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Abstract. We discuss some of the various beautiful relations between two omnipresent
objects in mathematics: the Petersen graph and the Icosahedron. Both have high sym-
metry and we show how these symmetry groups arise as symmetry groups of richer
geometric objects: algebraic surfaces.

Petersen graph. The Petersen graph is a
undirected regular 3-valent graph with 10
vertices and 10 edges

Figure
1. Petersen
graph

According to a
citation from Don-
ald Knuth borrowed
from Wikipedia the
Petersen graph is “a
remarkable configu-
ration that serves as
a counterexample to
many optimistic pre-
dictions about what
might be true for graphs in general.” The
author first encountered this graph on the
cover of the Russian translation of Frank
Harary’s book [3].

Figure
2. Julius
Petersen

The graph
is named af-
ter a Danish
mathemati-
cian Julius Pe-
tersen (1839-
1910), one of
the founders of
the graph the-
ory. In partic-
ular, he is fa-
mous with his
fundamental
work on reg-

ular graphs.
As often happens, it had appeared ear-

lier in the work of an English mathematician
Sir Alfred Kempe (1849-1922) well-known

for his work in the invariant theory and the
four-color theorem.

Figure 3. Sir
Alfred Kempe

Kempe
realized the
Petersen
graph as
the graph
whose ver-
tices repre-
sent lines in
a Desargues
configura-
tion of 10
lines and 10
points in projective plane with two vertices
connected by an edge if two lines do not
meet at one of the ten points of the config-
uration.

Figure
4. Desargues
configuration

Recall
from pro-
jective ge-
ometry
that the
Desatgues
configu-
ration is
based on
the Desar-
gues’s The-
orem: the

sides of two perspective triangles in a projec-
tive plane intersect at three collinear points.
A French mathematician Girard Desargues
(1591-1661) is considered to be one of the
founders of projective geometry.
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Figure
5. Girard
Desargues

The De-
sargues
graph is
a graph
with 20 ver-
tices cor-
responding
to lines and
points in
the Desar-
gues con-
figuration
with edges connecting two points if they
are realized as a point lying on a line. The
graph admits an involutive fixed-point-free
automorphism such that the orbit graph is
isomorphic to the Petersen graph.

Quintic del Pezzo surface. Another in-
carnation of the Petersen graph is as fol-
lows. Take four points p1, p2, p3, p4 in pro-
jective plane and join them by pairs to ob-
tain six lines `ij . Now each line `j intersects
three lines `ik, `j,l and `kl, where {i, j, k, l} =
{1, 2, 3, 4}. We are almost there, but need
four more lines with the same incidence
property.

Figure
6. Blowing-
up

To create
them, for each
point pi, con-
sider all di-
rections at
this point, i.e.
all slopes of
lines passing
through this
point. If we
take any line `

in the plane that does not contain pi, the
directions correspond to intersection points
of lines through pi with `. So, we obtain
that all directions are naturally parameter-
ized by a projective line Ei. The process
that replaces a point with the set of direc-
tions at this point is called the blowing-up
of the point. It is one of the surgical tools
in algebraic geometry, symplectic geome-
try, differential topology and the theory of

differential equations. The result of the
blowing-up is a projective algebraic sur-
face: a two-dimensional projective algebraic
variety. Over an open subset (in Zariski
topology where closed subsets are the sets
of common zeros of polynomials) isomor-
phic to an affine plane the blown-up surface
looks as in the following picture:

After we perform four blowings-up at the
points p1, p2, p3, p4, we will arrive at an al-
gebraic surface D5 which contains 10 sub-
sets each bijective to the projective line with
the intersection graph isomorphic to the Pe-
tersen graph. In fact, by choosing an appro-
priate projective embedding of the surface
in 9-dimensional projective space P9 one can
realize them as lines in the projective space.
The equations of the surface are very nice:
we realize P9 as the projective space asso-
ciated with skew-symmetric 5 × 5-matrices
with entries in a chosen ground field (e.g. of
real numbers R, or of complex numbers C,
or any infinite field you fancy). Then take
five general linearly independent equations
and add five quadratic equations defined by
pfaffians of five principal 4×4-submatrices of
our skew-symmetric matrix. The resulting
surface is a quintic del Pezzo surface, named
after an Italian mathematician Pasquale del
Pezzo, Duke of Caianello (1859-1936). We
refer to the rich theory of del Pezzo surfaces
to [1].

