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PREFACE

The following material comprises a set of class notes in Introduction to Physics taken
by math graduate students in Ann Arbor in 1995/96. The goal of this course was to
introduce some basic concepts from theoretical physics which play so fundamental role in
a recent intermarriage between physics and pure mathematics. No physical background
was assumed since the instructor had none. I am thankful to all my students for their
patience and willingness to learn the subject together with me.

There is no pretense to the originality of the exposition. I have listed all the books
which I used for the preparation of my lectures.

I am aware of possible misunderstanding of some of the material of these lectures and
numerous inaccuracies. However I tried my best to avoid it. I am grateful to several of
my colleagues who helped me to correct some of my mistakes. The responsibility for ones
which are still there is all mine.

I sincerely hope that the set of people who will find these notes somewhat useful is
not empty. Any critical comments will be appreciated.
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Classical Mechanics 1

Lecture 1. CLASSICAL MECHANICS
1.1 We shall begin with Newton’s law in Classical Mechanics:

2x
m% =F(x,t). (1.1)
It describes the motion of a single particle of mass m in the Euclidean space R3. Here
X : [t1,t2] — R3 is a smooth parametrized path in R3, and F : [t;,t5] x R® — R is a map
smooth at each point of the graph of x. It is interpreted as a force applied to the particle.
We shall assume that the force F is conservative, i.e., it does not depend on ¢t and there
exists a function V : R?® — R such that

ov ov ov

F(i) = —grad V() = (~5-(x), (), = 5 —(x).

The function V is called the potential energy. We rewrite (1.1) as

2
m(le;( + grad V(x) = 0. (1.2)

Let us see that this equation is equivalent to the statement that the quantity

560 = [ GmllGIE - Vxo)at (13)

called the action, is stationary with respect to variations in the path x(t). The latter
means that the derivative of S considered as a function on the set of paths with fixed
ends x(t1) = x1,X(t2) = x2 is equal to zero. To make this precise we have to define the
derivative of a functional on the space of paths.

1.2 Let V be a normed linear space and X be an affine space whose associated linear space
is V. This means that V acts transitively and freely on X. A choice of a point a € X
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allows us to identify V with X via the map x — z 4+ a. Let F': X — Y be a map of X to
another normed linear space Y. We say that F is differentiable at a point x € X if there
exists a linear map L, : V' — Y such that the function a, : X — Y defined by

az(h) = F(x+h) — F(x) — L(h)

satisfies

lim {|az (R)||/[[A]] = 0. (1.4)

[[h]|—0
In our situation, the space V is the space of all smooth paths x : [t1,ts] — R3 with
X(t1) = x(t2) = 0 with the usual norm ||x|| = max;c[, ¢, ||%x(t)[|, the space X is the set of
smooth paths with fixed ends, and Y = R. If F' is differentiable at a point x, the linear
functional L, is denoted by F’(x) and is called the derivative at x. We shall consider any
linear space as an affine space with respect to the translation action on itself. Obviously,
the derivative of an affine linear function coincides with its linear part. Also one easily
proves the chain rule: (F o G) (z) = F'(G(x)) o G'(x).
Let us compute the derivative of the action functional

S(x) = / " L(x(t), (1)), (1.5)

where

L:R"xR" =R
is a smooth function (called a Lagrangian). We shall use coordinates q = (¢1, ..., qy) in the
first factor and coordinates q = (¢, ..., qn) in the second one. Here the dots do not mean

derivatives. The functional S is the composition of the linear functional I : C*°(t1,t3) — R
given by integration and the functional

£ x(t) = L(x(t),x(t)).

Since

L(x 4 h(t),x + h(t)) = L(x, %) + Z g—i(x, X)hi(t) + Z g—;(x, %)h;(t) + o(||h|])

= L(x. %) + gradg L(x, %) - h(t) + gradgL(x,%) - h(£) + of|hl]).
we have

S’ (x)(h) = I'(L(x)) o L' (x)(h) = / 2(graqu(x, %) - h(t) + gradg L(x, %) - h(t))dt. (1.6)

ty

Using the integration by parts we have

/ " grad, L(x, %) - h(£)dt = [gradyL(x, %) - b

t1

t2 t2 g . .
T /t1 %graqu(xx) -h(t)dt.
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This allows us to rewrite (1.6) as

S'(x)(h) = /t 2 (graqu(x,X)—%graqu(x,X)> “h(t)dt + [gradg L(x, %) -h]| . (1.7)

Now we recall that h(¢;) = h(t2) = 0. This gives

S'(x)(h) = /t ’ (iradyL(x. %) - %graqu(x,X)> h(t)dt.

Since we want this to be identically zero, we get

a—L(x X) — i oL
oq; dt 0q;

(x,%x)=0,i=1,...,n. (1.8)

This are the so called Euler-Lagrange equations.
In our situation of Newton’s law, we have n = 3,q = (q1, ¢2, ¢3) = x = (1, 22, T3),

i 1 . i i
L(q,q) = —V(q1,92,q3) + §m(fﬁ + 45 +¢3) (1.9)

and the Euler-Lagrange equations read

ov d?x
or )
m% = —gradV (x) = F(x).

We can rewrite the previous equation as follows. Notice that it follows from (1.9) that

. oL
! 04
Hence if we set p; = g—; and introduce the Hamiltonian function
H(p,q) =Y pidi — L(q, &), (1.10)
then, using (1.8), we get
dp; oOH OH
i _ — ) 1.11
P o o’ T (1.11)

They are called Hamilton’s equations for Newton’s law.

1.3 Let us generalize equations (1.11) to an arbitrary Lagrangian function L(q, q) on R?".
We view R2" as the tangent bundle T(R™) to R™. A path v : [t1,t2] — R™ extends to a
path 4 : [t1,t2] — T(R™) by the formula
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We use q = (q1, - -.,qn) as coordinates in the base R™ and q = (41, ..., {y) as coordinates
in the fibres of T'(R™). The function L becomes a function on the tangent bundle. Let us
see that L (under certain assumptions) can be transformed to a function on the cotangent
space T'(R™)*. This will be taken as the analog of the Hamiltonian function (1.10). The
corresponding transformation from L to H is called the Legendre transformation.

We start with a simple example. Let

Z azzx + 2 Z a’bjx .’17]

1<i<j<n

be a quadratic form on R™. Then % = 22 1 @i;r; is a linear form on R™. The form
@ is non-degenerate if and only if the set of 1ts partlals forms a basis in the space (R™)*
of linear functions on R™. In this case we can express each z; as a linear expression in

pj = 8Q ,7=1,...,n. Plugging in, we get a function on (R™)*:

Q*(p17 ce ;pn) = Q(xl(pb et ;pn), e 7xn(p17 R 7pn))

For example, if n = 1 and Q = 2 we get p = 22,z = p/2 and Q*(p) = p*/4. In coordinate-
free terms, let b: V' x V' — K be the polar bilinear form b(z,y) = Q(z +vy) — Q(z) — Q(y)
associated to a quadratic form @) : V — K on a vector space over a field K of characteristic
0. We can identify it with the canonical linear map b : V' — V* which is bijective if @ is
non-degenerate. Let b= : V* — V be the inverse map. It is the bilinear form associated
to the quadratic form Q* on V*.

Since 2Q(z1,...,%n) = Y iy ng z;, we have Q(x) = >, ng x; — Q(x). Hence

Q" (p1,- - pn) = sz-wi — Q(x(p)) = pex — Q(x(p)).

Now let f(z1,...,2,) be any smooth function on R™ whose second differential is a positive
definite quadratic form. Let F'(p,x) = pex— f(x). The Legendre transform of f is defined
by the formula:

f*(p) = max F(p, x).

To find the value of f*(p) we take the partial derivatives of F'(p,x) in x and eliminate x;
from the equation
or 0f
8xi b 8:52

This is possible because the assumption on f allows one to apply the Implicit Function
Theorem. Then we plug in z;(p) in F(p,x) to get the value for f*(p). It is clear that
applying this to the case when f is a non-degenerate quadratic form @, we get the dual
quadratic form Q*.

Now let L(q,q) : T(R™) — R be a Lagrangian function. Assume that the second dif-
ferential of its restriction L(qo, q) to each fibre T'(R™)q, = R™ is positive-definite. Then we
can define its Legenedre transform H(qo, p) : T(R");, — R, where we use the coordinate

=0.
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p = (p1,-..,pn) in the fibre of the cotangent bundle. Varying qo we get the Hamiltonian
function
H(q,p): T(R)" — R.

By definition,
H(q,p) =peq— L(q,q), (1.12)

where q is expressed via p and q from the equations p; = (89_5' We have

OH <~ 98¢ 0LOdj OL  OL
3%‘_2 B

GH ZQi+ij%—Za—.La% = qi-

Thus, the Euler-Lagrange equations

3_L( ~)_13_L
TS

94, (q,9)=0,i=1,...,n.

are equivalent to Hamilton’s equations

_dp;  dOL 9L  9H(q,p)

Pi="ar T atoq T oq; g
dg; O0H(q,p)
o= 2 9H\.P) 1.1
Gi = o, (1.13)

1.4 The difference between the Euler-Lagrange equations (1.8) and Hamilton’s equations
(1.13) is the following. The first equation is a second order ordinary differential equation on
T(R™) and the second one is a first order ODE on T'(R™)* which has a nice interpretation
in terms of vector fields. Recall that a (smooth) vector field on a smooth manifold M is
a (smooth) section & of its tangent bundle T'(M). For each smooth function ¢ € C°°(M)
one can differentiate ¢ along & by the formula

De@)m) = Y 27

i=1
where m € M, (z1,...,2,,) are local coordinates in a neighborhood of m, and &; are the
coordinates of {(m) € T(M),, with respect to the basis (8%17 e a%) of T(M),,. Given

a smooth map v : [t1,t2] — M, and a vector field £ we say that -« satisfies the differential
equation defined by £ (or is an integral curve of §) if

dy 0

= = (dy)a(a) =¢(y(a)) for all a € (t1,t2).
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The vector field on the right-hand-side of Hamilton’s equations (1.13) has a nice
interpretation in terms of the canonical symplectic structure on the manifold M = T'(R™)*.

Recall that a symplectic form on a manifold M (as always, smooth) is a smooth closed
2-form w € Q2(M) which is a non-degenerate bilinear form on each T'(M),,. Using w one
can define, for each m € M, a linear isomorphism from the cotangent space T'(M)?, to
the tangent space T'(M),,. Given a smooth function F' : M — R, its differential dF is
a l-form on M, i.e., a section of the cotangent bundle T'(M). Thus, applying w we can
define a section 1, (dF') of the tangent bundle, i.e., a vector field. We apply this to the
situation when M = T(R™)* with coordinates (q,p) and F' is the Hamiltonian function
H(q,p). We use the symplectic form

w = zn:dq,- A dp;.

=1

If we consider (dqu,...,dgn,dp1,...,dp,) as the dual basis to the basis (8%1,...,%,
(?im’ el ap =2-) of the tangent space T'(M),, at some point m, then, for any v,w € T(M),,

Z qu dpz Z dQZ dpz

In particular,

o 0 o 0
m(=—,=—) =wm(=—,=—) =0 foralli,j,
(3% 361]-) (3197; 8pj)

o 0 o 0

m(f, T) = —Wm(fa f) = 0ij-
qi Opj Pi 04j

The form w sends the tangent vector a_ to the covector dp; and the tangent vector
dg;. We have

dH =  + Z

=1

hence
n

8H OH 0
w H) =
to(dH) Z 3qz~ 8pz Z Op; 0q;

=1

So we see that the ODE corresponding to this vector field defines Hamilton’s equations
(1.13).

1.5 Finally let us generalize the previous Lagrangian and Hamiltonian formalism replacing
the standard Euclidean space R™ with any smooth manifold M. Let L : T(M) — R be
a Lagrangian, i.e., a smooth function such that its restriction to any fibre T'(M),, has
positive definite second differential.
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Definition. A motion (or critical path) in the Lagrange dynamical system with config-
uration space M and Lagrange function L is a smooth map v : [t1,%2] — M which is a
stationary point of the action functional

Let us choose local coordinates (qi,...,q,) in the base M, and fibre coordinates
(G1,---,qn). Then we obtain Lagrange’s second order equations

oL . d OL

(Y(®),5(t) =0, i=1,...,n. (1.14)

To get Hamilton’s ODE equation, we need to equip 7'(M)* with a canonical symplectic
form w. Tt is defined as follows. First there is a natural 1-form « on T(M)*. Tt is
constructed as follows. Let m : T(M)* — M be the bundle projection. Let (m,n,,),m €
M,y € T(M)), = (T'(M),)* be a point of T'(M)*. The differential map

dm : T(T(M>*)(m,nm) — T(M)m

sends a tangent vector v to a tangent vector &, at m. If we evaluate n,, at &, we get a
scalar which we take as the value of our 1-form « at the vector v. In local coordinates
(q1s- -+, qnyP1,---,Pn) on T(M)* the expression for the form « is equal to

n
a =Y pidg;.
=1

Thus
w=—da = Zdéh' A dp;

1=1

is a symplectic form on T(M)*. Now if H : T(M)* — R is the Legendre transform of
L, then 1, (dH) is a vector field on T'(M)*. This defines Hamilton’s equations on T'(M)*.

Recall that the motion  can be considered as a path in T'(M),t — (v(t), dzl—it)), and the
Lagrange function L allows us to transform it to a path on T'(M)* (by expressing the fibre

coordinates ¢; of T'(M) in terms of the fibre coordinates p; of T'(M)*).

1.6 A natural choice of the Lagrangian function is a metric on the manifold M. Recall
that a Riemannian metric on M is a positive definite quadratic form g(m) : T'(M),, — R

which depends smoothly on m. In a basis (8%1, e %) on T'(M),, it is written as

9= gidudz,

1,7=1
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where (g;;) is a symmetric matrix whose entries are smooth functions on M. Chang-

ing local coordinates (z1,...,x,) to (y1,...,Yn) replaces the basis (8%1, e 8%) with
(8%17'“7&; ). We have
" dx; O " Ox;

. iy,
(?yj P dy; Ox;’ i = dy; 7

This gives a new local description of g:

g= Z gi; (m)dy;dy;

1,j=1
where .
0x, Oxyp 0x, Oxyp
! a a
9i5 = Gad = YGab .
=2 9 dy; Oy; 7Y Oy; Oy,

a,b=1

The latter expression is the “physicist’s expression for summation”.
One can view the Riemannian metric g as a function on the tangent bundle T'(M).
For physicists the function T = %g is the kinetic energy on M. A potential energy is a
smooth function U : M — R. An example of a Lagrangian on M is the function
1
L= §g—Uo7r, (1.15)
where m : T(M) — M is the bundle projection. What is its Hamiltonian function?
If we change the notation for the coordinates (z1,...,2n),(3%,...,52) on T(M) to

n Y\ Ox1? ) Ox
(QIa cee 7Qn)7 (QD oo 7qn)7 then g = Zivjzl 9ij4i45, and

OL 109 ~~ .
pi = 8% - 58(]1 - Zgw%~

Thus

1

1
H = sz(h g U)Zg—(§g—U):§g+U:T+U.

The expression on the right-hand-side is called the total energy. Of course we view this
function as a function on T'(M)* by replacing the coordinates ¢; with p; = >."" | ¢“¢;,

where -
(9) = (gi) "
A Riemannian manifold is a pair (M, g) where M is a smooth manifold and g is a
metric on M. The Lagrangian of the form (1.15) is called the natural Lagrangian with

potential function U. The simplest example of a Riemannian manifold is the Euclidean
space R™ with the constant metric

= m(z dz;dx;).
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As a function on T'(M) = R?" it is the function g = Y, ¢7. Thus the corresponding natural
Lagrangian is the same one as we used for Newton’s law.

The critical paths for the natural Lagrangian with zero potential on a Riemannian
manifold (M, g) are usually called geodesics. Of course, in the previous example of the
Euclidean space, geodesics are straight lines.

1.7 Example. The advantage of using arbitrary manifolds instead of ordinary Euclidean
space is that we can treat the cases when a particle is moving under certain constraints. For
example, consider two particles in R? with masses m; and msy connected by a (massless)
rod of length /. Then the configuration space for this problem is the 3-fold

M = {(x1,22,91,92) € R* : (71 — 2/1)2 + (22 — y2)2 = 12}.

By projecting to the first two coordinates, we see that M is a smooth circle fibration with
base R2. We can use local coordinates (x1,2) on the base and the angular coordinate @
in the fibre to represent any point on (x,y) € M in the form

(x,y) = (z1,x2, 21 + lcos b, zo + [sinh).

We can equip M with the Riemannian metric obtained from restriction of the Riemannian
metric
ml(dxldxl + dl‘gdl’z) + mg(dyldyl + dygdyg)

on the Euclidean space R* to M. Then its local expression is given by
g = my(deydxy + drodes) + mo(dyidyy + dyadys) = my (dzidey + dradzs) + 1*maydfds.

The natural Lagrangian has the form

1 . . ;
L(x1(t), z2(t),0(t)) = é(mlx% + myd3 + mol?60?) — Ulxy, x2,0).

The Euler-Lagrange equations are

dQQS'Z‘ oU
ST =12
mi dt2 81'1'7 ? ) &
pd U
> at a0

Exercises.

1. Let g be a Riemannian metric on a manifold M given in some local coordinates
(1,...,2,) by a matrix (g;;(x)). Let

: " gt Og; O dg;
i 9_< glj+ gik gjk)‘

L — 2 0x, Oy oxy
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Show the Lagrangian equation for a path z; = y;(t) can be written in the form:

dez' = ;..
T2 == D Uit
J,k=1

2. Let M be the upper half-plane {z = = + iy € C : y > 0}. Consider the metric
g = y~2(dxdz + dydy). Find the solutions of the Euler-Lagrange equation for the natural
Lagrangian function with zero potential. What is the corresponding Hamiltonian function?
3. Let M be the unit sphere {(x,y,2) € R? : 2% + y* + 22 = 1}. Write the Lagrangian
function such that the corresponding action functional expresses the length of a path on
M. Find the solutions of the Euler-Lagrange equation.

4. In the case n = 1, show that the Legendre transform g(p) of a function y = f(z) is
equal to the maximal distance from the graph of y = f(x) to the line y = pz.

5. Show that the Legendre transformation of functions on R™ is involutive (i.e., it is the
identity if repeated twice).

6. Give an example of a compact symplectic manifold.

7. A rigid rectangular triangle is rotated about its vertex at the right angle. Show that

its motion is described by a motion in the configuration space M of dimension 3 which is
naturally diffeomorphic to the orthogonal group SO(3).
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Lecture 2. CONSERVATION LAWS

2.1 Let G be a Lie group acting on a smooth manifold M. This means that there is given
a smooth map p: G x M — M, (g,z) = g-z, such that (¢g-¢)x=¢g-(¢'-z)and 1 -z ==z
for all g € G,z € M. For any x € M we have the map u, : G — X given by the formula
wz(g) = g - x. Its differential (duy)1 : T(G)1 — T(M), at the identity element 1 € G
defines, for any element ¢ of the Lie algebra g = T/(G)1, the tangent vector ¢4 € T(M),.
Varying = but fixing &, we get a vector field ¢% € ©(M). The map

is a Lie algebra anti-homomorphism (that is, p.([,n]) = [p«(n), p«(§)] for any &,n € g).
For any £ € g the induced action of the subgroup exp(R¢) defines the action

pe : Rx M — M, pe(t,x) = exp(t) - x.

This is called the flow associated to &.
Given any vector field n € ©(M) one may consider the differential equation

() =n(v(t)). (2.1)

Here v : R — M is a smooth path, and () = (d’y)t(%) € T(M)y)- Let vg : [—c,c] = M
be an integral curve of  with initial condition ~,(0) = z. It exists and is unique for some
¢ > 0. This follows from the standard theorems on existence and uniqueness of solutions of
ordinary differential equations. We shall assume that this integral curve can be extended
to the whole real line, i.e., ¢ = co. This is always true if M is compact. For any t € R, we
can consider the point v(¢) € M and define the map p, : R x M — M by the formula

Mn(t7 T) = v (t).

For any t € R we get a map g, : M — M,z — puy(t,z). The fact that this map is a
diffeomorphism follows again from ODE (a theorem on dependence of solutions on initial
conditions). It is easy to check that

gttt =ghogh, g7 = (g7
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So we see that a vector field generates a one-parameter group of diffeomorphisms of
M (called the phase flow of n). Of course if n = ¢% for some element ¢ of the Lie algebra
of a Lie group acting on M, we have

gex = exp(te). (2.2)

2.2. When a Lie group G acts on a manifold, it naturally acts on various geometric objects
associated to M. For example, it acts on the space of functions C*°(M) by composition:
9f(x) = f(g~'-x). More generally it acts on the space of tensor fields T?9(M) of arbitrary
type (p,q) (p-covariant and g-contravariant) on M. In fact, by using the differential of
g € G we get the map dg : T(M) — T(M) and, by transpose, the map (dg)* : T'(M)* —
T(M)*. Now it is clear how to define the image ¢*(Q) of any section @Q of T(M)®? ®
T(M)*®9. Let n be a vector field on M and let {g} }:er be the associated phase flow. We
define the Lie derivative L, : T?9(M) — TP 9(M) by the formula:

(£,Q)(x) = lim ~((¢))*(Q)(x) — Q(x)), = € M. (2.3)

Explicitly, if n = >, ai% is a local expression for the vector field n and Q;llz’; are the

coordinate functions for (), we have

. P n .
(E Q)lep . Zaz 1.7 o Z aaza QZI Zo/”fa+1 ’Lp+
N¥/j1...Jq ‘ ox; ' Ox; I -Jq

I N da?
’L1...’Lp 4
+;Z o0xj, QJl Jpiiptr-da’ (2.4)
Note some special cases. If p=¢ =0, i.e., Q@ = Q(x) is a function on M, we have

L,(Q) =< n,dQ >=n(Q), (2.5)

where we consider 7 as a derivation of C*°(M). If p=1,¢ =0, ie,, Q = >, Qia%i is a
vector field, we have

NS 2 a0
Ly(Q) =MnQ =) d B 8%)8%. (2.6)

j:1 =1

Ifp=0,g=1,1e, Q=731 Qidz; is a 1-form, we have

Z S al &CZ +Qi8—zj)dxj. (2.7)

=1 =1

We list without proof the following properties of the Lie derivative:
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>\77+H§( ) =L (Q) + IM'CE(Q)? )‘7 W e R§
m.e(Q) = [En,ﬁg] =LyoLe—LeoLy;
n(Q®Q) (Q)®Q’+Q®£n(Q');

artan’s formula)

a

Ly(w)=d<nw>+<ndw> weAl(M)=T(M,N\TM))):

(v) Lyod(w)=do L,(w), we Al (M);
(vi) Lfp(w) = fLy(w) +dfAN<nw>, feC®M)weAI(M).

Here we denote by <, > the bilinear map TH%(M) x T%4(M) — T%9=1(M) induced
by the map T (M) x T(M)* — C>°(M).

Note that properties (i)-(iii) imply that the map n — £, is a homomorphism from
the Lie algebra of vector fields on M to the Lie algebra of derivations of the tensor algebra
T**(M).

Definition. Let 7 € TP9(M) be a smooth tensor field on M. We say that a vector field
n € O(M) is an infinitesimal symmetry of T if

L,(r)=0.

It follows from property (ii) of the Lie derivative that the set of infinitesimal symmetries
of a tensor field 7 form a Lie subalgebra of O(M).

The following proposition easily follows from the definitions.

Proposition. Let i be a vector field and {g%} be the associated phase flow. Then n is an
infinitesimal symmetry of 7 if and only if (g;)*(7) = 7 for all t € R.

Example 1. Let (M,w) be a symplectic manifold of dimension n and H : M — R be a
smooth function. Consider the vector field n = 1,,(dH). Then, applying Cartan’s formula,
we obtain

Lyw)=d<nw>+<ndo>=d<nw>=d<1,(dH),w>=d(dH) = 0.

