elliptic curve C either moves in a pencil, or taken
doubly moves in such a pencil. There are exactly two double elliptic curves 2F and 2F' (which
may degenerate) in every elliptic pencil. Then Enriques proves that for every elliptic pencil

2F| one can find either i) an elliptic pencil |2F,)| with F *F, = 1, or ii) a smooth rational curve
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R with Fj*R = 1. In case i), the linear system |2F;+F| has two base points and-mag
birationally onto a double plane 22 = Fg(x,y) with the branch curve of degree 8 compose
two lines and a sextic which has a node at the point of intersection of the two lines and has
tacnodes whose tangents are the twc; lines. In case ii) the linear system |3F+R| does the s
but the branch curve degenerates into the union of two lines and a sextic with 3 tacnodes;
of them is situated at the intersection point of the two lines, and another is infinitely near
We will refer to these double planes as an Enriques double plane (resp. an Enriques degen
double plane). It is difficult to understand on what grounds Enriques asserted that a ""gen
Enriques surface has a representation as a non-degenerate double plane. The only explan
is that he was able to count the number of parameters for isomorphism classes of degen
double planes (which is equal to 9) and compare it with the number of parameters of
degenerate planes (which is equal to 10). Note that the formula of Noether [No2] fc
number of moduli of an algebraic surface which existed at the time of writing [En2] cou
be applied (one of its assumptions was the condition pg > 3). A more general formula f
number of moduli was obtained by Enriques himself a little later [EnS5]). It agrees
counting of constants and gives the answer 10 for the moduli of Enriques surfaces.
Enriques shows that, essentially, all Enriques surfaces arise from his earlier constructic
sextic surface passing doubly through the edges of the coordinate tetrahedron (an En
sextic). First he checks that the number of constants for the sextic construction is also
show directly that a general Enriques surface is birationally isomorphic to an Enriques
he, starting from the non-degenerate double plane construction, finds an elliptic curve F
that Fy»F, = Fj*F3 = 1 and shows that the linear system |Fj+Fp+F3| maps S birationall
an Enriques sextic. The proof of the existence of such a curve is one of the most 0
points in Enriques'’s memoir. This argument has been reconstructed much later in the th
Michael Artin at M.LLT [Ar] and Boris Averbukh in Moscow [AS], [Av]. It ha
observed by Castelnuovo that the sextic construction may degenerate but also gi
Enriques surface. One of these degenerations corresponds t0 the case when the edges
tetrahedron pass through one point. The sextic acquires a quadruple point and
represented by an equation of the form:
F2(1213l4,11]314,l11214,1,1213)+11]21314G2(11.12,13,14) =0,
where the 1j's are linearly dependent homogeneous linear forms in projective coordin
X9, X3 and x4. This case occurs when the adjoint linear system |F'+Fy+F3| does no

birational map. In the second degeneration two opposite edges become infinitely near
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case the sextic acquires a triple line and a double line infinitely near to it. Its equation can be
E given in the form:
alla13)2+bl 1232 +cl a2+ dl 13241 213Gl 1o, 13,14) = 0,

where 11,12,13 and 14 are some linear forms in projective coordinates, a ,b,c,d are constants.
This degeneration occurs when one starts with a degenerate Enriques double plane. The
corresponding linear system is [2F+F2+R|, where F1 and Fp are elliptic curves, R is a smooth

rational curve, and FieF2 =1, Fi*R = 1, F2eR = 0. This result of Enriques was also

reconstructed in the theses of Artin and Averbukh. Only recently, it was shown that the last
case can always be avoided (see [CD3], Corollary 4.9.2).