Figure
7. Pascuale
del Pezzo

Let us la-
bel 10 lines
on a quin-
tic del Pezzo
surface by 2-
element sub-
sets of [5] =
{1, 2, 3, 4, 5}
as follows.
First any line
`ij acquires
the label
{ab}, where
{i, j, a, b, 5} =
[5] and any ‘blown-up line’ Ei acquires the
label {i5}. In this labelling two vertices are
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joined by an edge if and only if their la-
bels are disjoint subsets. Now we see that
the symmetric group S5 acts naturally by
automorphisms of the graph via its natural
action on the set [5]. Obviously, the action
is transitive on vertices and edges.

Figure
8. Labelled
Petersen
graph

Using this one
can easily show
that S5 is the
full automor-
phism group of
the graph. A nat-
ural question now
is whether we can
realize this sym-
metry group as
a group of auto-
morphisms of an
algebraic variety,

in our case, the quintic del Pezzo surface.
The answer is yes, and it can be done in
the following way. First, we choose projec-
tive coordinates (x : y : z) in P2 in such
a way that the points p1, p2, p3, p4 have co-
ordinates (1 : 0 : 0), (0 : 1 : 0), (0 : 0 :
1), (1 : 1 : 1). Then the symmetrical group
S4 acts naturally by projective transfor-
mations that leave the set {p1, p2, p3, p4}
invariant. Namely, we let its subgroup
S3 act by permutations of coordinates and
let one more generating elelent, the trans-
position (34) act by the transformation
(x : y : z) 7→ (x − z : y − z : −z). Now it
suffices to define the action of the transposi-
tion (45) which together with S4 generates
the whole group S5.

Figure
9. Luigi
Cremona

To do this
we use a trans-
formation τ :
(x : y : z) 7→
(yz : xz : yz).
Although the
formula does
make sense
because it is
not defined
at the points
p1, p2, p3 since

there is no a point in P2 with coordinates
(0 : 0 : 0). This is an example of a Cre-
mona transformation, the foundations of
the theory of such transformations was laid
by an Italian mathematician Luigi Cremona
(1830-1903). We are familiar with geomet-
ric transformations which are now defined
everywhere since our first high-school course
in geometry. It is the inversion transforma-
tion.

If identify the plane with C, then the
transformation is given by the formula z 7→
r/z̄.

Figure
10. Inversion
transformation

If we re-
strict the
transfor-
mation
τ to the
open sub-
set of the
line at in-
finity z =
0, then it

will be given by inversion of the coordinates
(x, y) 7→ (1/x, 1/y). Although our Cremona
transformation is not defined at the points
p1, p2, p3, it acts naturally on directions at
each point p1, p2, p3 and hence can be lifted
to an action on the blow-up surface D5. The
whole group S5 acts now on D5, and one
can show that there are no other automor-
phisms of the del Pezzo surface D5.

Moduli interpretation. The group of au-
tomorphism of a quintic del Pezzo surface
has an obvious manifestation if we identify
the complement of 10 lines on D5 with the
orbit space of ordered 5-element subsets of
points in the projective line P1 with respect
to the group of projective automorphisms.
To do so, given a point p outside the lines `ij ,
we pass a unique conic through the points
p1, p1, p3, p4, p5. Using a rational parameter-
ization of the conic by P1, we find an ordered
set of 5 points. The orbit of this set is our
point in the orbit space. Adding the 10 lines,
we obtain an isomorphism between D5 and
a compactification M0,5 of the orbit space
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that can be viewed as the moduli space of
5-pointed stable rational curves. The con-
struction can be extended to any number of
points, using a higher-dimensional general-
ization of the quintic del Pezzo surface D5.
It is constructed as the blow-up of n + 3
points in Pn followed by further blowings-
up of various linear subspaces spanned by
subsets of points of cardinality less than n.
This blowing-up realizes the moduli space
M0,n of n-pointed stable rational curves.
It is a subject of intensive study in mod-
ern research in algebraic geometry, and via
the Gromov-Witten theory in physics. Note
that another compactification of the orbit
space of n-ordered points in P1 uses the geo-
metric invariant theory. The work of Kempe
was an important contribution to the invari-
ant theory of ordered point sets in P1 (see
[4]).