This shows that the field n (called the Hamiltonian vector field corresponding to the func-
tion H) is an infinitesimal symmetry of the symplectic form. By the previous proposition,
the associated flow of 1 preserves the symplectic form, i.e., is a one-parameter group of
symplectic diffeomorphisms of M. It follows from property (iii) of £, that the volume
form w™ =wA ... Aw (n times) is also preserved by this flow. This fact is usually referred
to as Liouville’s Theorem.

2.3 Let f : M — M be a diffeomorphism of M. As we have already observed, it can be
canonically lifted to a diffeomorphism of the tangent bundle T'(M). Now if n is a vector
field on M, then there exists a unique lifting of 1 to a vector field 77 on T'(M) such that its
flow is the lift of the flow of 7. Choose a coordinate chart U with coordinates (q1,. .., qn)
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such that the vector field n is written in the form > ., ai(q)%. Let (1,3 qn,q1s .-, qn)

be the local coordinates in the open subset of T(M) lying over U. Then local coordinates

in T(T(M)) are (8%1, ceey %, 8%1’ e Bar 9_). Then the lift 77 of 7 is given by the formula

Later on we will give a better, more invariant, definition of 7 in terms of connections on
M.

Now we can define infinitesimal symmetry of any tensor field on T (M), in particular
of any function F' : T'(M) — R. This is the infinitesimal symmetry with respect to a vector
field 77, where n € ©(M). For example, we may take F' to be a Lagrangian function.

Recall that the canonical symplectic form w on T'(M)* was defined as the differential
of the 1-form o = —> "  pidg;. Let L : T(M) — R be a Lagrangian function. The
corresponding Legendre transformation is a smooth mapping: iy, : T(M) — T(M)*. Let

The next theorem is attributed to Emmy Noether:

Theorem. If7 is an infinitesimal symmetry of the Lagrangian L, then the function (7}, wy,)
is constant on % : [a,b] — T(M) for any L-critical path v : [a,b] — M.

n

Proof. Choose a local system of coordinates (q,q) such that n =), , ai(q)a%i. Then
n= ai(Q) dq: + QJ 8%

—._ (using physicist’s notation) and

n

- OL
<wL77]> = Zaza_

i=1 v

We want to check that the pre-image of this function under the map + is constant. Let
A(t) = (q(t),q(t)). Using the Euler-Lagrange equations, we have

&> aita(op LA 5 B PLAAO) (g0 5 D00,

=1

33 o PG ) P00,
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Together with the previous equality, this proves the assertion.

Noether’s Theorem establishes a very important principle:
Infinitesimal symmetry =— Conservation Law.

By conservation law we mean a function which is constant on critical paths of a Lagrangian.
Not every conservation law is obtained in this way. For example, we have for any critical

path y(t) = (q(t),4(t))
L dg 0L dg; oL  d . IL

dt  dt og T ar og  atloq,
This shows that the function

. OL
E=yq; 34, L
(total energy) is always a conservation law. However, if we replace our configuration space
M with the space-time space M xR, and postulate that L is independent of time, we obtain
the previous conservation law as a corollary of existence of the infinitesimal symmetry of

L corresponding to the vector field %.

Example 2. Let M = R™ Let G be the Lie group of Galilean transformations of
M. 1t is the subgroup of the affine group Aff(n) generated by the orthogonal group
O(n) and the group of parallel translations q — q + v. Assume that G is the group of
symmetries of L. This means that L(q,q) is a function of ||q|| only. Write L = F(X)
where X = ||q||?/2 = (1/2) Y, ¢?. Lagrange’s equation becomes

_doL _d . dF,
T dtog,  di lgx’

This implies that ¢;F'(X) = ¢ does not depend on ¢t. Thus either ¢; = 0 which means
that there is no motion, or F'(X) = ¢/¢; is independent of ¢;, j # i. The latter obviously
implies that ¢ = F/(X) = 0. Thus L =m .-, ¢? is the Lagrangian for Newton’s law in
absence of force. So we find that it can be obtained as a corollary of invariance of motion
with respect to Galilean transformations.

Example 3. Assume that the Lagrangian L(qi,...,qn,d1,-..,qy) of a system of N
particles in R” is invariant with respect to the translation group of R™. This implies that
the function

F(a)=L(qi +a,...,qv +a,q1,...,4qn)

is independent of a. Taking its derivative, we obtain

N

Z grad,, L = 0.
i=1

The Euler-Lagrange equations imply that

d & d &
ad d. L=2 . =0,
dt;gmqi dt;p
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where p; = gradg, L is the linear momentum vector of the i-th particle. This shows that
the total linear momentum of the system is conserved.

Example 4. Assume that L is given by a Riemannian metric g = (g;;). Let n = aiaiqi
be an infinitesimal symmetry of L. According to Noether’s theorem and Conservation
of Energy, the functions £, = g and wr (1) = 23, ; 9ijaig; are constants on geodesics.
For example, take M to be the upper half plane with metric y~2(dz? + dy?), and let
n € g = Lie(G) where G = PSL(2,R) is the group of Moebius transformations z —

Zjis, z = x +1y. The Lie algebra of GG is isomorphic to the Lie algebra of 2 x 2 real

: b . . L :
matrices (Z d> with trace zero. View 1 as a derivation of the space C*°(G) of functions

on G. Let C*(M) — C*(G) be the map f — f(g-x) (z is a fixed point of M). Then the
composition with the derivation 7 gives a derivation of C°°(M). This is the value 1% of

the vector field n? at z. Choose aaa 6‘? 7 aab, aac as a basis of g. Then simple computations
give

0 0 ,az+b of
(%)h(f(z)) = % (—cz T d)‘(a,b,c,d):(l,0,0,l) = G_xw’
0 0 ,az+b of
(%)h(f(z)) = %f(m)’(a,b,c,d):(l,o,o,n = B
0 0 ,,az+b af of

(%)h(f(z)) = % ( )’(a,b,c,d):(l,0,0,l) (y - fcz)ax ny(‘?_y’

cz+d

0 0 .az+b of 8f
i — S i A

Thus we obtain that the image of g in ©(M) is the Lie subalgebra generated by the
following three vector fields:

_$3+ 9 —(Z—xQ)E—QxQ _9
= ox y@y’ 2= or y@y’ 773_89:

They are lifted to the following vector fields on T'(M):
m = xﬁ + 9 + :Jc2 + -
"0 Yoy T T Ve

0 0 0 0
~ . 2 . 2 __ e . o . __ . . .
e = (y° — %) o 2zy By + (2yy — 2x) 5 (2yd + 2zy) o5’

=9
N3 = o
If we take for the Lagrangian the metric function L = y=2(4? + ¢?) we get

(L) = (i, dL) = =2y y(i® + §°) + 2y~ %3% + 2y~ %5° = 0,

flo(L) = 4L + (2yy — 2xid)y 224 — (2yd + 2x7)y 225 = 0,
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n3(L) = 0.

Thus each 7 = any + bnz + cns3 is an infinitesimal symmetry of L. We have

oL oL
S duy = 2u2(i du).
wr = ——dr + d Yy~ “(&dx + ydy)

This gives us the following 3-parameter family of conservation laws:

Mwr (1) + Aowr (7i2) + Aswr (fz) = 2y~ 2 [\ (@ + y9) + X2 (y°F — 228 — 22y9) + A3d).

2.4 Let ¥ : T(M) — R be any conservation law with respect to a Lagrangian func-
tion L. Recall that this means that for any L-critical path v : [a,0] — M we have
dVU(y(t),4(t))/dt = 0. Using the Legendre transformation is, : T(M) — T(M)* we can
view v as a path q = q(t),p = p(t) in T(M)*. If iy is a diffeomorphism (in this case
the Lagrangian is called regular) we can view ¥ as a function ¥(q,p) on T(M)*. Then,
applying Hamilton’s equations we have

AV(a(t).p(t) _ =0V Z OUOH OV OH
dt P 3%; dq; Op;  Op; Ag;’

where H is the Hamiltonian function.
For any two functions F,G on T'(M)* we define the Poisson bracket

(F.G) = ZaFE)G oF 0G (2.9)

dq; Op;  Op; Oq;

It satisfies the following properties:
(i) (NP +pG Hy = MF H} + p{G,H}, M\peR,
(H) {F7 G} = _{GvF};
(iii) (Jacobi’s identity) {E,{F,G}} +{F,{G,E}} + {G,{E,F}} = 0;
(iv) (Leibniz’s rule) {F,GH} = G{F,H} +{F,G}H.

In particular, we see that the Poisson bracket defines the structure of a Lie algebra
on the space C*°(T(M)*) of functions on T'(M)*. Also property (iv) shows that it defines
derivations of the algebra C>°(T'(M)*). An associative algebra with additional structure
of a Lie algebra for which the Lie bracket acts on the product by the Leibniz rule is called
a Poisson algebra. Thus C°°(T'(M)*) has a natural structure of a Poisson algebra.

For the functions g¢;, p; we obviously have

{@i,9;} = {pispi} = 0,{aq,p;} = 6ij. (2.10)
Using the Poisson bracket we can rewrite the equation for a conservation law in the form:

(U, H)} = 0. (2.11)
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In other words, the set of conservation laws forms the centralizer Cent(H ), the subset of
functions commuting with H with respect to Poisson bracket. Note that properties (iii)
and (iv) of the Poisson bracket show that Cent(H) is a Poisson subalgebra of C°°(T'(M)*).

We obviously have {H, H} = 0 so that the function y ;" , c],-g—(i — L(q,q) (from which
H is obtained via the Legendre transformation) is a conservation law. Recall that when
L is a natural Lagrangian on a Riemannian manifold M, we interpreted this function as
the total energy. So the total energy is a conservation law; we have seen this already in
section 2.3.

Recall that T'(M)* is a symplectic manifold with respect to the canonical 2-form
w =Y, dp; Ndg;. Let (X,w) be any symplectic manifold. Then we can define the Poisson
bracket on C'°°(X) by the formula:

{F,G} = w(1u(dF),1,(dQ)).

It is easy to see that it coincides with the previous one in the case X = T'(M)*.

If the Lagrangian L is not regular, we should consider the Hamiltonian functions as
not necessary coming from the Lagrangian. Then we can define its conservation laws
as functions F' : T(M)* — R commuting with H. We shall clarify this in the next
Lecture. One can prove an analog of Noether’s Theorem to derive conservation laws from
infinitesimal symmetries of the Hamiltonian functions.

Exercises.

1. Consider the motion of a particle with mass m in a central force field, i.e., the force is
given by the potential function V' depending only on r = ||q||. Show that the functions
m(q;¢i — qiq;) (called angular momenta) are conservation laws. Prove that this implies
Kepler’s Law that “equal areas are swept out over equal time intervals”.

2. Consider the two-body problem: the motion v : R — R"™ x R™ with Lagrangian function

. 1 ) )
L(ar, a2, a1, 42) = 5 (|lanl* + [[ql* = V(e - all*).
Show that the Galilean group is the group of symmetries of L. Find the corresponding
conservation laws.

3. Let x = cost,y = sint,z = ct describe the motion of a particle in R3. Find the
conservation law corresponding to the radial symmetry.

4. Verify the properties of Lie derivatives and Lie brackets listed in this Lecture.

5. Let {g%}t@g be the phase flow on a symplectic manifold (M,w) corresponding to a
Hamiltonian vector field n = 1,(dH) for some function H : M — R (see Example 1).
Let D be a bounded (in the sense of volume on M defined by w) domain in M which is
preserved under g = g}]. Show that for any x € D and any neighborhood U of z there
exists a point y € U such that g, (y) € U for some natural number n > 0.

6. State and prove an analog of Noether’s theorem for the Hamiltonian function.
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Lecture 3. POISSON STRUCTURES

3.1 Recall that we have already defined a Poisson structure on a associative algebra A as
a Lie structure {a,b} which satisfies the property

{a,bc} = {a,b}c+ {a,c}b. (3.1)

An associative algebra together with a Poisson structure is called a Poisson algebra. An
example of a Poisson algebra is the algebra O(M) (note the change in notation for the ring
of functions) of smooth functions on a symplectic manifold (M, w). The Poisson structure
is defined by the formula

{f,9} = w(e,(df),1.(dg)). (3.2)

By a theorem of Darboux, one can choose local coordinates (q1,...,qn,P1,--.,Pn) in M
such that w can be written in the form

W= Z dq; N dp;
i=1
(canonical coordinates). In these coordinates

n

o7 " of "Of 0 = Of O
to(df) = 10 ( 8_qidqi 2 opi Ipi) == dq; Op; t2 op; 0q;”
i=1 i=1

=1 =1

This expression is sometimes called the skew gradient. From this we obtain the expression
for the Poisson bracket in canonical coordinates:

B of o of 0 dg 0 & dg 0
{fag} Zap 6% Zaq ap Zz:apz Oqz Za% apz)

_ (3f dg 0f 9y
&= 0¢;9pi Ipi D

). (3.3)
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Definition. A Poisson manifold is a smooth manifold M together with a Poisson structure
on its ring of smooth functions O(M).

An example of a Poisson manifold is a symplectic manifold with the Poisson structure
defined by formula (3.2).

Let {, } define a Poisson structure on M. For any f € O(M) the formula g — {f, g}
defines a derivation of O(M), hence a vector field on M. We know that a vector field on
a manifold M can be defined locally, i.e., it can be defined in local charts (or in other
words it is a derivation of the sheaf Op; of germs of smooth functions on M). This
implies that the Poisson structure on M can also be defined locally. More precisely, for
any open subset U it defines a Poisson structure on O(U) such that the restriction maps
puyv : OU) — O(V),V C U, are homomorphisms of the Poisson structures. In other
words, the structure sheaf Oy; of M is a sheaf of Poisson algebras.

Let ¢ : O(M) — O(M) be the map defined by the formula i(f)(g) = {f,¢}. Since
constant functions lie in the kernel of this map, we can extend it to exact differentials
by setting W (df) = i(f). We can also extend it to all differentials by setting W (adf) =
aW (df). In this way we obtain a map of vector bundles W : T*(M) — T'(M ) which we shall
identify with a section of T'(M) ® T'(M). Such a map is sometimes called a cosymplectic
structure. In a local chart with coordinates x4, ..., z, we have

9 0
{f, 9} = W(df,dg) = W ( afdmz,zagdacz =

i=1

_ Of 9y ~ Of 99 .
=> o, ax]W dr;, dz;) = > o, 8% : (3.4)

,7=1 1,j=1

Conversely, given W as above, we can define {f, g} by the formula

{f, 9} = W(df,dg).

The Leibniz rule holds automatically. The anti-commutativity condition is satisfied if we
require that W is anti-symmetric, i.c., a section of A*(T(M). Locally this means that

Wik — —Wwki,

The Jacobi identity is a more serious requirement. Locally it means that

n

) lm mj jl
Z(ijaL 4RV gy OW ) =0. (3.5)
1 8mk 8xk 8l‘k

Examples 1. Let (M,w) be a symplectic manifold. Then w € A*(T(M)*) can be thought
as a bundle map T(M) — T(M)*. Since w is non-degenerate at any point = € M, we
can invert this map to obtain the map w™! : T(M)* — T(M). This can be taken as the
cosymplectic structure W.
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2. Assume the functions W7*(x) do not depend on x. Then after a linear change of local
parameters we obtain
O —I Op—2k
Wiy =\ I O Op—2k |,
Opn—2k Opn—2r Op—2k

where I is the identity matrix of order k£ and 0,,, is the zero matrix of order m. If n = 2k,
we get a symplectic structure on M and the associated Poisson structure.

3. Assume M = R"™ and .
=Y Cjywi
i=1

are given by linear functions. Then the properties of W7* imply that the scalars C’; ;. are
structure constants of a Lie algebra structure on (R™)* (the Jacobi identity is equivalent
0 (3.5)). Its Lie bracket is defined by the formula

[z}, ] E kxi.

For this reason, this Poisson structure is called the Lie-Poisson structure. Let g be a Lie
algebra and g* be the dual vector space. By choosing a basis of g, the corresponding
structure constants will define the Poisson bracket on O(g*). In more invariant terms we
can describe the Poisson bracket on O(g*) as follows. Let us identify the tangent space of
g* at 0 with g*. For any f : g* — R from O(g*), its differential dfy at 0 is a linear function
on g*, and hence an element of g. It is easy to verify now that for linear functions f, g,

{f, 9} = [dfo, dgo].

Observe that the subspace of O(g*) which consists of linear functions can be identified
with the dual space (g*)* and hence with g. Restricting the Poisson structure to this
subspace we get the Lie structure on g. Thus the Lie-Poisson structure on M = g* extends
the Lie structure on g to the algebra of all smooth functions on g*. Also note that the
subalgebra of polynomial functions on g* is a Poisson subalgebra of O(g*). We can identify
it with the symmetric algebra Sym(g) of g.

3.2 One can prove an analog of Darboux’s theorem for Poisson manifolds. It says that
locally in a neighborhood of a point m € M one can find a coordinate system q1, ..., qx,
P1y---sPk,T2k+1,-- -, Ly such that the Poisson bracket can be given in the form:

(01 05 0f O
ther = Z dp; dq; g 8pi)'

This means that the submanifolds of M given locally by the equations zog41 = c1,..., 2, =
¢, are symplectic manifolds with the associated Poisson structure equal to the restriction
of the Poisson structure of M to the submanifold. The number 2k is called the rank of the
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Poisson manifold at the point P. Thus any Poisson manifold is equal to the union of its
symplectic submanifolds (called symplectic leaves). If the Poisson structure is given by a
cosymplectic structure W : T (M)* — T (M), then it is easy to check that the rank 2k at
m € M coincides with the rank of the linear map W,, : T(M)}, — T(M),,. Note that the
rank of a skew-symmetric matrix is always even.

Example 4. Let G be a Lie group and g be its Lie algebra. Consider the Poisson-Lie
structure on g* from Example 3. Then the symplectic leaves of g* are coadjoint orbits.
Recall that G acts on itself by conjugation C,(¢’) = g-¢' - g~'. By taking the differential
we get the adjoint action of G on g:

Ady(n) = (dCy-1)1(n), ne€g=T(G):.

By transposing the linear maps Ad, : g — g we get the coadjoint action

Ady(9)(n) = ¢(Adg(n)), ¢€g”,n€g.

Let Og4 be the coadjoint orbit of a linear function ¢ on g. We define the symplectic form
wg on it as follows. First of all let Gy = {g € G : Ad,(¢) = ¢} be the stabilizer of ¢ and
let gy be its Lie algebra. If we identify T'(g*)4 with g* then T'(O4)4 can be canonically
identified with Lie(Gy)* C g*. For any v € g let v® € g* be defined by v*(w) = é([v, w]).
Then the map v — v% is an isomorphism from g/g, onto gqf = T(04)s. The value wy(@)
of wy on T(Oy)e is computed by the formula

w¢(vh7wh) = ¢([v7w])'

This is a well-defined non-degenerate skew-symmetric bilinear form on 7'(O4)s. Now for
any 1 = Ad;(¢) in the orbit Oy, the value wg(1)) of w+¢ at ¢ is a skew-symmetric bilinear
form on T(Oy), obtained from wg(¢) via the differential of the translation isomorphism
Ady, (v) : g* — g*. We leave to the reader to verify that the form wg on Oy obtained in this
way is closed, and that the Poisson structure on the coadjoint orbit is the restriction of
the Poisson structure on g*. It is now clear that symplectic leaves of g* are the coadjoint
orbits.

3.3 Fix a smooth function H : M — R on a Poisson manifold M. It defines the vector
field f — {f, H} (called the Hamiltonian vector field with respect to the function H) and
hence the corresponding differential equation (=dynamical system, flow)

daf

—-— = H}. 3.

Vo rm (3.
A solution of this equation is a function f such that for any path v : [a,b] — M we have

YOO _ (1, 13700,

This is called the Hamiltonian dynamical system on M (with respect to the Hamiltonian
function H). If we take f to be coordinate functions on M, we obtain Hamilton’s equations
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for the critical path « : [a,b] — M in M. As before, the conservation laws here are the
functions f satisfying {f, H} = 0.

The flow g* of the vector field f — {f, H} is a one-parameter group of operators U,
on O(M) defined by the formula

Ui(f) = fe:=(g")"(f) = fog™"

If y(t) is an integral curve of the Hamiltonian vector field f — {f, H} with v(0) = x, then

Ui(f) = fo(z) = F(v (1))
and the equation for the Hamiltonian dynamical system defined by H is

df

E :{ftaﬂ}'

Here we use the Poisson bracket defined by the symplectic form of M.

Theorem 1. The operators U; are automorphisms of the Poisson algebra O(M).

Proof. We have to verify only that U; preserves the Poisson bracket. The rest of the
properties are obvious. We have

%{f,g}t = {%agt} +{ft, %} ={{fe, A}, g¢} + {fe, {9t H}} = {{fe,9:}, H} =

= %{ftagt}-

Here we have used property (iv) of the Poisson bracket from Lecture 2. This shows that
the functions {f,g}+ and {f, g:} differ by a constant. Taking ¢ = 0, we obtain that this
constant must be zero.

Example 5. Many classical dynamical systems can be given on the space M = g* as in
Example 3. For example, take g = s0(3), the Lie algebra of the orthogonal group SO(3).
One can identify g with the algebra of skew-symmetric 3 x 3 matrices, with the Lie bracket
defined by [A, B = AB — BA. If we write

0 —XI3 i)
A(x) = T3 0 —x1 |, x=(x1,%2,23), (3.7)
—x9 T 0

we obtain

[Ax),A(v)] =xx Vv, AX)-v=x XV,

where x denotes the cross-product in R3. Take

0 0 O 0 0 1 0 -1 0
€1 = 0 0 -1 , €9 = 0 0 O , €3 = 1 0 0
01 O -1 0 0 0 0 0
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as a basis in g and x1, x2, x3 as the dual basis in g*. Computing the structure constants
we find

n
{zj, 2} = Zejkixiy
i=1
where €;; is totally skew-symmetric with respect to its indices and €123 = 1. This implies
that for any f,g € O(M) we have, in view of (3.4),

T ) x3

{f,9} (@1, 02,25) = (21,22, 03)  (Vf x Vg) =det | 5 5L o). (38
99 99  9g
Ox1 Oxo Oxs
By definition, a rigid body is a subset B of R? such that the distance between any two of
its points does not change with time. The motion of any point is given by a path Q(t)
in SO(3). If b € B is fixed, its image at time t is w = Q(t) - b. Suppose the rigid body
is moving with one point fixed at the origin. At each moment of time ¢ there exists a
direction x = (x1, T2, r3) such that the point w rotates in the plane perpendicular to this
direction and we have

w=xxw=AX)w=Q(t) -b=Q1)Q 'w, (3.9)

where A(x) is a skew-symmetric matrix as in (3.7). The vector x is called the spatial
angular velocity. The body angular velocity is the vector X = Q(t)~1x. Observe that the
vectors x and X do not depend on b. The kinetic energy of the point w is defined by the
usual function

1

K (b) = gml[W[|* = m|[x x w|[* = m||Q™" (x x w)|| = m||X x b||* = XTI(b)X,

for some positive definite matrix II(b) depending on b. Here m denotes the mass of the
point b. The total kinetic energy of the rigid body is defined by integrating this function
over B:

K =

1
§/ﬁwmefb=xnx

B

where p(b) is the density function of B and II is a positive definite symmetric matrix. We
define the spatial angular momentum (of the point w(t) = Q(¢)b) by the formula

m=mw X W =mw X (X X w).
We have
M) =Q 'm=mQ 'w x (Q 'x x Q7'w) =mb x (X x b) =II(b)X.