& In 1901 Gino Fano (born on the same day as Enriques) observed that the congruence of
é lines in IP3 which are contained in a subpencil of quadrics in a fixed general web of quadrics is
‘§ an Enriques surface [Fal]. These congruences, called nowadays Reye congruences (cf.
[Col]), were introduced much earlier by Darboux [Da] and then were studied by Reye

[Re]. Via its Pliicker embedding this congruence is isomorphic to a surface of degree 10 in P5

lying on a quadric. This construction gives only a 9-parameter family of Enriques surfaces,
and later Fano proved that a general Enriques surface can be embedded into [P as a surface of
degree 10 not necessarily lying on a quadric [Fa2]. This surface contains 20 plane cubic
. s Fij with Fi*Fj = 1 if i+j # 0 and Fj*F_; = 0, i=1,...,10. The linear system |F}+F;+F;]
maps the surface birationally onto an Enriques sextic. Conversely, starting from an Enriques
sextic surface, Fano finds a quintic elliptic curve C lying on it which together with two elliptic
curves F; and F5 coming from the edges of the tetrahedron form the linear system [F+F;+F;|
which maps the surface onto a surface of degree 10 in [PS. Again this is true only generically.
Only recently, it was proven that for every Enriques surface S one can find a birational
morphism from S onto a surface of degree 10 in [P3 with at most double rational points as
singularities [Col], [CD3]. In particular, every Enriques surface which does not contain
smooth rational curves is isomorphic to a surface of degree 10 in [P3. i

The double plane construction of Enriques can be modified by considering a morphism
of degree 2 onto some other rational surface. This can be obtained by applying some birational
transformations to the plane. Thus one may consider any Enriques surface as a double cover of
a quadric (the degenerate case corresponds to a singular quadric) (cf. [Ho]), or as a double
cover of a 4-nodal Del Pezzo surface of degree 4 (in the degenerate case the Del Pezzo surface
acquires 2 nodes and one double rational point of type A3) (cf. [BP], [Do2]). There is a
generalization of this construction to the case of arbitrary characteristic [CD3]. A systematic

study of linear systems on Enriques surfaces was undertaken by F. Cossec in [Col], [Co2].
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In particular, all classic models of Enriques and Fano were reconsidered from the uniforn
approach by using the arithmetic of the quadratic form defined on the Picard group of :
surface. It was shown that any~Enriques surface admits a non-degenerate double plan

construction. This was certainly unknown to Enriques.

2. Enriques surfaces and K3-surfaces. A non-singular quartic surface in P3 has all th
genera Py, Pg, Pm =1 equal to 1. The class of surfaces with such invariants (later christened b
André Weil as surfaces of type K3) has a long history. The ubiquitous Kummer surface
belong to this class. Other examples of such surfaces can be obtained by taking a complet
intersection of three quadrics in IPS. In his joint work with F. Severi on hyperelliptic surface
(surfaces which are covered by a complex torus) Enriques discovered an example of such
surface which admits a fixed-point-free involution with quotient isomorphic to an Enriqu
surface. In [En4] he proved that a general Enriques surface S can be obtained as a quotient (
a K3-surface by a fixed-point-free involution. To show this he considers the double cover «
P3 branched along the coordinate tetrahedron and shows that the induced cover of the sext
surface is a K3-surface. Nowadays this result is almost trivial (true if the ground field is
characteristic different from 2) and, by usirg standard arguments, follows from the fact that |
canonical class K on an Enriques surface is a non-trivial 2-torsion element in the Picard grou
In this way the study of Enriques surfaces over 2 field of characteristic different from 2

reduced to the study of K3-surfaces with fixed-point-free involutions. This relationship pla
very important role in the recent work on Enriques surfaces (see [BPV]). Many examples

Enriques surfaces obtained as quotients of K3-surfaces were given in works of L. Godea

(cf. [Go]). Only recently it was shown by F. Cossec [Co2] and A. Verra [Ve] that eve

Enriques surface is birationally isomorphic to the quotient of the intersection of three quadr

in IPS by a fixed-point-free involution.