Sylvester pentahedron. There is another
realization of the Petersen graph where the
vertices correspond to lines in P3 lying on
a quartic surface. To do this we first con-
sider P3 as a subspace of P4 with projective
coordinates (x1 : x2 : x3 : x4) given by a
linear equation L = x1 + · · ·+x5 = 0. Then
we define the lines `ij by additional equa-
tions xi = xj = 0 and define the points Pij

by additional equations xk = xl = xm = 0,
where i, j, k, l,m are distinct. One imme-
diately checks that each line `ij contains
three points Pab, so this realizes the Petersen
graph. The group S5 acts on this set of
lines by permuting the coordinates, and in
this way gives a geometric realization of the
symmetry of the graph. We can do more
by realizing the lines as lines lying on a cer-
tain surface given by equations H = L = 0,
where H is a homogeneous polynomial of de-
gree 4. To do so, we consider a cubic surface
S given by equation F = L = 0, where F is
a homogeneous polynomial of degree 3.

According to a theorem of a British
mathematician James Sylvester (1814-
1897), one of the principal contributor to
the development of the theory of invariants

in the 19the century, a general cubic surface
can be given in a unique way by equations as
above, where F has the form F =

∑
aix

3
i .

Figure
11. James
Sylvester

If replace x5
with −(x1 + . . .+
x4) and com-
pute the Hes-
sian He(F ′) of
the correspond-
ing polynomial
F ′ of degree 4
in x1, . . . , x4, i.e.
the determinant
of the matrix
of second par-
tial derivatives
of F ′, we obtain

an equation of a quartic surface given
by equations H = L = 0, where H =
x1 · · ·x5(

∑5
i=1

1
aixi

).

Figure
12. Sylvester
pentahedron

We
call
this
sur-
face the
Hes-
sian of
F and
denote
it by
H(S).
Now
we see
that all
lines `ij lie on H(S) and the points Pij are
its singular points. The union of five hyper-
planes xi = L = 0 is called the Sylvester
pentahedron of the cubic surface S.

The reader will immediately see that the
projection of the configuration to a plane
from a point outside of the pentahedron be-
comes a Desargues configuration with per-
spective triangles whose vertices are the
projections of the points P13, P14, P15 and
P23, P24, P25.
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Figure
13. Hessian
quartic

The Hessian
surface H(S) is
a special case of
a quartic surface
whose equation is
given by the de-
terminant of a
symmetric ma-
trix whose en-
tries are linear
forms in pro-
jective coordi-

nates. They are named Cayley quar-
tic symmetroids after a British math-
ematician Arthur Cayley (1821-1895).

Figure
14. Arthur
Cayley

Enriques sur-
face. Although
the Hessian sur-
face H(S) is
singular at the
points Pij , we can
transform it to a
nonsingular sur-
face S̃ by blow-
ing up the singu-
lar points, i.e. by
adding all tangent directions at these points
of germs of nonsingular curves lying on the
surface. The resulting surface is an example
of a K3 surface (see for their theory [5]).

Figure
15. Federigo
Enriques

The Cre-
mona involu-
tion defined
by (x1 : . . . :
x5) 7→ ( 1

aix1
:

. . . : 1
a5x5

) lifts
to an auto-
morphism of
S̃ of order 2.
It exchanges
the directional
curves Eij

blown-up from points Pij with the line
Lij . The intersection graph of the 20 curves
Eij , Lij obtained in this way is the Desar-
gues graph. The quotient of the K3-surface
S̃ by the Cremona involution that acts free

of fixed points is an example of an Enriques
surface named after an Italian mathemati-
cian Federigo Enriques (1871-1946).

The blown-up surface admits an embed-
ding in P5 as a surface of degree 10. In this
embedding the orbits {Eij , Lij} are repre-
sented by 10 lines whose intersection graph
is the Petersen graph.

Clebsch diagonal cubic sur-
face. Let us consider a special cu-
bic surface where F =

∑
x3i .

Figure
16. Alfred
Clebsch

It is called Cleb-
sch diagonal cu-
bic surface and
it is named after
a German math-
ematician Alfred
Clebsch (1833-
1872).

It has an ob-
vious symmetry
group isomorphic
to S5 and it acts
on its Hessian
surface by projec-

tive automorphisms. It is the only cubic
surface with S5 symmetry. This realizes
the symmetry of the Petersen graph by pro-
jective automorphisms of a cubic surface.