After integrating M(b) over B we obtain the vector M, called the body angular momentum.
We have
M = IIX.
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If we consider the Euler-Lagrange equations for the motion w(t) = Q(¢)b, and take
the Lagrangian function defined by the kinetic energy K, then Noether’s theorem will give
us that the angular momentum vector m does not depend on ¢ (see Problem 1 from Lecture
1). Therefore

1 — — Q-NM(b)+Q-M(b) = Q-N(b)+0Q " -m = Q-N(b)+A(x)-m =

=Q -M(b)+xxm=Q - M(b)+ QX x QM(b) = Q(M(b) + X x M(b)) = 0.

After integrating over B we obtain the Euler equation for the motion of a rigid body about
a fixed point: _
M=M x X. (3.10)

Let us view M as a point of R3 identified with s0(3)*. Consider the Hamiltonian function

H(M) = %M (I 'M).

Choose an orthogonal change of coordinates in R3 such that II is diagonalized, i.e.,
M=1X = (I1 X1, X5, I3X3)

for some positive scalars I, I, I3 (the moments of inertia of the rigid body B). In this
case the Euler equation looks like

X, = (Is — 1) X2 X3,

LXy = (I3 — 1) X, X3,
X5 = (I} — )X, X>.

We have v oME e
_ 1 My 2 3
H<M)_2(11 T 13)
and, by formula (3.8),
My My M.
{FM), HM)} = M (VX VH) = M- (VX (75 72, 2)) = M (VX (X, Xo, X)),

If we take for f the coordinate functions f(M) = M;, we obtain that Euler’s equation
(3.10) is equivalent to Hamilton’s equation

M; ={M; H},i=1,2,3.

Also, if we take for f the function f(M) = ||[M]||?, we obtain {f,H} = M- (M x X) = 0.
This shows that the integral curves of the motion of the rigid body B are contained in the
level sets of the function ||[M]|?. These sets are of course coadjoint orbits of SO(3) in R3.
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Also observe that the Hamiltonian function H is constant on integral curves. Hence each
integral curve is contained in the intersection of two quadrics (an ellipsoid and a sphere)

1 M? M2 M2

_( 1 2 + 3)201,
2\ I Iy I3

1
5(1\412+J\422+J\4§)=c2.

Notice that this is also the set of real points of the quartic elliptic curve in P3(C) given by

the equations

1 1 1
—T? 4+ T2 4+ —T2 —2¢,T? =0
Il 1 + 12 2 + Ig 3 C1 0 )

T?+T§ +T5 — 2c2T = 0.

The structure of this set depends on I3, I5, I3. For example, if Iy > Is > I3, and ¢1 < /13
or ¢1 > co/I3, then the intersection is empty.

3.4 Let GG be a Lie group and i : GXG — G its group law. This defines the comultiplication
map

A:O(G) = O(G x G).

Any Poisson structure on a manifold M defines a natural Poisson structure on the product
M x M by the formula

{F(z,9),9(z,9)} = {f(z,9),9(x,9)}o +{f(2,9),9(x,y) }y,

where the subscript indicates that we apply the Poisson bracket with the variable in the
subscript being fixed.

Definition. A Poisson-Lie group is a Lie group together with a Poisson structure such
that the comultiplication map is a homomorphism of Poisson algebras.

Of course any abelian Lie group is a Poisson-Lie group with respect to the trivial
Poisson structure. In the work of Drinfeld quantum groups arose in the attempt to classify
Poisson-Lie groups.

Given a Poisson-Lie group G, let g = Lie(G) be its Lie algebra. By taking the
differentials of the Poisson bracket on O(G) at 1 we obtain a Lie bracket on g*. Let
¢ : g — g®g be the linear map which is the transpose of the linear map g* ® g* — g* given
by the Lie bracket. Then the condition that A : O(G) — O(G x G) is a homomorphism
of Poisson algebras is equivalent to the condition that ¢ is a 1-cocycle with respect to the
action of g on g ® g defined by the adjoint action. Recall that this means that

¢([v, w]) = ad(v)($(w)) — ad(w)($(v)),

where ad(v)(x ®@ y) = [v, 2] ® [v, y].

Definition. A Lie algebra g is called a Lie bialgebra if it is additionally equipped with a
linear map g — g ® g which defines a 1-cocycle of g with coefficients in g ® g with respect
to the adjoint action and whose transpose g* ® g* — g* is a Lie bracket on g*.
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Theorem 2. (V. Drinfeld). The category of connected and simply-connected Poisson-Lie
groups is equivalent to the category of finite-dimensional Lie bialgebras.

To define a structure of a Lie bialgebra on a Lie algebra g one may take a cohomolog-
ically trivial cocycle. This is an element r € g ® g defined by the formula

¢(v) = ad(v)(r) for any v € g.

The element r must satisfy the following conditions:
(i) r € /\2 g, i.e., r is a skew-symmetric tensor;
(i)
(P28 4+ 2 e+ [P %) = 0. (CYBE)

Here we view r as a bilinear function on g* x g* and denote by r'? the function on
g* X g* x g* defined by the formula r'2(z,y, z) = r(z,y). Similarly we define 7% for any
pair 1 <1< 7 < 3.

The equation (CYBE) is called the classical Yang-Bazter equation. The Poisson
bracket on the Poisson-Lie group G corresponding to the element r € g ® g is defined
by extending r to a G-invariant cosymplectic structure W(r) € T(G)* — T'(G).

The classical Yang-Baxter equation arises by taking the classical limit of QYBE (quan-
tum Yang-Baxter equation):

R12R13R23 — R23R13R12

where R € U,(g) ® U,(g) and U,(g) is a deformation of the enveloping algebra of g over
R][¢]] (quantum group). If we set
R—-1

T:(}g%( q )

then QYBE translates into CYBE.

3.5 Finally, let us discuss completely integrable systems.

We know that the integral curves of a Hamiltonian system on a Poisson manifold are
contained in the level sets of conservation laws, i.e., functions F' which Poisson commute
with the Hamiltonian function. If there were many such functions, we could hope to
determine the curves as the intersection of their level sets. This is too optimistic and one
gets as the intersection of all level sets something bigger than the integral curve. In the
following special case this “something bigger” looks very simple and allows one to find a
simple description of the integral curves.

Definition. A completely integrable system is a Hamiltonian dynamical system on a

symplectic manifold M of dimension 2n such that there exist n conservation laws F; :

M — R,i=1,...,n which satisfy the following conditions:

(1) {FZ,FJ} :O, Z,j = 1,...,n;

(ii) the map 7 : M — R",x — (Fi(z),...,F,(z)) has no critical points (i.e., dm, :
T(M), — R™ is surjective for all x € M).

The following theorem is a generalization of a classical theorem of Liouville:
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Theorem 3. Let F1,...,F, define a completely integrable system on M. For any ¢ € R"
denote by M, the fibre m=1(c) of the map m : M — R™ given by the functions F;. Then
(i) if M. is non-empty and compact, then each of its connected components is diffeomor-
phic to a n-dimensional torus T" = R" /Z";
(ii) one can choose a diffeomorphism R™/Z"™ — M, such that the integral curves of the
Hamiltonian flow defined by H = F; in M. are the images of straight lines in R";
(iii) the restriction of the symplectic form w of M to each M, is trivial.

Proof. We give only a sketch, referring to [Arnold] for the details. First of all we
observe that by (ii) the non-empty fibres M. = 7~1(c) of 7 are n-dimensional submanifolds
of M. For every point x € M, its tangent space is the n-dimensional subspace of T'(M),
equal to the set of common zeroes of the differentials dF; at the point x.

Let n1,...,n, be the vector fields on M defined by the functions Fi,..., F, (with
respect to the symplectic Poisson structure on M). Since {F}, F;} = 0 we get [n;,n;] = 0.
Let gfh_ be the flow corresponding to 7;. Since each integral curve is contained in some
level set M., and the latter is compact, the flow gfh, is complete (i.e., defined for all t).

For each t,t' € R and i,j = 1,...,n, the diffeomorphisms g; and gf{J commute (because
[mi,m;] = 0). These diffeomorphisms generate the group G = R"™ acting on M. Obviously
it leaves M, invariant. Take a point zg € M. and consider the map f : R™ — M, defined
by the formula

flty, ... tn) :gf]’; o...ogf;n(mo).

Let G, be the isotropy subgroup of zg, i.e., the fibre of this map over xy. One can
show that the map f is a local diffeomorphism onto a neighborhood of zg in M,.. This
implies easily that the subgroup G, is discrete in R™ and hence G,, = I' where I' =
Zw,+...+Zw, for some linearly independent vectors vy, ..., v,. Thus R”/T" is a compact
n-dimensional torus. The map f defines an injective proper map f : 7" — M, which is
a local diffeomorphism. Since both spaces are n-dimensional, its image is a connected
component of M.. This proves (i).

Let v : R — M, be an integral curve of 7; contained in M,. Then (t) = g}, (¥(0)).
Let (a1,...,a,) = f~1(7(0)) € R™. Then

flay+taz,... an) = gh (far,... an)) = g (v(0)) = ~(t).

Now the assertion (ii) is clear. The integral curve is the image of the line in R™ through
the point (aq,...,a,) and (1,0,...,0).

Finally, (iii) is obvious. For any x € M, the vectors n;(x),...,n,(z) form a basis in
T(M.), and are orthogonal with respect to w(c). Thus, the restriction of w(c) to T'(M.).
is identically zero.

Definition. A submanifold N of a symplectic manifold (M,w) is called Lagrangian if the
restriction of w to N is trivial and dimN = Sdim(M).

Recall that the dimension of a maximal isotropic subspace of a non-degenerate skew-
symmetric bilinear form on a vector space of dimension 2n is equal to n. Thus the tangent
space of a Lagrangian submanifold at each of its points is equal to a maximal isotropic
subspace of the symplectic form at this point.
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So we see that a completely integrable system on a symplectic manifold defines a
fibration of M with Lagrangian fibres.
One can choose a special coordinate system (action-angular coordinates)

(L1, Dny 1,y On)

in a neighborhood of the level set M, such that the equations of integral curves look like

IJ:OJ ¢&j:Agj(CI,..‘,Cn)7j:17"‘7n

for some linear functions ¢; on R™. The coordinates ¢; are called angular coordinates.
Their restriction to M, corresponds to the angular coordinates of the torus. The functions
I; are functionally dependent on F1, ..., F,. The symplectic form w can be locally written
in these coordinates in the form

w = zn:dfj /\dgbj.

J=1

There is an explicit algorithm for finding these coordinates and hence writing explicitly
the solutions. We refer for the details to [Arnold].

3.6 Definition. An algebraically completely integrable system (Fi, ..., F,) is a completely
integrable system on (M, w) such that
(i) M = X(R) for some algebraic variety X,

(ii) the functions F; define a smooth morphism II : X — C™ whose non-empty fibres are
abelian varieties (=complex tori embeddable in a projective space),

(iii) the fibres of m: M — R™ are the real parts of the fibres of II;

(iv) the integral curves of the Hamiltonian system defined by the function F; are given by
meromorphic functions of time.

Example 6. Let (M,w) be (R?,dz A dy) and H : M — R be a polynomial of degree d
whose level sets are all nonsingular. It is obviously completely integrable with Fy; = H. Its
integral curves are connected components of the level sets H(x,y) = ¢. The Hamiltonian
equation is y = —%—5,5@ = %H . It is algebraically integrable only if d = 3. In fact in
all other cases the generic fibre of the complexification is a complex affine curve of genus
g=(d—-1)(d-2)/2 #1.

Example 7. Let F be an ellipsoid

n

2
{(z1,...,2,) €eR": Z—;—l}cR”.

Consider M = T'(E)* with the standard symplectic structure and take for H the Legendre
transform of the Riemannian metric function. It turns out that the corresponding Hamil-
tonian system on T'(E)* is always algebraically completely integrable. We shall see it in
the simplest possible case when n = 2.
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Let x1 = aycost,zo = assint be a parametrization of the ellipse E. Then the arc
length is given by the function

t t
s(t) = [ (atsin® v+ afcos? 1) 2dr = [ (0} (0} — a3 cos” 1)1V 2dr =
0 0

t
= al/ (1 —e2cos? 7)Y 2dr
0

2 2\1/2
where ¢ = (17920 " jg the eccentricity of the ellipse. If we set x = cosT then we can

transform the last integral to

cost 1_ 82%2
s(t) = / N

0

The corresponding indefinite integral is called an incomplete Legendre elliptic integral of
the second kind. After extending this integral to complex domain, we can interpret the
definite integral
(1 —e222)du
\/ (1 —22)(1 —e22?)

as the integral of the meromorphic differential form (1 —&222)dz/y on the Riemann surface
X of genus 1 defined by the equation

y? = (1 —2?)(1 — 22?).

It is a double sheeted cover of C U {oo} branched over the points z = 41,7 = +e~!. The
function F(z) is a multi-valued function on the Riemann surface X. It is obtained from a
single-valued meromorphic doubly periodic function on the universal covering X = C. The
fundamental group of X is isomorphic to Z? and X is isomorphic to the complex torus
C/Z?. This shows that the function s(¢) is obtained from a periodic meromorphic function
on C.

It turns out that if we consider s(t) as a natural parameter on the ellipse, i.e., invert
so that ¢ = ¢(s) and plug this into the parametrization 7 = aj cost,xo = agsint, we
obtain a solution of the Hamiltonian vector field defined by the metric. Let us check
this. We first identify T(R?) with R* via (z1,22,%1,¥2) = (q1,q2,d1,¢2). Use the original
parametrization ¢ : [0,27] — R? to consider ¢ as a local parameter on E. Then (t,1) is a
local parameter on T(E) and the inclusion T(E) C T(R?) is given by the formula

(t,t) — (g1 = ay cost,qo = agsint,§; = —taysint, ¢y = tay cost).

The metric function on T'(R?) is

i 1,. .
L(q,q) = 5((1? +43).
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Its pre-image on T'(F) is the function
N Lo o 2 .2
l(t,t) = §t (a7 sin”t 4 a3 cos” t).

The Legendre transformation p = % gives { = p/(a?sin®t + a3 cos?t). Hence the Hamil-
tonian function H on T'(E)* is equal to

. . 1
H(t,p) =tp— L(t,t) = §p2/(a% sin?t + a3 cos? t).

A path t = 9(7) extends to a path in 7'(E)* by the formula p = (af sin®t + a3 cos? ) 2. If
7 is the arc length parameter s and t = ¢(7) = #(s), we have (%)2 = a?sin*t + a3 cos? t.
Therefore

H(t(s),p(s)) =1/2.

This shows that the natural parametrization 1 = a; cost(s), ze = agsint(s) is a solution
of Hamilton’s equation.

Let us see the other attributes of algebraically completely integrable systems. The
Cartesian equation of T'(E) in T(R?) is

2 2
x x x x

1 2 1Y1 2Y2
A2 42222 .
a? a2 ’ a? a2

1 2 1 2

If we use (£1,&2) as the dual coordinates of (y1,%2), then T(E)* has the equation in R*

2 2
ai as ai as

For each fixed x1, z2, the second equation is the equation of the dual of the line #1414 2242 =
1 2
0 in (R?)*.
The Hamiltonian function is

H(z,€) = & +&.

Its level sets M, are
& +& —c=0. (3.12)

Now we have an obvious complexification of M = T(E)*. It is the subvariety of C*
given by equations (3.11). The level sets are given by the additional quadric equation
(3.12). Let us compactify C* by considering it as a standard open subset of P*. Then
by homogenizing the equation (3.11) we get that M = V(R) where V is a Del Pezzo
surface of degree 4 (a complete intersection of two quadrics in P*). Since the complete
intersection of three quadrics in P* is a curve of genus 5, the intersection of M with
the quadric (3.12) must be a curve of genus 5. We now see that something is wrong,
as our complexified level sets must be elliptic curves. The solution to this contradiction
is simple. The surface V is singular along the line 1 = x5 = t5 = 0 where x( is the
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added homogeneous variable. Its intersection with the quadric (3.12) has 2 singular points
(21, 22,&1,&2,10) = (0,0,£4/—1,1,0). Also the points (1, a1, *az/—1,0,0,0) are singular
points for all ¢ from (3.12). Thus the genus of the complexified level sets is equal to
5 —4 = 1. To construct the right complexification of V' we must first replace it with its
normalization V. Then the rational function

48

2
Lo

defines a rational map V' — P!, After resolving its indeterminacy points we find a regular
map 7 : X — P!. For all but finitely many points z € P!, the fibre of this map is an
elliptic curve. For real z # oo it is a complexification of the level set M,.. If we throw away
all singular fibres from X (this will include the fibre over co) we finally obtain the right
algebraization of our completely integrable system.

Exercises

1. Let 0, ¢ be polar coordinates on a sphere S of radius R in R3. Show that the Poisson
structure on S (considered as a coadjoint orbit of so3) is given by the formula

1 O0FO0G 0OF0G
{£(0,9),G(0,0)} = W(%a_qs - c‘ngSW)'
2. Check that the symplectic form defined on a coadjoint orbit is closed.
3. Find the Poisson structure and coadjoint orbits for the Lie algebra of the Galilean
group.
4. Let (a;j) be a skew-symmetric n x n matrix with coefficients in a field k. Show that the
formula

- OP 0Q
P = i XX ——
{ aQ} ijzlaj JaXZaXZ
defines a Poisson structure on the ring of polynomials k[X7, ..., X,].

5. Describe all possible cases for the intersection of a sphere and an ellipsoid. Compare it
with the topological classification of the sets E(R) where E is an elliptic curve.

6. Let g be the Lie algebra of real n x n lower triangular matrices with zero trace. It
is the Lie algebra of the group of real n x n lower triangular matrices with determinant
equal to 1. Identify g* with the set of upper triangular matrices with zero trace by means
of the pairing < A, B >= Trace(AB). Choose ¢ € g* with all entries zero except a;;+1 =
1,7 =1,...,n — 1. Compute the coadjoint orbit of ¢ and its symplectic form induced by
the Poisson-Lie structure on g*.

7. Find all Lie bialgebra structures on a two-dimensional Lie algebra.

8. Describe the normalization of the surface V' C P4 given by equations (3.11). Find all
fibres of the elliptic fibration X — P!
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Lecture 4. OBSERVABLES AND STATES

4.1 Let M be a Poisson manifold and H : M — R be a Hamiltonian function. A smooth
function on f € O(M) on M will be called an observable. For example, H is an observable.
The idea behind this definition is clear. The value of f at a point x € M measures some
feature of a particle which happens to be at this point. Any point = of the configuration
space M can be viewed as a linear function f — f(z) on the algebra of observables O(M).
However, in practice, it is impossible to make an experiment which gives the precise value
of f. This for example happens when we consider M = T(R3")* describing the motion of
a large number N of particles in R3.

So we should assume that f takes the value A at a point x only with a certain proba-
bility. Thus for each subset E of R and an observable f there will be a certain probability
attached that the value of f at x belongs to E.

Definition. A state is a function f — ;15 on the algebra of observables with values in the
set of probability measures on the set of real numbers. For any Borel subset F of R and
an observable f € O(M) we denote by p(E) the measure of E with respect to pr. The
set of states is denoted by S(M).

Recall the definition of a probability measure. We consider the set of Borel subsets
in R. This is the minimal subset of the Boolean P(R) which is closed under countable
intersections and complements and contains all closed intervals. A probability measure is
a function £ — u(E) on the set of Borel subsets satisfying

0< M(E) <1, M(Q)) = OaU(R) =1, :u( H En) = ZM(En)
neN n=1

An example of a probability measure is the function:

u(A) = Lb(ANT)/Lb(I), (4.1)
where Lb is the Lebesgue measure on R and [ is any closed segment. Another example is
the Dirac probability measure:

ifce B
5C(E):{(1) ifcgzeE. (42)
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It is clear that each point x in M defines a state which assigns to an observable f the
probability measure equal to d7(,). Such states are called pure states.

We shall assume additionally that states behave naturally with respect to compositions
of observables with functions on R. That is, for any smooth function ¢ : R — R, we have

Hoof (E) = g (671 (B)). (4.3)

Here we have to assume that ¢ is B-measurable, i.e., the pre-image of a Borel set is a Borel
set. Also we have to extend O(M) by admitting compositions of smooth functions with
B-measurable functions on R.
By taking ¢ equal to the constant function y = ¢, we obtain that for the constant
function f(z) = ¢ in O(M) we have
e = Oe. (4.3)
For any two states u, ¢/ and a nonnegative real number a < 1 we can define the convex
combination ap + (1 — a)u’ by

(aps+ (1= Q)Y (E) = aps (E) + (1 — )iy (B).

Thus the set of states S(M) is a convex set.

If E = (—o0,A] then pus(E) is denoted by ps(M). It gives the probability that the
value of f in the state p is less than or equal than A. The function X — p¢(A) on R is
called the distribution function of the observable f in the state pu.

4.2 Now let us recall the definition of an integral with respect to a probability measure pu.
It is first defined for the characteristic functions x g of Borel subsets by setting

/xEdu = pu(E).

R

Then it is extended to simple functions. A function ¢ : R — R is simple if it has a
countable set of values {y1, s, ...} and for any n the pre-image set ¢~1(y,) is a Borel set.
Such a function is called integrable if the infinite series

/<bdu = ynpi(¢ (yn))

converges. Finally we define an integrable function as a function ¢(x) such that there
exists a sequence {¢,} of simple integrable functions with

lim ¢, () = ¢(x)

for all x € R outside of a set of measure zero, and the series

/fd,u = lim /gzﬁndu
n—oo
R R
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converges. It is easy to prove that if ¢ is integrable and | (z)| < ¢(x) outside of a subset
of measure zero, then ¢ (z) is integrable too. Since any continuous function on R is equal
to the limit of simple functions, we obtain that any bounded function which is continuous
outside a subset of measure zero is integrable. For example, if p is defined by Lebesgue
measure as in (4.1) where I = [a, b], then

‘/Mszwwm
R a

is the usual Lebesgue integral. If p is the Dirac measure d., then for any continuous
function ¢,

gwm:¢@-

The set of functions which are integrable with respect to p is a commutative algebra

over R. The integral
/:¢—> /gbdu
R

R

is a linear functional. It satisfies the positivity property

/&wzo
R

One can define a probability measure with help of a density function. Fix a positive
valued function p(z) on R which is integrable with respect to a probability measure p and

satisfies
/ p(z)dp = 1.

R

Then define the new measure p, by

pu(E) = / Xep(x)dp.

R

Obviously we have
/ o(x)dpp = / ppdp.
R R

For example, one takes for p the measure defined by (4.1) with I = [a,b] and obtains a
new measure '

b
R/ by’ = / o(x)p(x)de.



36 Lecture 4

Of course not every probability measure looks like this. For example, the Dirac measure
does not. However, by definition, we write

R/ pds, = R/ ba)pede,

where p.(z) is the Dirac “function”. It is zero outside {c} and equal to oo at c.

The notion of a probability measure on R extends to the notion of a probability
measure on R™. In fact for any measures p1, ..., i, on R there exists a unique measure p
on R™ such that

[ A guwnan=T] [ i)
R” i=lg
After this it is easy to define a measure on any manifold.

4.3 Let p € S(M) be a state. We define

() = [ wdus.

R

We assume that this integral is defined for all f. This puts another condition on the state
u. For example, we may always restrict ourselves to probability measures of the form (4.1).
The number (f|u) is called the mathematical expectation of the observable f in the state
. It should be thought as the mean value of f in the state pu. This function completely
determines the values p¢(A) for all A € R. In fact, if we consider the Heaviside function

1@ =10 tezo (10
then, by property (4.2), we have
0 if {0,1}NE =0
HH(E) = o) (B) = sz R 00— e B =4 110 gp

1—pr(N) if0eE,1¢E.
It is clear now that, for any simple function ¢, [ ¢(z)du’ = 0 if $(0) = ¢(1) = 0. Now
R
writing the identity function y = x as a limit of simple functions, we easily get that
s = [ duiy = 6O~ 1)
R

Also observe that, knowing the function A — (), we can reconstruct pf (defining it
first on intervals by p¢([a,b]) = pf(b) — p1f(a)). Thus the state p is completely determined
by the values (f|u) for all observable f.
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4.4 We shall assume some additional properties of states:

(af +bglp) = al{flp > +b < g|u),a,b R, (51)
(f*|m) =0, (52)
(1p) = 1. (53)

In this way a state becomes a linear function on the space of observables satisfying the
positivity propertry (S2) and the normalization property (S3). We shall assume that each
such functional is defined by some probability measure Y, on M. Thus

(flw) = [ fdTy.
/

Property (S1) gives
/dT“ =7, (M) =1
M

as it should be for a probability measure. An example of such a measure is given by
choosing a volume form €2 on M and a positive valued integrable function p(x) on M such

that
/ ()0 = 1.