3. Automorphisms. Enriques was the first who observed that a general Enriques surfaci
admits infinitely many birational automorphisms. His argument goes as follows. Take

linear system |Fy+F,+F3| which maps the surface onto a non-degenerate Enriques sextic. ol
the pencils |2F5| and [2F3| cut out on every curve F from |2F;| two linear pencils of degret
Their difference defines on each F a divisor class € of degree 0. For every point xe F the s
x+€ is linearly equivalent to a unique point'y on F, and the correspondence x — y defin
birational automorphism of S. He shows that € is of infinite order, hence the obtar

avtomorphism of S is of infinite order. Of course, this argument requires a justificati



Enriques Surfaces .

certainly lacking in his paper. It is not clear why all the translation automorphisms of each
member of a pencil are induced by an automorphism of the whole surface. The necessary
technical tool for the needed justification is the notion of the Jacobian variety and its principal
homogeneous spaces for an elliptic curve over a functional field. This was used in the later
work of I. Shafarevich [AS]. In fact, Enriques applied this argument to a larger class of
algebraic surfaces, namely, surfaces admitting an elliptic fibration. His study of such surfaces
is, in my opinion, is one of the best proofs of Enriques' genius. Careful reading of his work
on these surfaces reveals that, a long time before the fundamental works on elliptic surfaces by
K. Kodaira and I. Shafarevich, he was aware of such concepts as principal homogeneous
spaces, logarithmic transformation and Jacobian surfaces.

[t is not clear whether Enriques and his contemporaries understood that the group of
birational isomorphisms of a minimal non-ruled surface is equal to the group of biregular
automorphisms. After all, the theory of minimal models was clarified only much later in the
works of Oskar Zariski.

At the very end of [En 2] Enriques asks whether there exists an Enriques surface with
only finitely many automorphisms. This question was answered in 1910 by Fano. In [Fa 2]
he constructs a special web of quadrics in [P3 whose Reye congruence is an Enriques surface

ith finitely many automorphisms. I have discovered this result of Fano only very recently,
‘whilc visiting the University of Torino and looking through Fano's archive. Just prior to this I
have published a paper [Do2] with an example of an Enriques surface with finitely many
automorphisms, wrongly believing that this was the first example of such a kind. The example
of Fano is different, his argument for the proof of finiteness needs justification, and his claim
about the structure of the corresponding finite group is wrong. Very recently, V. Nikulin
[Ni2] classified all Enriques surfaces with finitely many automorphisms from the péim of
view of the structure of the Picard group of its K3-cover. An explicit geometric classification
(by means of equations) was given later by S. Kondo [Ko]. There are 7 classes of such
surfaces. e

The first explicit computation of the (infinite) group of automorphisms of a general
Enriques surface was given by W. Barth and C. Peters in [BP]. Independently, this result, in
a much more general context, was obtained by Nikulin [Nil]. By acting on the Picard group
the automorphism group is represented in the orthogonal group of a certain even unimodular
lattice of signature (1,9). Its image is equal to its level 2 congruence subgroup factored by the
subgroup generated by the transformation x — -x. A purely geometric calculation of the

automorphism group of a generic Reye congruence was given in [CD2] (though, again the
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result can be deduced from Nikulin's results based on the transcendental techniques of

period spaces of K3-surfaces).

4. Rational and elliptic curves on Enriques surfaces. Another of "belle quest
concernenti la superficie F¢" asked in [En2] was the following: What is the distributio
linear systems of a given order, especially isolated elliptic curves, on an Enriques se»
Today we understand this question as a more general question about the Picard group ¢
Enriques surface. It was studied in detail in many recent wec
([C02],[C03],[CD1],[CD3]). Let Ng be the Picard lattice of an Enriques surface S,
the group of divisors modulo numerical equivalence equipped with the intersection form. It
be shown (rather easily, if the ground field is the field of complex numbers, and much

easily in the general case) that this lattice is an even unimodular lattice of signature (1,9),

as such is isorrior};hic to the lattice E g, the direct sum of the standard hyperbolic plane U