The Enriques surface obtained from the
Hessian of the Clebsch diagonal surface is
one of very rare Enriques surfaces whose
group of automorphisms is finite [8]. In our
case the group is isomorphic to S5. So, we
obtain yet another incarnation of the Pe-
tersen graph and its group of symmetry as
the intersection graph of 10 lines lying on
an Enriques surface with the full automor-
phism group S5.

It was discovered in 1849 by Arthur
Cayley and an Irish mathematician George
Salmon (1819-1904). that a nonsingular cu-
bic surface contains exactly 27 lines. Each
face xi = 0 of the Sylvester pentahedron in-
tersected by the other four faces along three
diagonals of, a complete quadrilateral with
vertices Pij lying in the plane.
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Figure
17. George
Salmon

These diag-
onals define 15
lines on the sur-
face and this ex-
plains its name.
The remaining
12 lines form a
double-six : the
union of two sets
of six skew lines,
each intersecting
5 lines from the
other set.

Figure
18. Complete
quadrilat-
eral

It is known
that a non-
singular cu-
bic surface can
be obtained
as a projec-
tively embed-
ded blowing-
up of 6 points
in a projective
plane no three

of which are collinear and not all of them lie
on a conic. One realizes the 27 lines as 15
lines joining a pair of points, 6 lines com-
ing from directions at the six points, and
6 conics passing through all points except
one.

Figure
19. Clebsch
surface

The Clebsch
diagonal cubic
surfaces is the
only cubic surface
where all 27 lines
are defined over
reals and then
can be seen on
a picture of the
surface. The six
points must be
chosen in a spe-
cial way and how to choose them is related
to the icosahedron.

Figure
20. Icosahedron

Icosahedron.
Finally we ar-
rive at the icosa-
hedron. As one
of Platonic solids
it is omnipresent
in mathematics
since antiquity. It
is a regular con-
vex polyhedron

with 12 vertices, 30 edges and 20 faces.

Figure
21. Felix
Klein

In the intro-
duction of his
Lectures on the
Icosahedron [7],
a German math-
ematician Fe-
lix Klein (1849-
1925) writes: “A
special difficulty,
which presented
itself in the exe-
cution of my plan,
lay in the great variety of mathematical
methods entering in the theory of the Icosa-
hedron.” Since Klein’s time the variety of
different methods and connections to dif-
ferent fields of mathematics has greatly in-
creased.

We can circumscribe a sphere in R3

around an icosahedron in such a way
that the planes passing through oppo-
site edges cut the sphere in large cir-
cles. This gives a regular tiling of
the sphere in 20 spherical triangles.

Figure
22. Spherical
triangles

Now we pass to
the real projec-
tive plane by
identifying the
antipodal points
on the sphere.
The images of the
vertices become
a 6-point subset
of P2(R). If we
blow-them up, we
get an algebraic

surface which can be embedded in P3 with
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the image equal to the Clebsch diagonal
cubic surface. The symmetry group of an
icosahedron is isomorphic to the alternating
group A5 ⊂ S5.

The images of large circles correspond-
ing to the edges are 15 lines in the plane.
They connect 15 pairs of the six points.
They have a peculiar property that the lines
joining three disjoint pairs intersect at one
point. It is an Eckardt point on a cubic
surface, named after a German mathemati-
cian F.E. Eckardt (unfortunately, no bio has
been found). The number ten of Eckardt
point on a cubic surface is almost a record,
the only surface that beats it is the Fermat
cubic surface whose equation can be given
by the sum of four powers of coordinates in
P3. It has 18 Eckardt points.

The images of 10 antipodal pairs on the
sphere corresponding to the centers of the

20 faces of an icosahedron are mapped to
an A5-orbit of 10 points in the plane. Each
point lies on three of the 15 lines obtained
from the edges. In the dual projective we
obtain 10 lines and 15 intersection points
which realize the Petersen graph. In fact,
one does not need to go to the dual plane.
We can realize this configuration in the
plane itself. To do this, we use the fact that
the action of the icosahedron group A5 in
the projective plane is defined by its real
3-dimensional irreducible linear representa-
tion, and this implies that there is an in-
variant conic in the plane. It defines the
self-duality of the plane. The configuration
of 10 lines can be obtained as the projection
to the plane of the ten lines lying the del
Pezzo surface in P5 under an A5-equivariant
projection P5 → P2 [2].
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