M

We shall assume that the measure T, is given in this way. If (M,w) is a symplectic
manifold, we can take for ) the canonical volume form w”".
Thus every state is completely determined by its density function p,, and

(fli) = / F(@)p()2
M

From now on we shall identify states p with density functions p satisfying

/p(sc)Q = 1.

M

The expression (f|u) can be viewed as evaluating the function f at the state p. When
14 is a pure state, this is the usual value of f. The idea of using non-pure states is one of
the basic ideas in quantum and statistical mechanics.

4.5 There are two ways to describe evolution of a mechanical system. We have used the
first one (see Lecture 3, 3.3); it says that observables evolve according to the equation

df

E :{ftuﬂ}
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and states do not change with time, i.e.

dpe

=0.
dt

Here we define p; by the formula

pi(x) = plg~" - x), xe M.
Alternatively, we can describe a mechanical system by the equations

df

dpy
= HY,
{pt7 }7 dt

— = - =0.
dt

Of course here we either assume that p is smooth or learn how to differentiate it in a

generalized sense (for example if p is a Dirac function). In the case of symplectic Poisson

structures the equivalence of these two approaches is based on the following

Proposition. Assume M is a symplectic Poisson manifold. Let Q = w\", where w is a
symplectic form on M. Define u; as the state corresponding to the density function p;.
Then

(felp) = (flpe)-
Proof. Applying Liouville’s Theorem (Example 1, Lecture 2), we have

mmwa/ﬂfnwAwQ=/}wmAfﬂww4rmw:
M M

/}mmAfﬁwﬂzjmeAwazwm»

The second description of a mechanical system described by evolution of the states
via the corresponding density function is called Liouville’s picture. The standard approach
where we evolve observables and leave states unchanged is called Hamilton’s picture. In
statistical mechanics Liouville’s picture is used more often.

4.6 The introduction of quantum mechanics is based on Heisenberg’s Uncertainty Principle.
It tells us that in general one cannot measure simultaneously two observables. This makes
impossible in general to evaluate a composite function F(f, g) for any two observables f, g.
Of course it is still possible to compute F'(f). Nevertheless, our definition of states allows
us to define the sum f + g by

(f +9lp) = (flw) + (glp) for any state p,

considering f as a function on the set of states. To make this definition we of course
use that f = f’if (f|u) = (f'|u) for any state p. This is verified by taking pure states pu.
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However the same property does not apply to states. So we have to identify two states pu, p1/
if they define the same function on observables, i.e., if (f|u) = (g|u") for all observables f.
Of course this means that we replace S(M) with some quotient space S(M).

We have no similar definition of product of observables since we cannot expect that the
formula (fg|u) = (f|p){g|w) is true for any definition of states p. However, the following

product
(f +9)* = (f—9)°
4

makes sense. Note that f * f = f2. This new binary operation is commutative but not
associative. It satifies the following weaker axiom

(4.5)

f*xg=

2*(yz) = (z%y)z.

The addition and multiplication operations are related to each other by the distributivity
axiom. An algebraic structure of this sort is called a Jordan algebra. It was introduced in
1933 by P. Jordan in his works on the mathematical foundations of quantum mechanics.
Each associative algebra A defines a Jordan algebra if one changes the multiplication by
using formula (4.5).

We have to remember also the Poisson structure on O(M). It defines the Poisson
structure on the Jordan algebra of observables, i.e., for any fixed f, the formula g — {f, g}
is a derivation of the Jordan algebra O(M)

{frgxh}y={f,gy*h+{f,h}*g.

We leave the verification to the reader.
Here comes our main definition:

Definition. A Jordan Poisson algebra O over R is called an algebra of observables. A
linear map w : O — R is called a state on O if it satisfies the following properties:
(1) {a?lw) > 0 for any a € O;
2) (1lw) = 1.

The set S(O) of states on O is a convex non-empty subset of states in the space of
real valued linear functions on O.

Definition. A state w € S(O) is called pure if w = cwy + (1 — ¢)ws for some wy,ws € S(O)

and some 0 < ¢ < 1 implies w = wy. In other words, w is an extreme point of the convex
set S(O).

4.7 In the previous sections we discussed one example of an algebra of observables and its
set of states. This was the Jordan algebra O(M) and the set of states S(M). Let us give
another example.

We take for O the set H(V) of self-adjoint (= Hermitian) operators on a finite-
dimensional complex vector space V with unitary inner product (,). Recall that a linear
operator A : V — V is called self-adjoint if

(Az,y) = (z, Ay) for any x,y € V.
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If (a;j) is the matrix of A with respect to some orthonormal basis of V', then the property of
self-adjointness is equivalent to the property a;; = a;;, where the bar denotes the complex
conjugate.

We define the Jordan product on H (V) by the formula

(A+ B)? - (A- B)?
4

Ax B =

:%(AOB—FBOA).

Here, as usual, we denote by A o B the composition of operators. Notice that since

Z(aikbkj + bigag;) = Z(@ikl_?kj + bikdyj) = Z(ajkzbki + bjkar;)
k=1 k=1 k=1

the operator A o B + B o A is self-adjoint. Next we define the Poisson bracket by the
formula )
i

h

1

{A7B}h = 7

[A,B] = “(Ao B - Bo A). (4.6)
Here i = /—1 and h is any real constant. Note that neither the product nor the Lie

bracket of self-adjoint operators is a self-adjoint operator. We have

n n n n

Z(aikbk]‘ — bigakj) = Z(C_Liksgkj —bikr;) = Z(bjkaki_ajkbki) = — Z(ajkbki_bjkaki)~

k=1 k=1 k=1 k=1

However, putting the imaginary scalar in, we get the self-adjointness. We leave to the
reader to verify that

{A,B*C}h = {A,B}FL*C—I—{A,C}FL*B

The Jacobi property of {, } follows from the Jacobi property of the Lie bracket [A, B]. The
structure of the Poisson algebra depends on the constant h. Note that rescaling of the
Poisson bracket on a symplectic manifold leads to an isomorphic Poisson bracket!

We shall denote by T'r(A) the trace of an operator A : V' — V. It is equal to the sum
of the diagonal elements in the matrix of A with respect to any basis of V. Also

Tr(A) =) (Aei,e;)
i=1

where (e1,...,e,) is an orthonormal basis in V. We have, for any A, B,C' € H(V),

Tr(AB) =Tr(BA), Tr(A+ B)=Tr(A)+Tr(B). (4.7)
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Lemma. Let ¢ : H(V) — R be a state on the algebra of observables H(V'). Then there
exists a unique linear operator M : V. — V with ¢(A) = Tr(M A). The operator M satisfies
the following properties:

(i) (self-adjointness) M € H(V);

(ii) (non-negativity) (Mz,z) > 0 for any x € V;
(iii) (normalization) Tr(M) = 1.

Proof. Let us consider the linear map a : H(V) — H(V)* which associates to M the
linear functional A — Tr(M A). This map is injective. In fact, if M belongs to the kernel,
then by properties (4.6) we have Tr(MBA) = Tr(AMB) = 0 for all A,B € H(V). For
each v € V with ||v|| = 1, consider the orthogonal projection operator P, defined by

P,z = (z,v)v.

It is obviously self-adjoint since (P,x,y) = (z,v)(v,y) = (z, P,y). Fix an orthonormal
basis v = ey, e9,...,¢e, in V. We have

0="Tr(MP,) =Y (MP,ex,ex) = (Mv,v).
k=1

Since (M Mv, \v) = |A]?(Mwv,v), this implies that (Mz,x) = 0 for all x € V. Replacing z
with x+vy and z+iy, we obtain that (Mz,y) = 0 for all z,y € V. This proves that M = 0.
Since dim H (V) = dimH(V)*, we obtain the surjectivity of the map a. This shows that
U(A) =Tr(MA) for any A € H(V) and proves the uniqueness of such M.

Now let us check the properties (i) - (iii) of M. Fix an orthonormal basis eq, ..., e,.
Since ¢(A) = Tr(M A) must be real, we have

n n n

Tr(MA) =Tr(MA) =Y (MA(e;), ;) = ¥ (ei, MA(e;)) = > ((MA)*e;,e;) =

=1 =1 =1

> (A" M e e;) = Tr(A*M*) = Tr(M*A*) = Tr(M* A).
i=1
Since this is true for all A, we get M* = M. This checks (i).
We have (¢(A?) = Tr(A2M) > 0 for all A. Take A = P, to be a projection operator
as above. Changing the orthonormal basis we may assume that e; = v. Then

Tr(P2M) = Tr(P,M) = (Mv,v) > 0.

This checks (ii). Property (iii) is obvious.

The operator M satisfying the properties of the previous lemma is called the density
operator. We see that any state can be uniquely written in the form

U(A) = Tr(MA)
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where M is a density operator. So we can identify states with density operators.
All properties of a density operator are satisfied by the projection operator P,. In
fact

(i) (Pyr,y) = (2,0)(v,) = (3.0)(2,v) = (&, Py).
(i) (P, @) = (a,0)(v,2) = |(@,9) = 0
(it}) Tr(P,) = (v,0) = 1.

Notice that the set of states M is a convex set.

Proposition. An operator M € H(V') is a pure state if and only if it is equal to a
projection operator P,.

Proof. Choose a self-adjoint operator M and a basis of eigenvectors &; (it exists
because M is self-adjoint). Then

U—Z L&)Ei, MU—Z)\ i:iAZP&.v.
=1

Since this is true for all v, we have

M = iAiP&.

All numbers here are real numbers (again because M is self-adjoint). Also by property (ii)
from the Lemma, the numbers \; are non-negative. Since Tr(M) = 1, we get that they
add up to 1. This shows that only projection operators can be pure. Now let us show that
P, is always pure.

Assume P, = cMj + (1 — ¢)M; for some 0 < ¢ < 1. For any density operator M the
new inner product (z,y)y = (Mz,y) has the property (x,z)" > 0. So we can apply the
Cauchy-Schwarz inequality

(Mz,y)]” < (Mz,2)(My,y)
to obtain that Mx = 0 if (Mx,z) = 0. Since My, M5 are density operators, we have
0 <c(Mz,z) < ce(Miz,z)+ (1 —¢)(Myx,xz) = (Pyz,x) =0
for any x with (z,v) = 0. This implies that M2z = 0 for such z. Since M; is self-adjoint,
0= (Miz,v) = (x, Myv) if (z,v) =0.
Thus M; and P, have the same kernel and the same image. Hence M; = cP, for some
constant c¢. By the normalization property Tr(M;) = 1, we obtain ¢ = 1; hence P, = Mj.

Since P, = P.v where |¢| = 1, we can identify pure states with the points of the
projective space P(V').



Observables and states 43

4.8 Recall that (f, u) is interpreted as the mean value of the state p at an observable f.

The expression
Au(F) = ((f = () ? = (F2m) = (Flm)*)/? (4.8)

can be interpreted as the mean of the deviation of the value of u at f from the mean value.
It is called the dispersion of the observable f € O with respect to the state u. For example,
if x € M is a pure state on the algebra of observables O(M), then A, (f) = 0.

We can introduce the inner product on the algebra of observables by setting

1
(90 = 5 (Bul +9)* = (AW = (Bu(9))?)- (19)
It is not positive definite but satisfies

(faf)M:AM(f)QZO-

By the parallelogram rule,

(F. 00 = 317 +0,7 +0) —(F — 9. f ~ 9),] =

((f+ 92wy = {(f —9)%Im) = (F + 9. > + (f — glw)?)

W~

= é[(f +9)% = (f — )%y — (flu){glp) = (f * glp) — (Flu){glp)- (4.10)

This shows that
(f*glp) = (flmglpw) <= (f,9)p = 0.

As we have already observed, in general (fxg|u) # (f|u)(g|p). If this happens, the ob-
servables are called independent with respect to . Thus, two observables are independent
if and only if they are orthogonal.

Let € be a positive real number. We say that an observable f is e-measurable at the
state p if A, (f) <e.

Applying the Cauchy-Schwarz inequality

(Fr0)ul < (£ D09 = Du(£)Au(). (4.11)

and (4.8), we obtain that f + g is 2e-measurable if f, g are e-measurable.
The next theorem expresses one of the most important principles of quantum mecah-
nics:

Theorem (Heisenberg’s Uncertainty Principle). Let O = H(V') be the algebra of

observables formed by self-associated operators with Poisson structure defined by (4.6).
For any A,B € O and any p € S(V),

Au(A)Au(B) =

| St

[({A, B}alw)l- (4.12)
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Proof. For any v € V and A € R, we have
0 < ((A+iAB)v, (A +iAB)v) = (A%v,v) + A\*(B%v,v) — iA((AB — BA)v,v).

Assume ||v|| =1 and let p be state defined by the projection operator M = P,. Then we
can rewrite the previous inequality in the form

(A2|p) + N*(B?|p) — A{{A, B}ulu) > 0.

Since this is true for all A\, we get

2

St

(A%|)(B?|u) > —({A, B}ulw)*.

|

Replacing A with A — (A|p), and B with B — (B|u), and taking the square root on both
sides we obtain the inequality (4.11). To show that the same inequality is true for all states
we use the following convexity property of the dispersion

A#(f)Au(g) > CAM (f)Auz (9)+(1— C)Am (f)Auz (9),

where p = cu1 + (1 — ¢)pg,0 < ¢ < 1 (see Exercise 1).

Corollary. Assume that {A, B}y, is the identity operator and A, B are e-measurable in a
state . Then
€e>+\/h/2.

The Indeterminacy Principle says that there exist observables which cannot be simu-
lateneously measured in any state with arbitrary small accuracy.

Exercises.

1. Let O be an algebra of observables and S(O) be a set of states of O. Prove that mixing
states increases dispersion, that is, if w = cwy + (1 — ¢)wz,0 < ¢ < 1, then

(1) Auf =cAu f+(1—c)Au, f.

(il)) AufAug > Ay, fAL g+ (1 —c)Ay, fAL,g. What is the physical meaning of this?

2. Suppose that f is e-measurable at a state p. What can you say about f2?

3. Find all Jordan structures on algebras of dimension < 3 over real numbers. Verify that
they are all obtained from associative algebras.

4. Let g be the Lie algebra of real triangular 3 x 3-matrices. Consider the algebra of
polynomial functions on g as the Poisson-Lie algebra and equip it with the Jordan product
defined by the associative multiplication. Prove that this makes an algebra of observables
and describe its states.
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5. Let v1,...,v, be a basis of eigenvectors of a self-adjoint operator A and A{,..., A, be
the corresponding eigenvalues. Assume that \; < ... < A,. Define the spectral function
of A as the operator

Pa(\) =) P,

i <A

Let M be a density operator.
(i) Show that the function pa(\) = Tr(M Pa())) defines a probability measure 4 on R.
(i) Show that (A|w) = [@dpa where w is the state with the density operator M.
R
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Lecture 5. OPERATORS IN HILBERT SPACE

5.1 Let O = H(V) be the algebra of observables consisting of self-adjoint operators in
a unitary finite-dimensional space. The set of its states can be identified with the set of
density operators, i.e., the set of self-adjoint positive definite operators M normalized by
the condition Tr(M) = 1. Recall that the value (A|w) is defined by the formula

(AIM) = Tr(MA).

Now we want to introduce dynamics on . By analogy with classical mechanics, it can be
defined in two ways:

dA(t) dM
) aw), Y, S — 1
A0 . myn. o (5.1)
(Heisenberg’s picture), or
dM(t) dA
o = M), HY, —-=0 (5.2)

(Schrédinger’s picture).
Let us discuss the first picture. Here A(t) is a smooth map R — O. If one chooses
a basis of V, this map is given by A(t) = (a;;(t)) where a;;(t) is a smooth function of ¢.
Consider equation (5.1) with initial conditions
A(0) = A.
We can solve it uniquely using the formula
A(t) = Ay = e 1t Aer Tt (5.3)

Here for any diagonalizable operator A and any analytic function f : C — C we define

f(A) =S - diag[f(dy),..., f(d,)] - S7"



Operators in Hilbert space 47
where A = S - diag[dy,...,d,] - S™'. Now we check
i

% - —%He*ﬁHtAeﬁHt + e*ﬁHtA(%HeﬁHt) = —(AH — HA) = {Ay, H}

and the initial condition is obviously satisfied.
The operators

i

Ult)=erft tcR
define a one-parameter group of unitary operators. In fact,
U =e *M=U@t)" ' =U(=t), Ult+t)=UR)U{).

This group plays the role of the flow g* of the Hamiltonian. Notice that (5.3) can be
rewritten in the form

Ay =Ut)"TAU(1).
There is an analog of Theorem 4.1 from Lecture 4:
Theorem 1. The map O — O defined by the formula
U : A— Ay =U(t)"LAU(t)
is an automorphism of the algebra of observables H(V).

Proof. Since conjugation is obviously a homomorphism of the associative algebra
structure on End(V'), we have

(A * B)t = AtBt + BtAt = At * Bt-
Also _ _
1 1

({A’ B}h)t = h[A’ B]t = ﬁ

The unitary operators

1
(AtBt — BtAt) - ﬁ{AtaBt}h-

U(t) = er ™
are called the evolution operators with respect to the Hamiltonian H.

The Heisenberg and Schrodinger pictures are equivalent in the following sense:

Proposition 1. Let M be a density operator and let w(t) be the state with the density
operator M _;. Then

(Aw) = (Alw(?))-
Proof. We have
(Atlw)y = Tr(MU(t)AU(—t)) = Tr(U(—=t)MU(t)A) = Tr(M_;A) = (A|w(t)).

5.2 Let us consider Schrodinger’s picture and take for A; the evolution of a pure state
(Py): = Uy P,. We have
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Lemma 1.
(Py)t = Py(—t)v-

Proof. Let S be any unitary operator. For any z € V', we have
(SP,S ™Yz = SP,(S'z) = S((v, S tx)v) = (v, 'x)Sv = (Sv,2)Sv = Psyz. (5.4)

Now the assertion follows when we take S = U(—t).

The Lemma says that the evolution of the pure state P, is equivalent to the evolution
of the vector v defined by the formula

vy =U(—t)v = e~ Hty, (5.5)
Notice that, since U(t) is a unitary operator,
||| = [[v]]-

We have -
dv,  demwfty i g
F7 A A
Thus the evolution v(t) = v, satisfies the following equation (called the Schridinger equa-
tion)
do(t
m% = Ho(t), v(0)=wv. (5.6)

Assume that v is an eigenvector of H, i.e., Hv = Av for some A € R. Then

Vy = e_%Htv = e_%Atv.
Although the vector changes with time, the corresponding state P, does not change. So

the problem of finding the spectrum of the operator H is equivalent to the problem of
finding stationary states.

5.3 Now we shall move on and consider another model of the algebra of observables and the
corresponding set of states. It is much closer to the “real world”. Recall that in classical
mechanics, pure states are vectors (qi,...,¢,) € R™. The number n is the number of
degrees of freedom of the system. For example, if we consider N particles in R® we have
n = 3N degrees of freedom. If we view our motion in 7(R™)* we have 2n degrees of
freedom. When the number of degrees of freedom is increasing, it is natural to consider
the space RY of infinite sequences a = (ay,...,an,...). We can make the set R a vector
space by using operations of addition and multiplication of functions. The subspace l3(R)
of RY which consists of sequences a satisfying

)
2:2
CLZ-<OO
n=1
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can be made into a Hilbert space by defining the unitary inner product

(a, b) = i CLzbz
n=1

Recall that a Hilbert space is a unitary inner product space (not necessary finite-
dimensional) such that the norm makes it a complete metric space. In particular, we
can define the notion of limits of sequences and infinite sums. Also we can do the same
with linear operators by using pointwise (or better vectorwise) convergence. Every Cauchy
(fundamental) sequence will be convergent.

Now it is clear that we should define observables as self-adjoint operators in this space.
First, to do this we have to admit complex entries in the sequences. So we replace RY with
CY and consider its subspace V = [?(C) of sequences satisfying

n
Z la;]? < oo
i=1
with inner product
n
(a, b) = Z CLZI_)Z
i=1

More generally, we can replace RY with any manifold M and consider pure states as
complex-valued functions F': M — C on the configuration space M such that the function
|f(z)|? is integrable with respect to some appropriate measure on M. These functions
form a linear space. Its quotient by the subspace of functions equal to zero on a set of
measure zero is denoted by L?(M, u). The unitary inner product

(f,9) = /M fady

makes it a Hilbert space. In fact the two Hilbert spaces [?(C) and L?(M, ;1) are isomorphic.
This result is a fundamental result in the theory of Hilbert spaces due to Fischer and Riesz.

One can take one step further and consider, instead of functions f on M, sections of
some Hermitian vector bundle E — M. The latter means that each fibre F, is equiped
with a Hermitian inner product (,), such that for any two local sections s,s of E the
function

(5,8 : M — C,z — (s(x),s' ()
is smooth. Then we define the space L?(E) by considering sections of E such that

/M(s,s>du < 0

and defining the inner product by

(s,8") = /M<s, 5)dpu.
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We will use this model later when we study quantum field theory.

5.4 So from now on we shall consider an arbitrary Hilbert space V. We shall also assume
that V' is separable (with respect to the topology of the corresponding metric space), i.e.,
it contains a countable everywhere dense subset. In all examples which we encounter, this
condition is satisfied. We understand the equality

)
vzg Un,
n=1

in the sense of convergence of infinite series in a metric space. A basis is a linearly inde-
pendent set {v,,} such that each v € V' can be written in the form

00
v = E OV, -
n=1

In other words, a basis is a linearly independent set in V' which spans a dense linear
subspace. In a separable Hilbert space V', one can construct a countable orthonormal
basis {e,}. To do this one starts with any countable dense subset, then goes to a smaller
linearly independent subset, and then orthonormalizes it.

If (e,,) is an orthonormal basis, then we have

WK

v="Y (v,en)en (Fourier expansion),

n=1

and - - -
(Z anen,anen) = Zanl;n. (5.7)
n=1 n=1 n=1

The latter explains why any two separable infinite-dimensional Hilbert spaces are isomor-
phic. We shall use that any closed linear subspace of a Hilbert space is a Hilbert (separable)
space with respect to the induced inner product.

We should point out that not everything which the reader has learned in a linear
algebra course is transferred easily to arbitrary Hilbert spaces. For example, in the finite
dimensional case, each subspace L has its orthogonal complement L+ such that V = L@ L*.
If the same were true in any Hilbert space V', we get that any subspace L is a closed subset
(because the condition L = {x € V : (x,v) = 0} for any v € L+ makes L closed). However,
not every linear subspace is closed. For example, take V = L?([—1,1],dx) and L to be the
subspace of continuous functions.

Let us turn to operators in a Hilbert space. A linear operator in V is a linear map
T :V — V of vector spaces. We shall denote its image on a vector v € V' by Tv or T'(v).
Note that in physics, one uses the notation

T(v) = (T|v).
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In order to distinguish operators from vectors, they use notation (T| for operators (bra)
and |v) for vectors (ket). The reason for the names is obvious : bracket = bra+c+ket. We
shall stick to the mathematical notation.
A linear operator T': V' — V is called continuous if for any convergent sequence {v,}

of vectors in V,

lim Tv, =T( lim v,).

n—oo n—oo
A linear operator is continuous if and only if it is bounded. The latter means that there
exists a constant C' such that, for any v € V,

Tl < Co]].