the root lattice Eg of a simple Lie algebra of type Eg (taken with the opposite sign). Thougt
lattices of all Enriques surfaces S are isomorphic as abstract lattices, their semigroup
positi've or ample divisor classes depend essentially on S. By Riemann-Roch, every div
class D with D2 > 0 is effective, however, if D? < 0, D is never effective unless the sur:
contains smooth rational curves R with R? = -2 (in which case the surface is said to be n¢
). For instance, every surface represented by a degenerate Enriques sextic or a degene
double plane is nodal. The converse was proven only recently by Cossec ([Co3],[CD
Applying reflection transformations x — x+(x+e)e of Ng, where e is the class of a smc
rational curve (a nodal curve), allows one to transform every divisor D to a divisor D' whic
numerically effective (i.e. D'C 2 0 for every curve C'). If D is such a divisor, D? = 0, an
1s not divisible by an integer, then D is an isolated curve of arithmetic genus 1. For suc
curve |2D| is an elliptic pencil (if the characteristic is different from 2). If D is numeric:
effective (nef) and D? > O then the property of the map fp given by the linear system
depends very much on the number ®(D) which is equal to the minimum of the intersect
numbers D+F, where F is any elliptic curve. Thus @(D) =1 if and only if fp has base poi
®(D) = 2 if and only if fp is a birational map onto a non-normal surface, or D? = 4,60
and fpis a4 to 1 map onto P?ifD?= 4,and fpis a2 to 1 map onto a rational surface if ©
6 or 8. Finally, if ®(D) 2 3, the map fp is a birational map onto a surface with only dou
rational points as singularities. In particular, if F is unnodal, fp is an isomorphism onto
image. The study of the arithmetic of the lattice E;q shows that @(D) 2 3 could happen onl

D? > 10. The Fano model of a surface of degree 10 in P> corresponds to such a divisor w
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D? = 10. The sextic model corresponds to a divisor D with D? = 6 and ®(D) = 2, and the
double plane model corresponds to D with D? = 4 and O(D) = 1.

Returning to the original question of Enriques, we see that it asks (the part concerning
isolated elliptic curves) about the description of all elliptic curves F whose classes are primitive
vectors in Ng and F+D = n for a fixed class of a nef divisor D with ®(D) = 2, D2« 6, and a
fixed positive integer n (degree of F). Let E(D)n be the set of such F's. Each such a set is
finite. If S is general, then the set of n for which E(D)n # @ is infinite. We do not know how
to compute the function f(n) = #(E(D)),. We know that f(2) = 6 (the elements of E(D), are
mapped to the six edges of the tetrahedron), f(3) = 98, and f(4) = 756. The complete answer to
this question can be obtained by further study of the arithmetic of the lattice Eo.

Another interesting question is the distribution of nodal curves on a nodal Enriques
surface. This question was never considered in the classic literature and has been studied only
recently. We refer to [Do3] for a survey of some results and problems concerning this
question. Assuming the automorphism group of a surface is known, one can compute the
number of its orbits in the set of linear systems of given genus. For example, the number of
the orbits in the set of isolated elliptic curves on a general Enriques surface is equal to 1054,
the number of linear systems |D| with D?-= 6and ®(D)=2o0na general Enriques surface (i.e.
the number of different representations as an Enriques sextic) is equal to 10,792,910 (see

™]). Similar computations can be made for a general nodal surface ([CD2]). We could be

proud to show these kinds of results to Enriques.

5. Moduli. Nothing was known in the old days about the moduli space of Enriques surfaces
except that the number of moduli is equal to 10. We refer to a survey of the modern

development in [Do3].

6. Enriques surfaces over - fields of positive characteristic. All classic work on
surfaces silently assumed that the ground field was the field of complex numbers. However,
transcendental methods were never popular among Italian algebraic geometers. Thus many of
the proofs could be extended almost word by word to any characteristic. In the seventies the
Enriques classification of surfaces was extended to the case of arbitrary characteristic in the
works of E. Bombieri and D. Mumford [M], [BM1], [BM2]. The case of Enriques
surfaces was given special attention. It turned out in their work that only the case of
characteristic 2 presents special difficulties. Since then much work was done on the study of
this case. We refer for complete references to [CD3,CD4].
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