Here is a proof of the equivalence of these definitions. Suppose that T is continuous but not
bounded. Then we can find a sequence of vectors v, such that ||Tv,|| > n|lv,|[,n=1,....
Then w,, = v, /n||v,|| form a sequence convergent to 0. However, since ||Tw,|| > 1, the
sequence {Tw,} is not convergent to 7(0) = 0. The converse is obvious.

We can define the norm of a bounded operator by

T = sup{||Tv[|/[|v]| : v € VA {0}} = sup{[|T]| : [[o]| = 1}

With this norm, the set of bounded linear operators £(V') on V' becomes a normed algebra.
A linear functional on V is a continuous linear function ¢ : V. — C. FEach such
functional can be written in the form

L(v) = (v, w)

for a unique vector w € V. In fact, if we choose an orthonormal basis (e,) in V' and put
a, = {(e,), then

l(v) = K(Z Cnén) = chﬁ(en) = Z Cnayn = (v, w)

where w = Y °7

n—1 Gney. Note that we have used the assumption that ¢ is continuous. We
denote the linear space of linear functionals on V' by V*.

A linear operator T is called adjoint to a bounded linear operator T if, for any
v,weV,
(Tv,w) = (v, T"w). (5.8)

Since T' is bounded, by the Cauchy-Schwarz inequality,
|(Tw, w)| < [[Toll|lw]] < Clfollf|w]].

This shows that, for a fixed w, the function v — (Tw, w) is continuous, hence there exists
a unique vector x such that (Tv,w) = (v,z). The map w +— z defines the adjoint operator
T*. Clearly, it is continuous.
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A bounded linear operator is called self-adjoint if T* = T. In other words, for any
v,w eV,
(Tv,w) = (v, Tw). (5.8)

An example of a bounded self-adjoint operator is an orthoprojection operator Pr, onto a
closed subspace L of V. It is defined as follows. First of all we have V = L @ L+. To
see this, we consider L as a Hilbert subspace (L is complete because it is closed). Then
for any fixed v € V, the function z — (v, x) is a linear functional on L. Thus there exists
v1 € L such that (v,z) = (vy,2) for any x € L. This implies that v — v; € L. Now we
can define Py, in the usual way by setting Pr(v) = x, where v = +y,z € L,y € L. The
boundedness of this operator is obvious since ||Pro|| < ||v||. Clearly Py, is idempotent (i.e.
P? = Pp). Conversely each bounded idempotent operator is equal to some orthoprojection
operator Pr, (take L = Ker(P — Iy)).

Example 1. An example of an operator in L?(M, i) is a Hilbert-Schmidt operator:

/ fW) K (z, y)du, (5.9)

where K(z,y) € L>(M x M,u x u). In this formula we integrate keeping z fixed. By
Fubini’s theorem, for almost all x, the function y — K(x,y) is u-integrable. This implies
that T'(f) is well-defined (recall that we consider functions modulo functions equal to zero
on a set of measure zero). By the Cauchy-Schwarz inequality,

< /M K (2,y)[*dg /M F@)Pdy = 111 /M K (2, y)2dp.

ITFI? = / T fPdu < |If]2 / / K (2, y)Pdudy,
M MJM
HTH2§/ / K (z,y)|*dpdp.
M JM
We have

(Tf.9) //f K () dp, () dps) = //my )(x)dudp.

This shows that the Hilbert-Schmidt operator (5.9) is self-adjoint if and only if

ITf? = ‘/M fy) K (z,y)dp

This implies that

i.e., T' is bounded, and

K(z,y) = K(y, )

outside a subset of measure zero in M x M.

In quantum mechanics we will often be dealing with operators which are defined only
on a dense subspace of V. So let us extend the notion of a linear operator by admitting
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linear maps D — V where D is a dense linear subspace of V' (note the analogy with rational
maps in algebraic geometry). For such operators T we can define the adjoint operator as
follows. Let D(T") denote the domain of definition of 7. The adjoint operator T will be
defined on the set

DT*)={yeV: sup K@), )| < o0} (5.10)

0#x€D(T) |||
Take y € D(T*). Since D(T) is dense in V the linear functional x — (T'(x),y) extends
to a unique bounded linear functional on V. Thus there exists a unique vector z € V
such that (T'(z),y) = (x,z). We take z for the value of T* at x. Note that D(T™) is not
necessary dense in V. We say that T is self-adjoint if T = T*. We shall always assume
that 7' cannot be extended to a linear operator on a larger set than D(7). Notice that T
cannot be bounded on D(T') since otherwise we can extend it to the whole V' by continuity.
On the other hand, a self-adjoint operator T': V' — V is always bounded. For this reason
linear operators T' with D(T') # V are called unbounded linear operators.

Example 2. Let us consider the space V = L?(R, dz) and define the operator

Tf:if’:z‘%.

Obviously it is 2gleﬁned only for differentiable functions with integrable derivative. The
functions z"e~*" obviously belong to D(T'). We shall see later in Lecture 9 that the space

of such functions is dense in V. Let us show that the operator T is self-adjoint. Let
f € D(T). Since f' € L*(R, dz),

t t
| 1 @i@as = 150P - 1502 - [ 1@ 7w
0 0
is defined for all t. Letting ¢ go to doo, we see that lim; 4., f(t) exists. Since |f(x)|?

is integrable over (—oo,+00), this implies that this limit is equal to zero. Now, for any
fyg € D(T), we have

Tr.9) = [ if @ade = irwa@| - [ is@i@ae -

[e.e]

_ /0 F(2)ig @dz = (f,Tg).

This shows that D(T) C D(T*) and T* is equal to T" on D(T'). The proof that D(T) =
D(T™) is more subtle and we omit it (see [Jordan]).

5.5 Now we are almost ready to define the new algebra of observables. This will be the
algebra H (V') of self-adjoint operators on a Hilbert space V. Here the Jordan product is
defined by the formula A+ B = 1[(4+ B)? — (A — B)?] if A, B are bounded self-adjoint
operators. If A, B are unbounded, we use the same formula if the intersection of the
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domains of A and B is dense. Otherwise we set Ax B = 0. Similarly, we define the Poisson
bracket

(A, B} = %(AB — BA).

Here we have to assume that the intersection of B(V) with the domain of A is dense, and
similarly for A(V'). Otherwise we set {4, B}, = 0.

We can define states in the same way as we defined them before: positive real-valued
linear functionals A — (A|w) on the algebra H (V') normalized with the condition (1y|w) =
1. To be more explicit we would like to have, as in the finite-dimensional case, that

(Alw) =Tr(MA)

for a unique non-negative definite self-adjoint operator. Here comes the difficulty: the
trace of an arbitrary bounded operator is not defined.

We first try to generalize the notion of the trace of a bounded operator. By analogy
with the finite-dimensional case, we can do it as follows. Choose an orthonormal basis (e, )

and set
o0

Tr(T) =Y (Ten, en). (5.11)

n=1

We say that T is nuclear if this sum absolutely converges for some orthonormal basis.
By the Cauchy-Schwarz inequality

00 00 00
D (Ten,en)l <> [ Tenllllenl| =D || Tenll.
n=1 n=1 n=1

So -
> ITen|| < oo (5.12)
n=1

for some orthonormal basis (e,,) implies that 7" is nuclear. But the converse is not true in
general.

Let us show that (5.11) is independent of the choice of a basis. Let (e],) be another
orthonormal basis. It follows from (5.7), by writing T'e,, = ), aye},, that

oo

Z Z Ten’ m (e;Twen) = Z(Ten,en)

n=1m=1 n

I
—_

and hence the left-hand side does not depend on (e],). On the other hand,

o) oo oo oo oo
Tenyen - Te’n7 m m7 e'mT m? ) -
n=1 n=1m=1 n=1m=1
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and hence does not depend on (e,) and is equal to Tr(7*). This obviously proves the
assertion. It also proves that 7' is nuclear if and only if 7™ is nuclear.
Now let us see that, for any bounded linear operators A, B,

Tr(AB) =Tr(BA), (5.13)

provided that both sides are defined. We have, for any two orthonormal bases (e,,), (e},),

n

Tr(AB) = i(ABen, en) = f:(Ben,A €n) = i f: (Beyn,e.)(el., Ae,) =
n=1 n=1 n=1m=1

=Y "> (Ben,€,,) (A€, en) = Tr(BA).
n=1m=1

As in the Lemma from the previous lecture, we want to define a state w as a non-
negative linear real-valued function A — (A|w) on the algebra of observables H (V') nor-
malized by the condition (Iy|w) = 1. We have seen that in the finite-dimensional case,
such a function looks like (A|lw) = Tr(M A) where M is a unique density operator, i.e. a
self-adjoint and non-negative (i.e., (Mw,v) > 0) operator with Tr(M) = 1. In the general
case we have to take this as a definition. But first we need the following:

Lemma. Let M be a self-adjoint bounded non-negative nuclear operator. Then for any
bounded linear operator A both Tr(MA) and Tr(AM) are defined.

Proof. We only give a sketch of the proof, referring to Exercise 8 for the details.
The main fact is that V' admits an orthonormal basis (e, ) of eigenvectors of M. Also the
infinite sum of the eigenvalues A\, of e, is absolutely convergent. From this we get that

i (M Aey,,en)| = i |(Ae,,, Me,,)| i |(Aey, Anen)| = i IAnl|(Aen, en)] <
n=1 n=1 n=1 n=1

<3 Palllden| <C S Pl < oo
n=1 n=1

Similarly, we have
D 1(AMen, en)] =D [(Adnen,en) = D [Anll(Aen,ea) < C D [An] < o
n=1 n=1 n=1 n=1

Definition. A state is a linear real-valued non-negative function w on the space H(V )pq
of bounded self-adjoint operators on V' defined by the formula

(Alw) =Tr(MA)
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where M is a self-adjoint bounded non-negative nuclear operator with T'r(M) = 1. The
operator M is called the density operator of the state w. The state corresponding to the
orthoprojector M = P, to a one-dimensional subspace is called a pure state.

We can extend the function A — (A|w) to the whole of H(V) if we admit infinite
values. Note that for a pure state with density operator Pg, the value (A|w) is infinite if
and only if A is not defined at v.

Example 3. Any Hilbert-Schmidt operator from Example 1 is nuclear. We have

Tr(T) = / K(x,x)dpu.
M
It is non-negative if we assume that K (x,y) > 0 outside of a subset of measure zero.

5.6 Recall that a self-adjoint operator 7' in a finite-dimensional Hilbert space V always
has eigenvalues. They are all real and V' admits an orthonormal basis of eigenvectors of 7.
This is called the Spectral Theorem for a self-adjoint operator. There is an analog of this
theorem in any Hilbert space V. Note that not every self-adjoint operator has eigenvalues.
For example, consider the bounded linear operator T'f = e~ f in L?*(R,dz). Obviously
this operator is self-adjoint. Then T'f = \f implies (e_”:2 —\)f =0. Since ¢(x) = e~ — A
has only finitely many zeroes, f = 0 off a subset of measure zero. This is the zero element
in L?(M, p).

First we must be careful in defining the spectrum of an operator. In the finite- dimensional
case, the following are equivalent:
(i) Tv = Av has a non-trivial solution;
(ii) T — Aly is not invertible.
In the general case these two properties are different.

Example 4. Consider the space V = [3(C) and the (shift) operator T defined by
T(ay,az,...,0n,...) =(0,a1,az,...).

Clearly it has no inverse, in fact its image is a closed subspace of V. But T'v = Av has no
non-trivial solutions for any A.

Definition. Let T': V — V be a linear operator. We define

Discrete spectrum: the set {\ € C : Ker(T — Ay) # {0}}. Its elements are called
eirgenvalues of T.

Continuous spectrum: the set {\ € C: (T — M\ly/)~! exists as an unbounded operator }.
Residual spectrum: all the remaining A for which T" — Ay is not invertible.

Spectrum: the union of the previous three sets.

Thus in Example 4, the discrete spectrum and the continuous spectrum are each the
empty set. The residual spectrum is {0}.

Example 5. Let T : L*([0,1],dz) — L?([0,1],dx) be defined by the formula

Tf=uaf.
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Let us show that the spectrum of this operator is continuous and equals the set [0, 1]. In
fact, for any A € [0, 1] the function 1 is not in the image of T'— AIy since otherwise the

improper integral
/1 dx
o (—A)?

converges. On the other hand, the functions f(x) which are equal to zero in a neighborhood
of A are divisible by # — A. The set of such functions is a dense subset in V' (recall that
we consider functions to be identical if they agree off a subset of measure zero). Since the
operator T'— Ay, is obviously injective, we can invert it on a dense subset of V. For any
A € [0,1] and any f € V, the function f(z)/(x — \) obviously belongs to V. Hence such A
does not belong to the spectrum.

For any eigenvalue A of T" we define the eigensubspace E\ = Ker(T — Aly). Its
non-zero vectors are called eigenvectors with eigenvalue A\. Let E be the direct sum of
these subspaces. It is easy to see that E is a closed subspace of V. Then V = E @ E*.
The subspace E* is T-invariant. The spectrum of T'|E is the discrete spectrum of 7. The
spectrum of T|E+ is the union of the continuous and residual spectrum of T. In particular,
if V = F, the space V admits an orthonormal basis of eigenvectors of T

The operator from the previous example is self-adjoint but does not have eigenval-
ues. Nevertheless, it is possible to state an analog of the spectral theorem for self-adjoint
operators in the general case.

For any vector v of norm 1, we denote by P, the orthoprojector Pg,. Suppose V has
an orthonormal basis of eigenvectors e,, of a self-adjoint operator A with eigenvalues \,,.
For example, this would be the case when V' is finite-dimensional. For any

o0
v = E A€y = g U, €n)en,
n=1
we have

Av = i (v, e,)Ae, = i (v, €en) i M Pe 0.
n=1 n=1

n=1

This shows that our operator can be written in the form

A= i AnP.
n=1

where the sum is convergent in the sense of the operator norm.

In the general case, we cannot expect that V' has a countable basis of eigenvectors
(see Example 5 where the operator T' is obviously self-adjoint and bounded). So the sum
above should be replaced with some integral. First we extend the notion of a real-valued
measure on R to a measure with values in H (V') (in fact one can consider measures with
values in any Banach algebra = complete normed ring). An example of such a measure is
the map B — >, -p Pe, € H(V) where we use the notation from above.

Now we can state the Spectral Theorem for self-adjoint operators.
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Theorem 2. Let A be a self-adjoint operator in V. There exists a function Py : R —
H (V) satisfying the following properties:
(i) for each A € R, the operator Pa(\) is a projection operator;
(ii)) Pa(A) < P4(XN') (in the sense that Ps(A\)Pa(X') = Pa(A) if A < X);
(iﬁ) lim)\_>_oo PA</\) = 0, limA—H—oo PA(A) = 1\/,’
(iv) P4(X) defines a unique H(V')-measure piga on R with pa((—oo, \)) = Pa(A);

(v)
A= [ zdus

R
(vi) for any v € V,
(A’U,’U) = /xdﬂA,v
R

where ju.o(E) = (14(E)v,v).
(viii) A belongs to the spectrum of A if and only if Ps(z) increases at A;

(vii) a real number A is an eigenvalue of A if and only if lim,_, - Pa(x) < lim,_,y+ Pa(z);
(viii) the spectrum is a bounded subset of R if and only if A is bounded.

Definition. The function P4 () is called the spectral function of the operator A.

Example 6. Suppose V has an orthonormal basis (e,) of eigenvectors of a self-adjoint
operator A. Let A\, be the eigenvalue of e,,. Then the spectral function is

Ps(\)= > P.,.

A <A

Example 7. Let V = L?(]0, 1], dxz). Consider the operator Af = gf for some p-integrable
function g. Consider the H(V)-measure defined by u(E)f = ¢pf, where ¢pp(x) = 1 if
g(x) € E and ¢p(z) =0 if g(x) ¢ E. Let |g(z)| < C outside a subset of measure zero. We
have

2n .
i —n+1—1)C
Jm 2 ST s cagne = o).

This gives

2n

. —n—+1i—1)C
(/xd,u)f = lim Z( ) ¢[(—n+i—1>07(—n+i>c]f =g/
R

n—00 4 n

This shows that the spectral function P4(\) of A is defined by Pa(\)f = pu((—o0, A]) f =
O(A — g)f, where 0 is the Heaviside function (4.4).

An important class of linear bounded operators is the class of compact operators.
Definition. A bounded linear operator T : V. — V is called compact (or completely

continuous) if the image of any bounded set is a relatively compact subset (equivalently,
if the image of any bounded sequence contains a convergent subsequence).
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For example any bounded operator whose image is a finite-dimensional is obviously
compact (since any bounded subset in a finite-dimensional space is relatively compact).

We refer to the Exercises for more information on compact operators. The most

important fact for us is that any density operator is a compact operator (see Exercise 9).

Theorem 3(Hilbert-Schmidt). Assume that T is a compact operator and let Sp(T') be

its spectrum. Then Sp(T') consists of eigenvalues of T'. In particular, each v € H can be
written in the form
o.¢]
v = Z Cn€n
n=1

where e,, is a linearly independent set of eigenvectors of T.
5.7 The spectral theorem allows one to define a function of a self-adjoint operator. We set
F) = [ £y
R
The domain of this operator consists of vectors v such that

/ (@) Pdpia < oo,
R

Take f = 6(A — x) where 0 is the Heaviside function. Then

A
0N —x)(A) = | 0(A—2)dua = [ dpa = Pa(N).
[oa-nma- |

Thus, if M is the density operator of a state w, we obtain
(B(A — 2)(A)|w) = Tr(MPA(N).
Comparing this with section 4.4 from Lecture 4, we see that the function
pa(A) =Tr(MPa(X))

is the distribution function of the observable A in the state w. If (e,) is a basis of V
consisting of eigenvectors of A with eigenvalues \,,, then we have

pa) = 37 (Mensen).

n:Ap <A

This formula shows that the probability that A takes the value A at the state w is
equal to zero unless \ is equal to one of the eigenvalues of A.
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Now let us consider the special case when M is a pure state P,. Then
(Alw) =Tr(P,A) =Tr(AP,) = (Av,v),

ra(A) = (Pa(Mv,v).
In particular, A takes the eigenvalue \,, at the pure state P, with probability 1.

5.9 Now we have everything to extend the Hamiltonian dynamics in H(V') to any Hilbert
space word by word. We consider A(t) as a differentiable path in the normed algebra of
bounded self-adjoint operators. The solution of the Schrodinger picture

dA(t

J ={A H};, A(0)=A

dt
is given by
A(t) = Ay :=U(-t)AU(t), A(0)= A,

i

where U (t) = enHt.
Let v(t) be a differential map to the metric space V. The Schrédinger equation is

L du(t) B
ZTIT = Hu(t), v(0)=w. (5.14)

It is solved by

v(t) = v = U(t)y = ety = </e

R

ta du H) .
In particular, if V' admits an orthonormal basis (e, ) consistsing of eigenvectors of H, then

vy = Z e n/h (e, v)o. (5.15)

n=1

Exercises.

1. Show that the norm of a bounded operator A in a Hilbert space is equal to the norm
of its adjoint operator A*.

2. Let A be a bounded linear operator in a Hilbert space V with ||A4]| < |a|™! for some
a € C. Show that the operator (A + aly )1 exists and is bounded.

3. Use the previous problem to prove the following assertions:
(i) the spectrum of any bounded linear operator is a closed subset of C;
(ii) if A belongs to the spectrum of a bounded linear operator A, then |A| < ||A]l.

4. Prove the following assertions about compact operators:
(i) assume A is compact, and B is bounded; then A*, BA, AB are compact.
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(ii) a compact operator has no bounded inverse if V' is infinite-dimensional;

(iii) the limit (with respect to the norm metric) of compact operators is compact;

(iv) the image of a compact operator T is a closed subspace and its cokernel V/T'(V) is
finite-dimensional.

5.() Let V = 15(C) and A(z1,22,...,%pn,...) = (a121,02%2,...,anTy,...). For which
(a1,...,Gn,...) is the operator A compact?
(ii) Is the identity operator compact?

6. Show that a bounded linear operator T satisfying > - ||Te;||* < oo for some or-
thonormal basis (e,,) is compact. [Hint: Write 7" as the limit of operators T,,, of the form
Sope P., T and use Exercise 4 (iii).]

7. Using the previous problem, show that the Hilbert-Schmidt integral operator is compact.

8.(i) Using Exercise 6, prove that any bounded non-negative nuclear operator 7' is compact.

[Hint: Use the Spectral theorem to represent 7" in the form T = A2 ]

(ii) Show that the series of eigenvalues of a compact nuclear operator is absolutely con-
vergent.

(iii) Using the previous two assertions prove that M A is nuclear for any density operator
M and any bounded operator A.

9. Using the following steps prove the Hilbert-Schmidt Theorem:
(i) If v = limy, o0 Uy, then lim, o (Avy, vy,) = (Av,v);
(ii) If |(Av,v))| achieves maximum at a vector vy of norm 1, then vy is an eigenvector of
4
(iii) Show that |(Av,v)| achieves its maximum on the unit sphere in V" and the correspond-
ing eigenvector v; belongs to the eigenvalue with maximal absolute value.

(iv) Show that the orthogonal space to vy is T-invariant, and contains an eigenvector of
T.

10. Consider the linear operator in L?([0,1],dx) defined by the formula

74(@) = [ F(o)ir
0

Prove that this operator is bounded self-adjoint. Find its spectrum.
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Lecture 6. CANONICAL QUANTIZATION

6.1 Many quantum mechanical systems arise from classical mechanical systems by a process
called a quantization. We start with a classical mechanical system on a symplectic manifold
(M,w) with its algebra of observables O(M) and a Hamiltonian function H. We would
like to find a Hilbert space V' together with an injective map of algebras of observables

Q1:0(M)—=H(V), f— Ay,
and an injective map of the corresponding sets of states
Qy:S(M)—=S(V), p— My.

The image of the Hamiltonian observable will define the Schrédinger operator H in terms
of which we can describe the quantum dynamics. The map Q1 should be a homomorphism
of Jordan algebras but not necessarily of Poisson algebras. But we would like to have the
following property:

flbii)% Afrgy = %ii%{Af’Ag}h: %l_% Tr(MyAys) = (f; 1o)-

The main objects in quantum mechanics are some particles, for example, the electron.
They are not described by their exact position at a point (x,v,2) of R? but rather by
some numerical function v (x,vy,2) (the wave function) such that |1 (z,y,2)* gives the
distribution density for the probability to find the particle in a small neighborhood of the
point (x,y, z). It is reasonable to assume that

[ Wy o) Pdndydz =1t () =0
RS

I|(z,y,2)[| =00

This suggests that we look at v as a pure state in the space L?(R3). Thus we take this
space as the Hilbert space V. When we are interested in describing not one particle but
many, say N of them, we are forced to replace R? by R3"N. So, it is better to take now
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V = L*(R™). As is customary in classical mechanics we continue to employ the letters
¢; to denote the coordinate functions on R™. Then classical observables become functions
on M = T(R™)* where we use the canonical coordinates ¢;,p;. In this lecture we are
discussing only one possible approach to quantization (canonical quantization). There are
others which apply to an arbitrary symplectic manifold (M,w) (geometric quantizations).

6.2 Let us first define the operators corresponding to the coordinate functions ¢;,p;. We
know from (2.10) that

{9,045} = {pi;p;} =0, {ai,p;} = di.

Let
Qi:Aq“Pi:Apm z:l,,n

Then we must have

[Qi, Q] = [Pi, Pl =0, [P, Q;] = —ihd;;. (6.1)
So we have to look for such a set of 2n operators.
Define 9
Qi¢(a) = ¢:9(a), Pid(a) = —ihaq,cb(q), i=1,...,n (6.2)

The operators @); are defined on the dense subspace of functions which go to zero at infinity

faster than ||q||~2 (e.g., functions with compact support). The second group of operators

is defined on the dense subset of differentiable functions whose partial derivatives belong

to L?(R™). It is easy to show that these operators satisfy D(T') C D(T*) and T* = T on

D(T). For the operators ; this is obvious, and for operators P; the proof is similar to

that in Example 2 from Lecture 5. We skip the proof that D(T") = D(T™*) (see [Jordan)]).
Now let us check (6.1). Obviously [Q;, Q;] = [F;, P;] = 0. We have

ox; 0 0
PiQyo(a) = ~in A —inGs000) + 0, 20 ) — (ine, 22) < it o).

The operators Q; (resp. P;) are called the position (resp. momentum) operators.

6.3 So far, so good. But we still do not know what to associate to any function f(p,q).
Although we know the definition of a function of one operator, we do not know how to
define the function of several operators. To do this we use the following idea. Recall that
for a function f € L?(R) one can define the Fourier transform

£ 1 —ixt
fla) = <= R/ F(t)eitdt. (6.3)

There is the inversion formula

F(t)e™tdt. (6.4)
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Assume for a moment that we can give a meaning to this formula when z is replaced by
some operator X on L?(R). Then

F(X) = % / f(t)eXtde. (6.5)
R

This agrees with the formula

we used in the previous Lecture. Indeed,

- / Floeia = —— / FO( [ e )at =

R
1 £ ixt _ —
- (ER/f(t)e dt))dpx —R/f(x)dnx = f(X).

To define (6.5) and also its generalization to functions in several variables requires more
tools. First we begin with reminding the reader of the properties of Fourier transforms.
We start with functions in one variable. The Fourier transform of a function absolutely
integrable over R is defined by formula (6.3). It satisfies the following properties:

(F1) f(z) is a bounded continuous function which goes to zero when |x| goes to infinity;

(F2) if f” exists and is absolutely integrable over R, then f is absolutely integrable over R
and

~

f(=z) = f(z) (Inversion Formula);

(F3) if f is absolutely continuous on each finite interval and f’ is absolutely integrable over
R, then

A~ ~

f'(x) = iz f(x);
(F4) if f,g € L?*(R), then

(f,9) = (f.9) (Plancherel Theorem);
(F5) If
o@) = fixfo = [ HOfel - Ot
R

then o
g=1r1-Ja-
Notice that property (F3) tells us that the Fourier transform F maps the domain of
definition of the operator P = f — —if’ onto the domain of definition of the operator

Q= f— xf. Also we have
FloQoF=P (6.6)
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6.4 Unfortunately the Fourier transformation is not defined for many functions (for exam-
ple, for constants). To extend it to a larger class of functions we shall define the notion of
a distribution (or a generalized function) and its Fourier transform.

Let K be the vector space of smooth complex-valued functions with compact support
on R. We make it into a topological vector space by defining a basis of open neighborhoods
of 0 by taking the sets of functions ¢(x) with support contained in the same compact subset
and satisfying [¢®*) (z)| < €, for all z € R,k =0,1,. ...

Definition. A distribution (or a generalized function) on R is a continuous complex valued
linear function on K. A distribution is called real if

U(p) = £() for any ¢ € K.

Let K’ be the space of complex-valued functions which are absolutely integrable over
any finite interval (locally integrable functions). Obviously, K C K’. Any function f € K’
defines a distribution by the formula

4(0) = [ @)@z = 6. )1, 6.7)
R

Such distributions are called regular, the rest are singular distributions.

Since (¢, f) = (¢, f), we obtain that a regular distribution is real if and only if f = f,
i.e., f is a real-valued function.

It is customary to denote the value of a distribution ¢ € K* as in (6.7) and view f(x)
(formally) as a generalized function. Of course, the value of a generalized function at a
point x is not defined in general. For simplicity we shall assume further, unless stated
otherwise, that all our distributions are real. This will let us forget about the conjugates
in all formulas. We leave it to the reader to extend everything to the complex-valued
distributions.

For any affine linear transformation z — ax + b of R, and any f € K’, we have
/f(t)gb(a_lt +ba"t)dt = a/f(ax +b)o(z)dx.
R R
This allows us to define an affine change of variables for a generalized function:

o — %E(gﬁ(a‘lx +ba"h)) = /f(a:z: + b)p(z)dx. (6.8)
R

Examples. 1. Let p be a measure on R, then

o(z) = | ¢(x)du
/
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is a real-valued distribution (called positive distribution). It can be formally written in
the form
2) = [ pla)o(e)da
R

where p is called the density distribution.
For example, we can introduce the distribution

It is called the Dirac d-function. 1t is clearly real. Its formal expression (6.7) is

¢—>/(5(3:)¢(33)da:

More generally, the functional ¢ — ¢(a) can be written in the form
) = /5(:L‘ —a)p(x)dr = /5(m)gb(x —a)dz.
R R

The precise meaning for §(z — a) is explained by (6.8).
2. Let f(x) = 1/z. Obviously it is not integrable on any interval containing 0. So

_ / igb(x)dx

should mean a singular distribution. Let [a,b] contain the support of ¢. If 0 & [a,b] the
right-hand side is well-defined. Assume 0 € [a,b]. Then, we write

/ dx_/¢dx_/¢’ d+/¢

The function M has a removable discontinuity at 0, so the first integral exists. The
second integral exists in the sense of Cauchy’s principal value

[0y [ e 40

Now our intergral makes sense for any ¢ € K. We take it as the definition of the generalized
function 1/z.

Obviously distributions form an R-linear subspace in K*. Let us denote it by D(R).
We can introduce the topology on D(R) by using pointwise convergence of linear functions.
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By considering regular distributions, we define a linear map K’ — D(R). Its kernel is
composed of functions which are equal to zero outside of a subset of measure zero. Also
notice that D(R) is a module over the ring K. In fact we can make it a module over the
larger ring K, of smooth locally integrable functions. For any o € K, we set

(alf)(9) = ().

Although we cannot define the value of a generalized function f at a point a, we can
say what it means that f vanishes in an open neighborhood of a. By definition, this means
that, for any function ¢ € K with support outside of this neighborhood, [ fé¢dx = 0. The

R

support of a generalized function is the subset of points a such that f does not vanish in
any neighborhood of a. For example, the support of the Dirac delta function é(x — a) is
equal to the set {a}.

We define the derivative of a distribution ¢ by setting
dal do
— (@) := —l(—).
- (9) (7))

In notation (6.7) this reads

/ f(2)d(x)da = — / f(2)¢! (z)de. (6.9)

The reason for the minus sign is simple. If f is a regular differentiable distribution, we can
integrate by parts to get (6.9).
It is clear that a generalized function has derivatives of any order.

Examples. 3. Let us differentiate the Dirac function §(z). We have
/  (2)g(x)d = — / 5(2)¢ (x)d = ¢ (0).
R R

Thus the derivative is the linear function ¢ — —¢’(0).
4. Let 0(x) be the Heaviside function. It defines a regular distribution

€0) = [ w)o(a)de = | ol
4 0
Obviously, #'(0) does not exist. But, considered as a distribution, we have
[ @otate =~ [ &@do = o(0)
0
R

Thus
0 (x) = 6(x). (6.10)
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So we know the derivative and the anti-derivative of the Dirac function!

6.5 Let us go back to Fourier transformations and extend them to distributions.

Definition. Let ¢ € D(R) be a distribution. Its Fourier transform is defined by the
formula

U(¢) = £(1h), where {(x) = ¢(x).

/f¢da: = \/Lz_ﬁ/f(az)(/qs@)emdt) dz.

It follows from the Plancherel formula that for regular distributions this definition coincides
with the usual one.

In other words,

Examples. 5. Take f = 1. Its usual Fourier transform is obviously not defined. Let us
view 1 as a regular distribution. Then, letting ¢ = 1, we have

/ 1p(x)de = / 1 (a)da = R/ Y(x)edr = 21 p(0).

R R
This shows that

1=v2ré(x).

One can view this equality as

1 —itx _ 5(x
ER/G dt = V216 (). (6.11)

In fact, let f(x) be any locally integrable function on R which has polynomial growth
at infinity. The latter means that there exists a natural number m such that f(x) =
(22 +1)™ fo(t) for some integrable function fo(t). Let us check that

+
lim / f(t)e "tdt
E—o0

—£

exists. Since fy(t) admits a Fourier transform, we have

f— hm /f() _thdt fo( )

27T §—o0

where the convergence is uniform over any bounded interval. This shows that the cor-

responding distributions converge too. Now applying the operator (—j—; + 1)™ to both
sides, we conclude that

fut d m £
Eggn;o / Fl)e™ e = (=g + 1) fo(w).
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We see that f(x) can be defined as the limit of distributions fe(z) = — [ f(t)e " tdt.
Let us recompute 1. We have

+€

: e irE _ pizd 2sinx
lim e it = lim ——————— = lim 6.
£E— o0 E—o0 —1T E—o0 T

—£

One can show (see [Gelfand], Chapter 2, §2, n° 5, Example 3) that this limit is equal to
270 (x). Thus we have justified the formula (6.11).
Let f = e'® be viewed as a regular distribution. By the above

+¢ +¢
etz — _—_ |lim elote— @ty — _ —  |im /e_l(‘r_a)tdt =V2md(x — a). 6.12
= Jlim o= i V2mé(z — a) (6.12)

—£

6. Let us compute the Fourier transform of the Dirac function. We have
1 ,
6(¢) =d(y) = 0:—/ t)e'tdt.
(¢) = 6(v) = 1(0) N (t)
R

This shows that

For any two distributions f, g € D(R), we can define their convolution by the formula

[ #egowiz= [ 1( [ g6t -+ iz)ay (6.13)

R R

Since, in general, the function y — [ gé(x +y)dx does not have compact support, we have
R
to make some assumption here. For example, we may assume that f or g has compact

support. It is easy to see that our definition of convolution agrees with the usual definition
when f and g are regular distributions:

f gl /f (2~ t)d

The latter can be also rewritten in the form

:R/f /(5t+t —x)g //f §(t +t —x)dtdt’. (6.14)
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This we may take as an equivalent form of writing (8) for any distributions.
Using the inversion formula for the Fourier transforms, we can define the product of
generalized functions by the formula

—_

fog(—z)=fxg. (6.15)

The property (F4) of Fourier transforms shows that the product of regular distributions
corresponds to the usual product of functions. Of course, the product of two distributions
is not always defined. In fact, this is one of the major problems in making rigorous some
computations used by physicists.

Example 7. Take f to be a regular distribution defined by an integrable function f(z),
and g equal to 1. Then

/f*w dx—/f /gberydx /f )dz) ( /¢ )dz).

f*lz(/f(x)dx)-l

This suggests that we take f % 1 as the definition of [ f(x)dx for any distribution f with
R

This shows that

compact support. For example,

R/ () / bz +y)dy) dz = / H(y)dy

/é(x)da: =dx1=1, (6.16)

R

Hence

where 1 is considered as a distribution.

6.6 Let T : K — K be a bounded linear operator. We can extend it to the space of
generalized functions D(R) by the formula

T(0)(¢) = (T"(9))

[T@sds = [ @)

The reason for putting the adjoint operator is clear. The previous formula agrees with the
formula

or, in other words,

(T*(#), flr2w) = (&, T(f))r2(r)
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for f,¢ € K.
Now we can define a generalized eigenvector of T as a distribution ¢ such that T'(¢) = A\l
for some scalar A € C.

Examples. 8. The operator ¢(z) — ¢(x — a) has eigenvectors ¢, ¢t € R. The corre-

sponding eigenvalue of e** is e'**. In fact

/eixtgb(x —a)dx = " /emgb(x)dac.

R R

9. The operator T} : ¢(x) = g(x)p(x) has eigenvectors 6(z —a), a € R, with corresponding
eigenvalues g(a). In fact,

/ 5z — a)g(z)d(x)dx = ga)d(a) = g(a) / 5z — a)p(x)dr.

R R

Let fx(z) be an eigenvector of an operator A in D(R). Then, for any ¢ € K, we can
try to write

o) = / a(N) f (), (6.16)

R

viewing this expression as a decomposition of ¢(x) as a linear combination of eigenvectors
of the operator A. Of course this is always possible when V has a countable basis ¢,, of
eigenvectors of A.

For instance, take the operator T, : ¢ — ¢(x — a),a # 0, from Example 8. Then we
want to have

Y(x) = /a()\)ew‘md)\.

R

But, taking
1 -

o) = 500 = = (= / vl M)

we see that this is exactly the inversion formula for the Fourier transform. Note that it is
important here that a # 0, otherwise any function is an eignevector.

Assume that fy(z) are orthonormal in the following sense. For any ¢(\) € K, and
any \ € R,

/ ( / F3(0) P (@)dz) (NN = G(A — V),
R R

or in other words,

[ @iz =5 - x).
R
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This integral is understood either in the sense of Example 7 or as the limit (in D(R)) of
integrals of locally integrable functions (as in Example 5). It is not always defined.
Using this we can compute the coefficients a(\) in the usual way. We have

/w(:v)fx (z)dz = (/CL()\)f)\(it)d)\)f)\/ (x)dr = /a()\)é()\ — XNd\ = a(N).

R R

For example when f\ = e*** we have, as we saw in Example 5,

/ei(’\_’\/)mda: = 2w (A — ).
R

Therefore,
1 .
f)\ (.’IZ‘) — ezx/\

V21

form an orthonormal basis of eigenvectors, and the coefficients a(\) coincide with ().

6.7 It is easy to extend the notions of distributions and Fourier transforms to functions in
several variables. The Fourier transform is defined by

A

1 ,
Qﬁ(gch .. 7‘1;”) = /¢(t1, . 7tn)efl(t1x1+...+tnl‘n)dt1 . dtn (616)
21\
Ve )

In a coordinate-free way, we should consider ¢ to be a function on a vector space V with
some measure p invariant with respect to translation (a Haar measure), and define the
Fourier transform f as a function on the dual space V* by

) = — [ bare—it@
40 = V/ ola)e S d

Here ¢ is an absolutely integrable function on R".

For example, let us see what happens with our operators P; and (; when we apply
the Fourier transform to functions ¢(q) to obtain functions ¢(p) (note that the variables
p; are dual to the variables ¢;). We have

Pio(p) = I, / Pré(q)e”Pdq = IT;, / : —agéq) e Pt Thetn g =
1

R7 R7

q1=00

— Hin (?qb(Q)@ip'q

+ hpy / ¢(q)eip’qdq) =

g1=—00 R
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= Iy / Pig(q)e” P 9dq = hp14(p).
Rn

Similarly we obtain

S hd - o
P(p) = 5 0p) =5 o m/¢ g =

- _nln / (q)(—igi)e P 9dq = —hp16 = —hQ16(p).

This shows that under the Fourier transformation the role of the operators P; and Q); is
interchanged.

We define distributions as continuous linear functionals on the space K, of smooth
functions with compact support on R™. Let D(R™) be the vector space of distributions.
We use the formal expressions for such functions:

— [ Festxax

Example 10. Let ¢(x,y) € Ks,. Consider the linear function

_ / B(x, x)dx

This functional defines a real distribution which we denote by §(x — y). By definition

[ 8= yotxy)axdy = [ o(x.x)dx

Note that we can also think of §(x —y) as a distribution in the variable x with parameter
y. Then we understand the previous integral as an iterated integral

/</¢(X,Y)5(X—Y)d><)dy-

R?  Rn
Here 6(x —y) denotes the functional

o(x) = o(y)

The following Lemma is known as the Kernel Theorem:
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Lemma. Let B : K, x K,, — C be a bicontinuous bilinear function. There exists a
distribution ¢ € D(R?*") such that

B($(x), (x)) = L(d(x)(y)) = / / R (%, 9)$(x)p(y)dxdy.

R™ R™

This lemma shows that any continuous linear map 7' : K,, — D(R"™) from the space
K,, to the space of distributions on R™ can be represented as an “integral operator” whose
kernel is a distribution. In fact, we have that (¢,v) — (T'¢,%) is a bilinear function
satisfying the assumption of the lemma. So

(To,v) = K(x,y)o(x)i(y)dxdy.
1/

This means that T'¢ is a generalized function whose value on 1 is given by the right-hand
side. This allows us to write

Té(y) = / R(x,y)$(x)dx.

Examples 11. Consider the operator T¢ = g¢ where g € K,, is any locally integrable
function on R™. Then

R

Consider the function g(x)¢(x)1(x) as the restriction of the function g(x)¢(x)y(y) to the
diagonal x = y. Then, by Example 10, we find

/ G(x)$(x)p(x)dx = / / 5(x — ¥)g(x)d(x)e(y)dxdy.
R R R

This shows that
K(x,y) =g(x)é(x —y).

Thus the operator ¢ — g¢ is an integral operator with kernel §(x — y)g(x). By continuity
we can extend this operator to the whole space L?(R"™).

6.8 By Example 10, we can view the operator @; : ¢(q) — ¢;¢(q) as the integral operator

Qid(a) = / 4i6(a— 3)d(y)dy.

R~
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More generally, for any locally integrable function f on R™, we can define the operator
f(Q1,...,Qy) as the integral operator

F(@Qu- .. Qu)b(a) = / F(@)3(d — y)o(y)dy.
J

Using the Fourier transform of f, we can rewrite the kernel as follows
/f y)dy = Iy / / f(w)e™95(q - y)¢(y)dydw.
R" R™
Let us introduce the operators

V(W) = V(Ul, .. 7vn) — ei(’U1Q1+...+UnQn).

Since all @); are self-adjoint, the operators V(w) are unitary. Let us find its integral
expression. By 6.7, we have

Q(w)d(q) = ¢ Vg = / S 5(g — y)o(y)dy.

Comparing the kernels of f(Q1,...,Q,) and of Q(w) we see that

F(Q1, Q) = m/f

Now it is clear how to define Af for any f(p,q). We introduce the operators
U) =U(uy, ... uy) = eltetunln)
Let ¢(u,q) = U(u)¢(q). Differentiating with respect to the parameter u, we have

d9(u,q) 09(u,q) '

8UZ‘ = @Pigb(ua CI) =h 8(11

This has a unique solution with initial condition ¢(0,q) = ¢(q), namely

¢(u,q) = ¢(q — hu).
Thus we see that .
V(w)U(u)g(q) = e™99(q — hu),
U()V(w)g(q) = e™ (g — hu).

This implies .
[U(u),V(w)] = e W, (6.18)
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Now it is clear how to define A;. We set for any f € Kj, (viewed as a regular
distribution),

U(u)e™ (6.19)

RTL R?’L

The scalar exponential factor here helps to verify that the operator Ay is self-adjoint. We
have

V(W)*emgw

R» Rn
U(—u)V(—w)e" 5™
R" Rn
=gy | [ fuw vy
o
_ #//f(u,w)V(w)U(u)e _ A,
R R™

Here, at the very end, we have used the commutator relation (6.18).

6.9 Let us compute the Poisson bracket {Af, Ay}n and compare it with Ay 3. Let
Kf:,w(q, y) = f(u, w)eiw'qé(q — hu — y>e—iﬁu-w/2’

KY i(a,y) = g(u/, w)e™ 95(q — ha' — y)e /2,
Then, the kernel of A;A, is
v [ [ [ [ [ htaat ittt -

—ih(u -w'+u-w)

/f u, w)e!Watw ) 5(q—ru—q)g(u', w)d(q —hu' —y)e dq’ dudwdu’ de

'Lhu -w’

/f u,w)g(u', w)e™W e = giw’(a- P§(q—h(u+u') —y)e dudwdu’dw’.

Similarly, the kernel of AjAy is

Kom [ [ [ [ [ Kttaanc et i mamatins -

R7 R™ R™ R™ R”
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/ o / f(u, W)g(u/, Wl)eiw"qeihu’«w’/2€iW'(qﬁu/)5(q_h(u+u/)_y)eihu-w/2dudwdu/dwl.l
R7 R7

We see that the integrands differ by the factor gih(w'u—u’-w) 1y particular we obtain

%%Ang = %ILI%)AQAJC

Now let check that
rlzi—%{Af’ Ag}h = %lg%) A{f,g} (6.20)

This will assure us that we are on the right track.
It follows from above that the operator {Af, A;}s has the kernel

A(u-v4u’-v’)
2

%/f(u,v)ﬁ(u',fu')ei(”/*”)'q_ 8(q—h(u4u') —y)(e™ "% — =0 dududu’ dv
R4n

where we “unbolded” the variables for typographical reasons. Since

. ’ . /

. e—zhw ‘u e—zhu W , ,

lim , =W  -u—1u -w,
A—0 —ih

passing to the limit when % goes to 0, we obtain that the kernel of limp_,o{Af, Ag}n is
equal to

/ Fa, whg(un”, w")e v as(q — y)(w” - —u” - w)dd'dw'du’dw”.  (6.21)
R4n

Now let us compute Ay 3. We have

B " 9f g Of Og
g = ;(3% dpi  Op; 5292‘)'

Applying properties (F'3) and (F'5) of Fourier transforms, we get
{f, 9} (w, w) =Y "(ivif) * (iwig) — (i f) = (ivigi).
i=1
By formula (6.14), we get
{fi9}(u,w) =

= / fu', wHgu”, w")(w" -u’ —u” - W) +u”’ —u)d(w +w — w)du'dw'du’ dw”.
R4n
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Thus, comparing with (6.21), we find (identifying the operators with their kernels):

i — | e TW-q o - —hu-w/2 _
Lim Ag.qy g%//{f,g}(u,W)e 6(q —hu—y)e dudw

R™ R™

A~

= lim / fla,wg(u,w')e ™ 95(q — h(u' +u") - y)d(q - y) (W - u —u” - w)x
—
]Réln

—hu-w/2 3./ S "n__q;
xe du’'dw'du” dw %%{Af’Ag}h'

6.10 We can also apply the quantization formula (14) to density functions p(q, p) to obtain
the density operators M,. Let us check the formula

Lim Tr(M,Ay) = /f(p,q)dpdq- (6.22)
M
Let us compute the trace of the operator Ay using the formula

Tr(T) =Y (Tenen)
n=1
By writing each e,, and Te,, in the form
en(q) = i / en(t)e' Tt dt, Ten(q) = Il / én(t)Te' vt dt,
R R

and using the Plancherel formula, we easily get

Tr(T) = (271r)” //(Teiq't,eiq't)dth (6.23)

R7™ R™

Of course the integral (6.23) in general does not converge. Let us compute the trace of the
operator '
V(w)U(u) : ¢ — "™V 99(q — hu).

We have

1 : ‘ ‘
Tr(V (W)U (W) = 5o / / (G h) i g i
R” R™

_ nin< / eiw-de)nm( / emt'“dt> _ (2%)”5(W)5(u).

R™ R7
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Thus
1

(2m)"

Tr(Ay) = //f(u,W)e_ih“'wﬂTr(V(W)U(u))dudw =

R™ R™

= [ [ e 2 ) ) dudw —

R™ R™

_ hin £(0,0) = (27171)” / / £ (u, w)dudw.

R™ R™

This formula suggests that we change the definition of the density operator M, = A, by
replacing it with
M, = (2rh)" A,.

Then
Tr(M,) = //p(u,w)dudw =1,

R7 R™

as it should be. Now, appplying (6.21), we obtain

lin Tr(M, A7) = (260)" Jim Tr(4,) = ()" 27T1h)n / / p(w, W) f (1, w)dudw =
Rn Rn

= [ [ ptaws(a,wyidudw.
R™ R™

This proves formula (6.22).

Exercises.
1. Define the direct product of distributions f,g € D(R") as the distribution f x g from

D(R?") with
[ [t = aotyaxay) = [ 160( [ atwroteiay )i

R R™ R7

(i) Show that §(x) x d(y) = d(x,y).
(ii) Find the relationship of this operation with the operation of convolution.
(ii) Prove that the support of f x g is equal to the product of the supports of f and g.

2. Let ¢(z) be a function absolutely integrable over R. Show that ¢ — [ f(x)¢(z, y)dzdy
R

defines a generalized function ¢; in two variables x,y. Prove that the Fourier transform of
¢ is equal to the generalized function v27 f(u) x §(v).
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3. Define partial derivatives of distributions and prove that D(f x g) = Df « g = f % Dg
where D is any differential operator.

4 Find the Fourier transform of a regular distribution defined by a polynomial function.

5. Let f(z) be a function in one variable with discontinuity of the first kind at a point x = a.
Assume that f(z)’ is continuous at x # a and has discontinuity of the first kind at z = a.
Show that the derivative of the distribution f(z) is equal to f'(x)+(f(a+)—f(a—))d(x—a).
6. Prove the Poisson summation formula 327> _é(n) = 2737 ¢(n).

7. Find the generalized kernel of the operator ¢(z) — ¢'(x).

8. Verify that A,, = P;.

9. Verify that the density operators M, are non-negative operators as they should be.

10. Show that the pure density operator P, corresponding to a normalized wave function
¥(q) is equal to M, where p(p,q) = [¢(q)[*d(p).
11. Show that the Uncertainty Principle implies A, PA,Q > h/2.
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Lecture 7. HARMONIC OSCILLATOR

7.1 A (one-dimensional) harmonic oscillator is a classical mechanical system with Hamil-

tonian function ) )
p mw- o

Hp.q) =5 -+ ¢ (7.1)

The parameters m and w are called the mass and the frequency. The corresponding Newton
equation is

d%x

m——s = —Mw.
dt?

The Hamilton equations are

p=
After differentiating, we get
p+uwp=0, j+w’q=0.
This can be easily integrated. We find
p = cmw cos(wt + @), q = csin(wt + @)

for some constants ¢, ¢ determined by the initial conditions.
The Schrodinger operator
1 mw? hd? mw?

H=_—p? 2t 4 .
omt T ¢ omdg 2 ¢

Let us find its eigenvectors. We shall assume for simplicity that m = 1. We now consider
the so-called annihilation operator and the creation operator

(w@ —iP), a* = (w@Q + i P). (7.2)

1
V2w

8-
&
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They are obviously adjoint to each other. We shall see later the reason for these names.
Using the commutator relation [Q, P] = —ih, we obtain

1 |
waa’ = S (@*Q* + P?) + —(-QP+ PQ) = H + —,

1 :
wa*a = §(w2Q2 + P?) + ZEW(QP — PQ)=H — -

From this we deduce that
[a,a*] =h, [H,a]=—hwa, [H,a"]="hwa". (7.3)

This shows that the operators 1, H, a,a* form a Lie algebra H, called the extended Heisen-
berg algebra. The Heisenberg algebra is the subalgebra N C H generated by 1,a,a*. It is
isomorphic to the Lie algebra of matrices

o O O
o O %
O % ¥

N is also an ideal in ‘H with one-dimensional quotient. The Lie algebra H is isomorphic
to the Lie algebra of matrices of the form

0 =z vy z
Alx,y, z,w) = 8 16) _Ow _ym ,  x,y,z,w e R.
0O 0 O 0

The isomorphism is defined by the map
¥ h wh
1 — A(0,0,1,0), a— A(1,0,0,0), a* — §A(0, 1,0,0), H — 714(0,0,0, 1).

So we are interested in the representation of the Lie algebra H in L?(R).
Suppose we have an eigenvector 1) of H with eigenvalue \. Since a* is obviously
adjoint to a, we have

h h
RAIGIP = (0, H) = (6, wa"at) + (b, ) = wllap|l” + T[]

This implies that all eigenvalues A are real and satisfy the inequality

h
A> (7.4)
2
The equality holds if and only if aip = 0. Clearly any vector annihilated by a is an
eigenvector of H with minimal possible absolute value of its eigenvalue. A vector of norm
one with such a property is called a vacuum vector.
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Denote a vacuum vector by |0). Because of the relation [H,a] = —hwa, we have

Hay = aHY — hwap = (A — hw)a.

83

(7.5)

This shows that ai) is a new eigenvector with eigenvalue A — hw. Since eigenvalues are
bounded from below, we get that a”*!y = 0 for some n > 0. Thus a(a™) = 0 and a™¥
is a vacuum vector. Thus we see that the existence of one eigenvalue of H is equivalent to

the existence of a vacuum vector.

Now if we start applying (a*)™ to the vacuum vector |0), we get eigenvectors with

eigenvalue hw/2 + nhw. So we are getting a countable set of eigenvectors

Yn = a™"|0)

with eigenvalues \,, = %hw. We shall use the following commutation relation

which follows easily from (7.3). We have

[1¥1]1* = lla*[0)||* = (|0}, aa™|0 >) = (|0}, a"al0) + 1|0 >) = (|0), :[0)) = A,

[nl] = [la™0)||* = (a™"]0),a™"|0 >) = (|0),a" " (a(a")™)|0)) =
= (10),a" ™" (a™a)|0)) + nh(|0), a" " (a*)"710)) = nA||(a”)" |0} |*.

By induction, this gives
[¢ull® = nin".

After renormalization we obtain a countable set of orthonormal eigenvectors

) = ———(a*)"0), n=0,1,2
n)y = a , n=20,1,2,....
VE " n!

(7.6)

The orthogonality follows from self-adjointness of the operator H. It is easy to see that
the subspace of L?(R) spanned by the vectors (7.6) is an ireducible representation of the
Lie algebra H. For any vacuum vector |0) we find an irreducible component of L?(R).

7.2 It remains to prove the existence of a vacuum vector, and to prove that L?(R) can be
decomposed into a direct sum of irreducible components corresponding to vacuum vectors.

So we have to solve the equation

V2warh = (wQ — iP)p = wqyp + h% =0.

It is easy to do by separating the variables. We get a unique solution
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where the constant (F‘:’—ﬁ)i was computed by using the condition ||1)|| = 1. We have
1 B w1 (2w d., _wd
In) = T (a®)"[0) = (ﬂ)“ e (wg — hd—) e =
W (1 1 w h d wgq?
= ()1 Z 4 E e =
G VW~ Vwdg)
w.1 1 d n =z W1 —a?
= (o)t la e = (2) (e (7.7
Here x = q‘/Tg, H,(x) is a (normalized) Hermite polynomial of degree n. We have
W 1 _,.2 W _1 — 2
/\n}\m}dq = /(—)26 Y Hy(z)Hpy(z)(—) 2dx = /e Y Hy(x)Hp(z)de = -
h I
R R R
(7.8)

This agrees with the orthonormality of the functions |n) and the known orthonormality
22
of the Hermite functions H,(z)e” =z . It is known also that the orthonormal system of
2

functions H,(z)e 2 is complete, i.e., forms an orthonormal basis in the Hilbert space
L?(R). Thus we constructed an irreducible representation of H# with unique vacuum vector
|0). The vectors (7.7) are all orthonormal eigenvectors of H with eigenvalues (n + 3)hw.

7.3 Let us compare the classical and quantum pictures. The pure states P,y corresponding
to the vectors |n) are stationary states. They do not change with time. Let us take the
observable @) (the quantum analog of the coordinate function ¢). Its spectral function is
the operator function

Po(X) s — 0(A = q)v,

where 6(z) is the Heaviside function (see Lecture 5, Example 6). Thus the probability that
the observable ) takes value < X in the state |n) is equal to

pQ(A) = Tr(Po(X)Puy) = (0(A = g)ln), [n)) = /9(A — q)||n)|dg =
R

= ] \|n>(2dq:/Hn(I)Qem2dm (7.9)
—o00 R

The density distribution function is ||n) ‘2. On the other hand, in the classical version, for
the observable ¢ and the pure state ¢ = Asin(wt + ¢), the density distribution function is
d(q — Asin(wt + ¢)) and

we(A) = /«9()\ —q)0(q — Asin(wt 4+ ¢))dg = O(A — Asin(wt + ¢)),
R
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as expected. Since |g| < A we see that the classical observable takes values only between
—A and A. The quantum particle, however, can be found with a non-zero probability
in any point, although the probability goes to zero if the particle goes far away from the
equilibrium position 0.

The mathematical expectation of the observable () is equal to

THQP,y) = / Qln)|n)dg = / gn)|n)dg = / TH, (2)2 (2)e=" dz = 0. (7.10)

R R

Here we used that the function H,,(x)? is even. Thus we expect that, as in the classical
case, the electron oscillates around the origin.

Let us compare the values of the observable H which expresses the total energy. The
spectral function of the Schrédinger operator H is

Therefore,
0 if A< hw(2n+1)/2,
wir(A) = Tr(Pg(A\)Py,) = { 1 if A > hw(2n +1)/2.

(Hlwp,,,) =Tr(HPyy) = (H[n), |n)) = hw(2n + 1)/2. (7.11)

This shows that H takes the value hw(2n 4 1)/2 at the pure state P},,, with probability 1
and the mean value of H at |n) is its eigenvalue hw(2n+-1)/2. So P, is a pure stationary
state with total energy hw(2n+1)/2. The energy comes in quanta. In the classical picture,
the total energy at the pure state ¢ = Asin(wt + ¢) is equal to

1 mw? 5 1

E:— ;2 :—A2 2_
M+ 5 = g A

There are pure states with arbitrary value of energy.
Using (7.8) and the formula

H,(z) =V2nH,_i(z), (7.12)

we obtain

/ (wH, (2)2) e~ dz =

1
2

/xQHn(m)Qe_mzdx =

=
=
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1 1 2 2 1
=5 + §2n/€x H,_1(z)%dz +n(n — 1)/ex H,(x)Hp_o(z)dx =n+ 3 (7.13)
R R

Consider the classical observable h(p,q) = % (p? +w?¢?)(total energy) and the classical
density

p(p:q) = [n)*(0)d(p — wq). (7.14)
Then, using (7.13), we obtain

// (p,@)p(p,q dpdq—%/(/p +w2q2)5(p—wQ)dp>\n>2(Q)dq=

h 2 1
=’ /(q2|n>2(Q)dq = w? / —atHy(2)%e " do = hw(n+ 3).
w
R R
Comparing the result with (7.13), we find that the classical analog of the quantum

pure state |n) is the state defined by the density function (7.14). Obviously this state is
not pure. The mean value of the observable ¢ at this state is

) = [ [l so— aripta = [alfaa= [ atrn@yeaw =0
R R R

R

This agrees with (7.10).
To explain the relationship between the pure classical states Asin(wt + ¢) and the
mixed classical states p,(p,q) = [n)2(q)d(p — wq) we consider the function

27

Flg) = % / 5(Asin(wt + ¢) — 2)do.

0

It should be thought as a convex combination of the pure states A sin(wt+ ¢) with random
phases ¢. We compute

F(o) =+ [ 8(Asin(o  q)do =

A2 — ) 0(A* — ¢°)
/‘S Vo /‘s T R

One can now show that )

lim |[n)(q)|” = F(q).
Since we keep the total energy E = A%w? /2 of classical pure states A sin(wt + ¢) constant,
we should keep the value hiw(n + 1) of H at |n) constant. This is possible only if /i goes
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to 0. This explains why the stationary quantum pure states and the classical stationary
mixed states F'(¢)d(p — wq) correspond to each other when h goes to 0.

7.4 Since we know the eigenvectors of the Schrédinger operator, we know everything. In
Heisenberg’s picture any observable A evolves according to the law:

A(t) _ eth/hA(O)e—th/h _ Z e—itw(m—n)am>A(O)e—itw(m—n)P‘n>‘
m,n=0

Any pure state can be decomposed as a linear combination of the eigenevectors |n):

= cnlny, cn = [ Yn)dx
2]

It evolves by the formula (see (5.15)):

o0

Ygt)=e 7 ) = D e e, |n).

n=0
The mean value of the observable () in the pure state Py is equal to
Tr(QPy) = Z e ITr(QIn) = 0.
n=0

The mean value of the total energy is equal to

oo o 1
Tr(HPy) =Y e, Tr(Hn) =Y cphw(n + 5) = (Hb,v).
n=0 n=0

7.5 The Hamiltonian function of the harmonic oscillator is of course a very special case of
the following Hamiltonian function on T'(R™)*:

H :A(pb;pn) +B(q17"'7Qn>7

where A(p1,...,pn) is a positive definite quadratic form, and B is any quadratic form.
By simultaneously reducing the pair of quadratic forms (A, B) to diagonal form, we may
assume

v;
A, p) = 53
(2

1 n
B(q17"'aqn) - §Z€zmzwz2qZ27
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where 1/my,...,1/m,, are the eigenvalues of A, and &; € {—1,0,1}. Thus the problem is
divided into three parts. After reindexing the coordinates we may assume that

Efz':l,’l.:l,...,Nl, 8i:—1,’i:N1—|—1,...,N1—|—N2, Ei:O,i:Nl—FNQ—l—L...,N.

Assume that NV = Nj. This can be treated as before. The normalized eigenfunctions of H

are
N
|n1, Ce ,TLN> = H |TL1>1,
i=1

where
m;Ww; 1 m;w i 2
n) = (), (g | T
The eigenvalue of |nq,...,ny) is equal to

thz n; + _hzwz n; +

So we see that the eigensubspaces of the operator H are no longer one-dimensional.
Now let us assume that N = Ns. In this case we are describing a system of a free
particle in potential zero field. The Schrodinger operator H becomes a Laplace operator:

1 — h? >
H=-Y %+ =_°= .
2 4 Zmqu

z:l

After scaling the coordinates we may assume that

If N = Ny, the eigenfunctions of the operator H with eigenvalue E are solutions of the

differential equation
d2
—+F 0.
(L v By =

The solutions are

Y = CreV —Br 4 Ohe VBT

It is clear that these solutions do not belong to L?(IR). Thus we have to look for solutions
in the space of distributions in R. Clearly, when E < 0, the solutions do not belong to
this space either. Thus, we have to assume that £ > 0. Write E = k2. Then the space of
eigenfunctions of H with eigenvalue E is two-dimensional and is spanned by the functions
eikx7 efik:t.

The orthonormal basis of generalized eigenfunctions of H is continuous and consists

of functions )
1kx
T) = e keR.
vile) = =
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(see Lecture 6, Example 9). However, this generalized state does not have any physical

interpretation as a state of a one-particle system. In fact, since f ehre= ke dy — f dx has
R R
no meaning even in the theory of distributions, we cannot normalize the wave function

e’*?  Because of this we cannot define Tr(QPy,) which, if it would be defined, must be

equal to

1 ikx  —ikx 1

— [ ze'™e dr = — | xdx = oco.

2w 27

R R
Similarly we see that 11 () is not defined.
One can reinterpret the wave function ¢, (z) as a beam of particles. The failure of

normalization means simply that the beam contains infinitely many particles.

For any pure state 1(x) we can write (see Example 9 of Lecture 6):
; 1 N ,
W(z) = R/ Sk = R/ ol = L R/ -

It evolves according to the law

W(ait) = [ dlk)er =" dk.
/

Now, if we take (z) from L?(R) we will be able to normalize v(x,t) and obtain an
evolution of a pure state of a single particle. There are some special wave functions (wave
packets) which minimizes the product of the dispersions A, (Q)A,(P).

Finally, if N = N3, we can find the eigenfunctions of H by reducing to the case
N = N;. To do this we replace the unknown x by ¢zx. The computations show that the
eigenfunctions look like P, (z)e®*/2 and do not belong to the space of distributions D(R).

Exercises.

1. Consider the quantum picture of a free one-dimensional particle with the Schrodinger
operator H = P?/2m confined in an interval [0, L]. Solve the Schrédinger equation with
boundary conditions ¥ (0) = ¥ (L) = 0.

2. Find the decomposition of the delta function 6(¢) in terms of orthonormal eigenfunctions
of the Schrodinger operator (P? + hw?Q?).

3. Consider the one-dimensional harmonic oscillator. Find the density distribution for the
values of the momentum observable P at a pure state |n).

4. Compute the dispersions of the observables P and @ (see Problem 1 from lecture 5) for
the harmonic oscillator. Find the pure states w for which A,QA,P = h (compare with
Problem 2 in Lecture 5).

5. Consider the quantum picture of a particle in a potential well, i.e., the quantization
of the mechanical system with the Hamiltonian h = p?/2m + U(q), where U(q) = 0 for
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q € (0,a) and U(q) = 1 otherwise. Solve the Schrédinger equation, and describe the
stationary pure states.

6. Prove the following equality for the generating function of Hermite polynomials:

=1 >
O(t,x) =) — o (2)t™ = e~

7. The Hamiltonian of a three-dimensional isotropic harmonic oscillator is

1 3 m2w? 3
H=_—" 2 2

Solve the Schrédinger equation Hi(x) = Ev(z) in rectangular and spherical coordinates.
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Lecture 8. CENTRAL POTENTIAL

8.1 The Hamiltonian function of the harmonic oscillator (7.1) is a special case of the
Hamiltonian functions of the form

_ 1 < 2 & 2
H = om ;pi +V(¢—Z1 qi)' (8~1)

After quantization we get the Hamiltonian operator

52
where
r = |[x]|
and )
"9
A = — )
L~ D2 (8.3)

is the Laplace operator.
An example of the function V(r) (called the radial potential) is the function ¢/r used
in the model of hydrogen atom, or the function

called the Yukawa potential.

The Hamiltonian of the form (8.1) describes the motion of a particle in a central
potential field. Also the same Hamiltonian can be used to describe the motion of two
particles with Hamiltonian

1 1
H=_—— 24— 24V — .
Pl 5 el + V([ — al )
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Here we consider the configuration space T'(R?*)*. Let us introduce new variables

miq1 + Mmaqs
mi + mo

q/1:0h—Q2; q/2:

mip1 + mapP2

P/1:p1—p27 p’2:

mi + mo
Then ) )
_Z—MlHPHPJFm“p/szJrV(Hq/ﬂ\)» (8.4)
where T
My =m1+ma, M= —12
mi1 + mo

The Hamiltonian (8.4) describes the motion of a free particle and a particle moving in
a central field. We can solve the corresponding Schrodinger equation by separation of
variables.

8.2 We shall assume from now on that n = 3. By quantizing the angular momentum
vector m = mq X p (see Lecture 3), we obtain the operators of angular momentums

L= (Li,Lo,L3) = (Q2P35 — Q3P»,Q3P1 — Q1P3,Q1 P, — Q2Fy). (8.5)

Let
L=1L%+1L5+L3.

In coordinates

0 0 0 0 0 0
Ly =ih(xg=— — x0— = — —I3— = — — T
1 = ih(xs3 B7s To (9363) Ly = ih(xq B2 x3 axl) L3 = ih(xo 90 T 8m2)’
3 3
— K2 DA — _
L=h [Z x;)A Z x5 3 2 -2 Z Likj— (%UZ 8% 223:1 8% (8.6)
=1 =1 1<i<j<3

The operators L;, L satisfy the following commutator relations
(L1, Ls] =iLs, [Lo,Ls|=1ily, [Ls,L1]=1iLls, [L;yL]=0, i=1,23. (8.7)

Note that the Lie algebra so(3) of skew-symmetric 3 x 3 matrices is generated by matrices
e; satisfying the commutation relations

le1,e2] =e3, [e2,e3] =e1, [es,e1] =e2

(see Example 5 from Lecture 3). If we assign iL; to e;, we obtain a linear representation
of the algebra so(3) in the Hilbert space L?(R3). It has a very simple interpretation. First
observe that any element of the orthogonal group SO(3) can be written in the form

9(¢) = exp(¢p1e1 + paea + P3e3)
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for some real numbers ¢1, @2, ¢3. For example,

0 O 0 1 0 0
exp(pre1) =exp [0 0 —¢1 | =10 cos¢py —sing;
0 ¢ 0 0 sin¢y cos¢q

If we introduce the linear operators

T(¢) ::€K¢1L1+¢2L2+¢3L3%

then g(¢) — T'(¢) will define a linear unitary representation of the orthogonal group
p:SO(3) = GL(L*(R?))
in the Hilbert space L?(R3).

Lemma. Let T = p(g). For any f € L*(R3) and x € R3,

Tf(x) = f(g~'x).

Proof. Obviously it is enough to verify the asssertion for elements g = exp(te;).
Without loss of generality, we may assume that i = 1. The function f(x,t) = e~ %L1 f(x)
satisfies the equation

01O 9) _ i1 p(x,t) = as

of(x,t) af(x,t)
ot ’

T2
8x2 8x3

One immediately checks that the function
Y(x,t) = f(g7'x) = f(x1,costay + sintzs, —sintry + costas)

satisfies this equation. Also, both f(x,t) and f(g~'x) satisfy the same initial condition
f(x,0) =1(x,0) = f(z). Now the assertion follows from the uniqueness of a solution of a
partial linear differential equation of order 1.

The previous lemma shows that the group SO(3) operates naturally in L?(R3) via its
action on the arguments. The angular moment operators L; are infinitesimal generators
of this action.

8.3 The Schrodinger differential equation for the Hamiltonian (8.2) is

HY(x) = [~ A+ V() = B (), (59

It is clear that the Hamiltonian is invariant with respect to the linear representation p of
SO(3) in L?(R3). More precisely, for any g € SO(3), we have

p(g)oHop(g)™! = H.
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This shows that each eigensubspace of the operator H is an invariant subspace for all
operators T' € p(SO(3)). Using the fact that the group SO(3) is compact one can show
that any linear unitary representation of SO(3) decomposes into a direct sum of finite-
dimensional irreducible representations. This is called the Peter-Weyl Theorem (see, for
example, [Sternberg]). Thus the space Vg of solutions of equation (8.8) decomposes into
the diret sum of irreducible representations. The eigenvalue E is called non-degenerate if
Vg is an irreducible representation. It is caled degenerate otherwise.

Let us find all irreducible representations of SO(3) in L?(R3). First, let us use the
canonical homomorphism of groups

7:SU(2) — SO(3).

Here the group SU(2) consists of complex matrices

z z

The homomorphism 7 is defined as follows. The group SU(2) acts by conjugation on the
space of skew-Hermitian matrices of the form

_ 1T To + 123
A(X)—_ (-—(xg-—i$3) —¢$1 >'

They form the Lie algebra of SU(2). We can identify such a matrix with the 3-vector
x = (x1,%2,73). The determinant of A(x) is equal to ||x||?>. Since the determinant of
UA(x)U~! is equal to the determinant of A(x), we can define the homomorphism 7 by
the property

T(U)-x=U-Ax)- U

It is easy to see that 7 is surjective and Ker(7) = {£I:}. If p: SO(3) — GL(V) is a linear
representation of SO(3), then po 1 :SU(2) — GL(V) is a linear representation of SU(2).
Conversely, if p’ : SU(2) — GL(V) is a linear representation of SU(2) satisfying

p(~I) = idy, (8.9)

then p’ = p o7, where p is defined by p(g) = p/(U) with 7(U) = g. So, it is enough to
classify irreducible representations of SU(2) in L?(R?) which satisfy (8.9).

Being a subgroup of SL(2,C), the group SU(2) acts naturally on the space V' (d) of
complex homogeneous polynomials P(z1, z2) of degree d. If d = 2k is even, then this rep-
resentation satisfies (8.9). The representation V(2k) can be made unitary if we introduce
the inner product by

1

(P,Q) = ﬁ/ P(Zlyzz)Q(Zl,22)€_|Z1|2_|z2|2d21d22-
(CQ

We shall deal with this inner product in the next Lecture. One verifies that the functions

k+s_k—s
21 Rg

(s + k) (k — )11/

es = s=—k,—k+1,....k—1,k
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form an orthonormal basis in V(2k). It is not difficult to check that the representation
V(2k) is irreducible.

Let us use spherical coordinates (7,6, ¢) in R3. For each fixed r, the function f(r, 0, ¢)
is a function on the unit sphere S? which belongs to the space L?(S?, ), where u =
sin §dfd¢. Now let us identify V(2k) with a subspace H* of L2(S?) in such a way that the
action of SU(2) on V(2k) corresponds to the action of SO(3) on H* under the homomor-
phism 7. Let P* be the space of complex-valued polynomials on R? which are homogeneous
of degree k. Since each such a function is completely determined by its values on S? we
can identify P* with a linear subspace of L?(S?). Its dimension is equal to (k+1)(k-+2)/2.
We set

HF = {P € P*: A(P) = 0}.

Elements of H* are called harmonic polynomials of degree k. Obviously the Laplace
operator A sends P* to P*~2. Looking at monomials, one can compute the matrix of
the map

APk — ph-2

and deduce that this map is surjective. Thus
dimH* = dimP* — dimP*"2 = 2k + 1. (8.10)

Obviously, H* is invariant with respect to the action of SO(3). We claim that H* is an
irreducible representation isomorphic to V' (2k). Since each polynomial from V' (2k) satisfies
F(—z1,—22) = F(z1, 22), we can write it uniquely as a polynomial of degree k in

2 _ .2 2 2
X1 =27 — 25, To=1i(z]+23), x3=—22129.

This defines a surjective linear map
a: PP — V(2k).

It is easy to see that it is compatible with the actions of SU(2) on P* and SO(3) on V(2k).
We claim that its restriction to Hy is an isomorphism. Notice that

P? = H? & CQ,
where Q = 2% + 23 + 2. We can prove by induction on & that

k/2] |
PP =HF o QP2 = 5 Q'HF . (8.11)
=0

Since a(Q) = 0, we obtain a(QP*~2) = 0. This shows that a(H*) = a(P¥) = V(2k).
Since dimH* = dimV (2k), we are done.

Using the spherical coordinates we can write any harmonic polynomial P € H* in the
form

P =r"Y(0,9),
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where Y € L2(S?). The functions Y (6,¢) on S? obtained in this way from harmonic
polynomials of degree k are called spherical harmonics of degree k. Let HF denote the
space of such functions.

The expression for the Laplacian A in polar coordinates is

2 2 1
_ 920 LA (8.12)

where

0 1 02

1
Age = ——sinf— + ——— 1
S = 50000 " 90t sim? 0 00 (8.13)
is the spherical Laplacian. We have
0 =AY (0,0) = (k(k+1) + Ag2)r"2Y (0, ¢).
This shows that Y (6, ¢) is an eigenvector of Ag2 with eigenvalue —k(k + 1).
In spherical coordinates the operators L; have the form
L; = i(sin qﬁ% + cotf cos gzﬁ(,%), Ly = i(cos qﬁ% — cot# sin qb%),
ng—i(%, L=13+L3+L13=Ag. (8.14)
These operators act on L?(S?) leaving each subspace H* invariant. Let
Ly =1Ly +ily= eid’(% + icotQ%), L =1L, —ily= ei¢(—% + icot@%).

Let Y3 (0, ¢) € H* be an eigenvector of Ly with eigenvalue k. Let us see how to find it.

We have

900 = kY (0, 0).

This gives _
Yir(0,¢) = €™ Fi.(0).

Now we use
L_oLy=1L3+i[ly,Lo)+L5=L3%—Ly+L5=L— L3~ Ls,
to get
(Lo Ly)Yar(0,0) = (L — L3 — L3)Yir(0,¢) = (k(k + 1) — k* — k)i (6, ¢) = 0.
So we can find Fy(0) by requiring that LYy, (60, ¢) = 0. This gives the equation

OFy(9)
00

— kcotOF (0) = 0.
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Solving this equation we get
Fi.(0) = Csin” 6.

Thus )
Yiu (6, ¢) := e*?sin® 0

Now we use that
[L_,Ls|=L_.

Thus, applying L_ to Y, we get
L_ Yy =L_L3Yyy — L3L_Yy, = kL_Yy — L3L_Yyy,

hence
L3(L_Yy) = (k—1)L_Yy.

This shows that
Yik—1:=L_Yip

is an eigenvector of L3 with eigenvalue £ — 1. Continuing applying L_, we find a basis
of H* formed by the functions Yim (0, ¢) which are eigenvectors of the operator Ls with
eigenvalue m = k,k—1,...,—k+1, —k. After appropriate normalization, we find explictly
the formulas

Yion (68, 6) = #em@;ﬂ(wse),
where
mey @+ DEAmM)! 1w dE (- 1)
Fir (@) _\/ 2(k —m)! 2’%!(1 ) dtk=m (8.15)

They are the so-called normalized associated Legendre polynomials (see [Whittaker],
Chapter 15). The spherical harmonics Yy, (6, ¢) from (8.12) with fixed k& form an or-
thonormal basis in the space H*.

We now claim that the direct sum @H* is dense in L?(S). We use that the set of
continuous functions on S? is dense in L?(5?) and that we can approximate any continuous
function on S? by a polynomial on R3. Now any polynomial can be written as a sum of its
homogeneous components. Finally, by (8.11), any homogeneous polynomial can be written
in the form f 4+ Qf1 + Q%f2 + ..., where f; € H*~2¢. This proves our claim.

As a corollary of our claim, we obtain that any function from L?(IR3) has an expansion
in spherical harmonics

oo 00 k
F= 3 S ot ()Y (6, 6), (8.16)
n=0k=0m=—k

where (fo(r), f1(r),...) is a basis in the space L?(Rxp).

8.4 Let us go back to the study of the motion of a particle in a central field. We are
looking for the space W (E) of solutions of the Schrodinger equation (8.8). It is invariant
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with respect to the natural representation of SO(3) in L?(R?). Assume that E is non-
degenerate, i.e., the space W (FE) is an irreducible representation of SO(3). Then we can
write each function from W (r) in the form

k

F&)=f(r0,0) =g(r) > cmYim(0,0), (8.17)

m=—k

where g(r) € L?(R>¢). Using the expression (8.12) for the Laplacian in spherical coordi-
nates, we get

0= [ 1 A V() Blg(r)Yion = [~ gy o (7 0) — A 4+ V(r) — Ef =
= Vim0, 6) [ () k(1) + V(1) ~ Elg(r).
If we set
(r) = g(r)r

we get the following equation for h(r):

R nPk(k+1)
2m Or2 2mir2

[

+ V(r)]h(r) = Eh(r). (8.18)

It is called the radial Schrodinger equation. It is the Schrodinger equation for a particle
2
moving in one-dimensional space R with central potential V (r)" = % + V(r). One

can prove that for each E the space Wi (E) of solutions of (8.18) is of dimension < 1. This
shows that E' is non-degenerate unless Wy (F) is not zero for different k. Notice that the
number E for which Wy (E) # {0} can be interpreted as the energy of the particle in the
pure state defined by the wave function

¢(7’a 97 ¢) = g(T)Ykm(ev ¢> = h(r)Ykm(97 ¢)/7’
The set of such numbers is the union of the spectra of the operators

R nPk(k+1)
2m Or? 2mir?

+V(r)

for all £ =0,1.... The number m is the eigenvalue of the moment operator Ls. It is the
quantum number describing the moment of the particle with respect to the z-axis. The
number k(k + 1) is the eigenvalue of the operator L. It describes the norm of the moment
vector of the particle. The solutions of (8.15) depend very much on the property of the
potential function V(7). In the next section we shall consider one special case.

8.5 Let us consider the case of the hydrogen atom. In this case

V(T‘) = m:meM/(me+M)7 (819)
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where e > 0 is the absolute value of the charge of the electron, Z is the atomic number, m.
is the mass of the electron and M is the mass of the nucleus. The atomic number is equal
to the number of positively charged protons in the nucleus. It determines the position of
the atom in the periodic table. Each proton is matched by a negatively charged electron
so that the total charge of the atom is zero. For example, the hydrogen has one electron
and one proton but the atom of helium has two protons and two electrons. The mass of
the nucleus M is equal to Am,,, where m,, is the mass of proton, and A is equal to Z+ N,
where N is the number of neutrons. Under the high-energy condition one may remove or
add one or more electrons, creating ions of atoms. For example, there is the helium ion
He™ with Z = 2 but with only one electron. There is also the lithium ion LiT™ with one
electron and Z = 3. So our potential (8.19) describes the structure of one-electron ions
with atomic number Z.

We shall be solving the problem in atomic units, i.e., we assume that h = 1,m =
1,e = 1. Then the radial Schrodinger equation has the form

k(k+1)—2Zr —2r°E

h(r)" — 2 h(r) = 0.
We make the substitution h(r) = e~ v(r), where a? = —2F, and transform the equation
to the form
r2u(r)" — 2ar®v(r) + [2Zr — k(k + 1)]v(r) = 0. (8.20)

It is a second order ordinary differential equation with regular singular point » = 0. Recall
that a linear ODE of order n

ap(z)v™ + ay (2)v™ ™V 4+ 4 an(z) =0 (8.21)
has a reqular singular point at x = ¢ if for each i = 0,...,n, a;(x) = (z — ¢)~'b;(z) where
bi(x) is analytic in a neighborhood of ¢. We refer for the theory of such equations to

[Whittaker], Chapter 10. In our case n equals 2 and the regular singular point is the
origin. We are looking for a formal solution of the form

u(r) =r(1+ ) ear™). (8.22)

After substituting this in (8.20), we get the equation

o + (b1(0) — 1) + by (0) = 0.
Here we assume that bp(0) = 1. In our case

b1(0) = 0,b2(0) = —k(k + 1).

Thus
a=k+1,—k.



100 Lecture 8

This shows that v(r) ~ Cr**! or v(r) ~ Cr=F when 7 is close to 0. In the second case, the
solution f(r, 0, ) = h(r)Yiem(0, ¢)/r of the original Schrédinger equation is not continuous
at 0. So, we should exclude this case. Thus,

a=k+1.

Now if we plug v(r) from (8.22) in (8.20), we get

> eili(i = 1)r' 4 2(k + 1)ir® — 2iar’ + (22 — 2ak — 2a)r"™'] = 0.
i=0
This easily gives
a(i+k+1)—Z
(14 1)(i + 2k + 2)
Applying the known criteria of convergence, we see that the series v(r) converges for all r.
When i is large enough, we have

Ci+1 =

2a
1+ 1

Cit1 ™~ Ci.

This means that for large i we have

2a)k
Ci ~ Cua
7!
ie.,
U(T) ~ Crk+l€—ar€2ar — C«T,k—klear‘

Since we want our function to be in L?(R), we must have C' = 0. This can be achieved
only if the coefficients ¢; are equal to zero starting from some number N. This can happen
only if

ali+k+1)=2

for some 7. Thus

B Z
i1+ k+1
for some i. In particular, —2F = a? > 0 and
Z2
E=FEy,:=————.
g 2(k + i+ 1)2

This determines the discrete spectrum of the Schrodinger operator. It consists of numbers
of the form
ZQ
E,=——. (8.24)

n2

The corresponding eigenfunctions are linear combinations of the functions

,lvbnkm(,r? 97 ¢) = 7ﬂke_Z’,ﬂ/nI/’nk‘(/’ﬂ)ifkrn(07 qb)’ 0< k< n, —k <m < k? (825)
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where L, (r) is the Laguerre polynomial of degree n — k — 1 whose coefficients are found
by formula (8.23). The coefficient ¢ is determined by the condition that ||¢nkm||L, = 1.
We see that the dimension of the space of solutions of (8.8) with given £ = E,, is

equal to
n—1

q(n) = Z(Qk +1) =n?

k=0

Each E,,n # 1 is a degenerate eigenvalue. An explanation of this can be found in Exercise
8. If we restore the units, we get

me =9.11 x 1072%g, m, = 1.67 x 10~ **g,

e=16x10"2C, h=4.14x10"1%V s,

me? 72
E,=———=-2721—¢€V. 8.25
2n2h? 22" (8.25)
In particular,
E; = —13.6eV.

The absolute value of this number is called the ionization potential. It is equal to the work
that is required to pull out the electron from the atom.

The formula (8.25) was discovered by N. Bohr in 1913. In quantum mechanics it was
obtained first by W. Pauli and, independently, by E. Schrodinger in 1926.

The number
E,—E, me* 1 1
h 2h

is equal to the frequency of spectral lines (the frequency of electromagnetic radiation
emitted by the hydrogen atom when the electron changes the possible energy levels). This
is known as Balmer’s formula, and was known a long time before the discovery of quantum
mechanics.

Recall that [nem(r, 0, ¢)| is interpreted as the density of the distribution function
for the coordinates of the electron. For example, if we consider the principal state of the
electron corresponding to £ = Fq, we get

ﬁ—m), n<m.

[9100(%)| = %e_r-

The integral of this function over the ball B(r) of radius r gives the probability to find the
electron in B(r). This shows that the density function for the distribution of the radius r
is equal to

p(r) = Am|yroo(x)[*r? = de ™72,

The maximum of this function is reached at » = 1. In the restored physical units this
translates to
r=h?/me? = .529 x 10~ Scm. (8.26)
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This gives the approximate size of the hydrogen atom.

What we have described so far are the “bound states” of the hydrogen atom and of
hydrogen type ions. They correspond to the discrete spectrum of the Schrodinger operator.
There is also the continuous spectrum corresponding to £ > 0. If we enlarge the Hilbert
space by admitting distributions, we obtain the solutions of (8.4) which behave like “plane
waves” at infinity. It represents a “scattering state” corresponding to the ionization of the
hydrogen atom.

Finally, let us say a few words about the case of atoms with NV > 1 electrons. In this
case the Hamiltonian operator is

h & N 7e2 e?
D BENED Dt DS i

r
i=1 i=1 1<i<j<N '?

where r; are the distances from the i-th electron to the nucleus. The problem of finding an
exact solution to the corresponding Schrodinger equation is too complicated. It is similar
to the corresponding n-body problem in celestial mechanics. A possible approach is to
replace the potential with the sum of potentials V' (r;) for each electron with
Ze?
V(ri) = ——— + W(ri).

r;

The Hilbert space here becomes the tensor product of N copies of L?(IR3).

Exercises.
1. Show that the the polynomials (z + iy)* are harmonic.

2. Compute the mathematical expectation for the moment operators L, at the states

77Z}nl€m'

3. Find the pure states for the helium atom.

4. Compute Vppm, for n =1, 2.

5. Find the probability distribution for the values of the impulse operators P; at the state
¥1,0,0-

6. Consider the vector operator
1 1
A:—Q—é(PxL—LxQ),
r

where Q = (Q1,Q2,Q3),P = (P, P>, P3). Show that each component of A commutes
with the Hamiltonian H = %P P — %

7. Show that the operators L; together with operators U; = ——

vV—2E,,
tator relations [L;, U] = iejrsUs, [U;, Uk] = iejisLs, where ejps is skew-symmetric with

values 0,1, —1 and eq23 = 1.

A; satisfy the commu-

8. Using the previous exercise show that the space of states of the hydrogen atom with
energy E, is an irreducible representation of the orthogonal group SO(4).
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Lecture 9. THE SCHRODINGER REPRESENTATION

9.1 Let V be a real finite-dimensional vector space with a skew-symmetric nondegenerate
bilinear form S : V x V' — R. For example, V = R" @& R" with the bilinear form

S((d,w'), (u,w")) =u'w" —u"w. (9.1)

We define the Heisenberg group V as the central extension of V by the circle C} = {z €
C : |z| = 1} defined by S. More precisely, it is the set V' x C} with the group law defined
by
(2, A) - (2, N) = (z + 2, 5@\, (9.2)
There is an obvious complexification f/(; which is the extension of Vg = V ® C with the
help of C*.
We shall describe its Schrodinger representation. Choose a complex structure on V'

J: V=V

(i.e., an R-linear operator with J? = —Iy/) such that
(i) S(Jzx,Jx') = S(z,2’) for all z, 2" € V;
(ii) S(Jzx,z") > 0 for all z, 2’ € V.
Since J2 = —Iy, the space Vo = V ® C = V + iV decomposes into the direct sum
Ve = A @ A of eigensubspaces with eigenvalues i and —i, respectively. Here the conjugate
is an automorphism of V¢ defined by v 4+ iw — v — tw. Of course,

A={v—iJv:veV}, A={v+iJv:veV} (9.3)
Let us extend S to V¢ by C-linearity, i.e.,
S+ iw,v" +iw') := S(v,v") — S(w,w’) +i(S(w,v") + S(v,w")).
Since

S +iJv, v +iJv") = S(v,v") = S(Jv, Jv') £i(S(v, Jv') + S(Jv,v"))
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= +i(S(Jv, J2') + S(Jv,v")) = +i(S(Jv, —v') + S(Jv,v"))

= +i(—=S(Jv,v") + S(Jv,v")) =0, (9.4)
we see that A and A are complex conjugate isotropic subspaces of S in V. Observe that

S(Jv,w) = S(J?v, Jw) = S(—v, Jw) = —S(v, Jw) = S(Jw,v), v,w e V.
This shows that (v, w) — S(Jv,w) is a symmetric bilinear form on V. Thus the function
H(v,w) = S(Jv,w) + iS(v,w) (9.5)

is a Hermitian form on (V,J). Indeed,

H(w,v) = S(Jw,v) +iS(w,v) = S(J?w, Jv) —iS(v,w) = S(Jv,w) — iS(v,w) = H(v,w),

H(iv,w) = H(Jv,w) = S(J?v,w) +iS(Jv,w) = —S(v,w) +iS(Jv,w) =

=i(S(Jv,w) +iS(v,w)) =iH (v, w).

By property (ii) of S, this form is positive definite.
Conversely, given a complex structure on V' and a positive definite Hermitian form H
on V', we write

H(v,w) = Re(H(v,w)) + iIm(H (v, w))
and immediately verify that the function
S(v,w) = Im(H (v,w))
is a skew-symmetric real bilinear form on V', and
S(iv,w) = Re(H (v,w))

is a positive definite symmetric real bilinear form on V. The function S(v,w) satisfies
properties (i) and (ii).

We know from (9.4) that A and A are isotropic subspaces with respect to S : V¢ — C.
For any a = v —iJv,b = w — iJw € A, we have

S(a,b) = S(v —iJv,w + iJw) = S(v,w) + S(Jv, Jw) —i(S(Jv,w) — S(v, Jw))
= 2S(v,w) —i(S(Jv,w) + S(Jw,v)) = 25(v,w) — 2iS(Jv,w) = —2iH (v, w).
We set for any a = v —iJv,b=w—iJw e A
{a,b) = 4H (v, w) = 2iS(a,b). (9.6)

9.2 The standard representation of V associated to .J is on the Hilbert space S(A) obtained
by completing the symmetric algebra S(A) with respect to the inner product on S(A)
defined by

(a1a2 s an\b1bz s bn) = Z <a17 50(1)> e <am ba(n)>' (9-7)
OEY,
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We identify A and A with subgroups of V by a — (a,1) and @ — (@,1). Consider the
space Hol(A) of holomorphic functions on A. The algebra S(A) can be identified with the
subalgebra of polynomial functions in Hol(A) by considering each a as the linear function
z — {a,z) on A. Let us make A act on Hol(A) by translations

and A by multiplication

Since
we should check that

We have

boa- f(z) =@ M f(z—b) = e” @Dl (2~ b),

aob- f(z)=el%? f(z—b) = e@poq - f(2),

and the assertion is verified. . B .
This defines a representation of the group V¢ on Hol (A). We get representation of V
on Hol(A) by restriction. Write v =a+a, a € A. Then

(0,1) = (a+a,1) = (a,1) - (@, 1) - (0, e~ 15(@D)), (9.8)

This gives '
v f(z) =e @A (G f(2)) = e 23 e(®2) £z — g). (9.9)

The space S(A) can be described by the following:

Lemma 1. Let W be the subspace of C* spanned by the characteristic functions x, of
{a},a € A, with the Hermitian inner product given by

(Xas Xp) = €',

where X, is the characteristic function of {a}. Then this Hermitian product is positive
definite, and the completion of W with respect to the corresponding norm is S(A).

Proof. To each £ € A we assign the element ¢ =14+ a+ % +... from g(A) Now we
define the map by x, — e®. Since

(%)) va

n=1

Tl|bn

n' n'
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we see that the map W — S (A) preserves the inner product. We know from (9.7) that the
inner product is positive definite. It remains to show that the functions e® span a dense
subspace of S (A). Let F be the closure of the space they span. Then, by differentiating

e!® at t = 0, we obtain that all a™ belong to F. By the theorem on symmetric functions,
every product aj - - - a, belongs to F. Thus F contains S (A) and thus must coincide with

S(A).
We shall consider e as a holomorphic function z — e{®? on A.

Let us see how the group V acts on the basis vectors e®. Its center C7 acts by
(0,)) - e = . (9.11)

We have B B B
l_)' e — l_) . e(a,z) — e(a,z—b) — e—(a,b>e(a,z> — 6—(a,b)€a,

beed —b.el@?) — o(b2)la2) —_ pa+b.
Let v=>b+b € V, then
(v,1) = (b+b,1) = (b,1) - (b,1) - (0, e S,
Hence
e — g—iSHD) . (b-e?) = e~ 3(b:b) o= (ab) jatb _ —35(bb)—(ab) ja+b (9.12)

In particular, using (9.10), we obtain

||’U . 6a||2 _ <€a|ea> _ ef(b,b>72<a,5)||€a+b||2 _ 67<b,5>72<a,5> <€a+b|ea+b> _

— e—(b,B)—Z(a,B>e(a+b,d+5) — e—(b,B)—Q(a,B}e(a,&)+2(a,5)+(b,5> (a ay __ HeaHZ.

This shows that the representation of VonS (A) is unitary. This representation is called
the Schrodinger representation of V.

Theorem 1. The Schrédinger representation of the Heisenberg group V is irreducible.

Proof. The group C* acts on S (A) by scalar multiplication on the arguments and, in
this way defines a grading;:

Sk ={f(2): f(A-2) =N f(2)}, k=0

The induced grading on S(A) is the usual grading of the symmetric algebra. Let W be an
invariant subspace in S(A). For any w € W we can write

Z wi (2 (2) € S(A). (9.13)
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Replacing w(z) with w(Az), we get

w(Az) = iwk()\z) = i Nowy,(2) € W.
k=0 k=0

By continuity, we may assume that this is true for all A € C. Differentiating in ¢, we get

dw(Az)
dA

(0) = lim S[w((A+)2) — w(rz)] = wi(z) € W

Continuing in this way, we obtain that all wy belong to W. Now let S(A) = W L W,
where W’ is the orthogonal complement of W. Then W’ is also invariant. Let 1 = w + w’,
where w € W, w’ € W’. Then writing w and w’ in the form (9.13), we obtain that either
1 e W,or1leW. On the other hand, formula (9.12) shows that all basis functions e®
can be obtained from 1 by operators from V. This implies W = S(A) or W’ = S(A). This
proves that W = {0} or W = S(A).

9.3 From now on we shall assume that V is of dimension 2n. The corresponding complex
space (V,J) is of course of dimension n. Pick some basis eq,...,e, of the complex vector
space (V,J) such that ey, Jeq,...,e,, Je, is a basis of the real vector space V. Since
e; +iJe; = i(Je; +iJJe;) we see that the vectors e; +iJe;,i = 1,...,n, form a basis of
the linear subspace A of V. Let us identify A with C" by means of this basis. Thus we
shall use z = (21, ..., 2,) to denote both a general point of this space as well as the set of
coordinate holomorphic functions on C". We can write

z=x+1iy = (T1,-.,Zn) + (Y1, -, Yn)

for some x,y € R"™. We denote by z-z’ the usual dot product in C™. It defines the standard
unitary inner product z - z’. Let

l2][* = [a1]* + . [2nl® = (@1 +90) + -+ (o +y) = X" + |y|I*

be the corresponding norm squared.

Let us define a unitary isomorphism between the space L?(R") and S(A). First let
us identify the space S(A) with the space of holomorphic functions on on A wich are
square-integrable with respect to some gaussian measure on A. More precisely, consider
the measure on C" defined by

f@)du= [ f)e ™12 dg = [ emm WP+ gxdy. (9.14)
=] /

R2n

Notice that the factor 7 is chosen in order that

27
/e””zwdz = </e”(x2+y2)dxdy) = (//erzrdmm) = (/etdt> = 1.
Ccr R 0 R R
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Thus our measure p is a probability measure (called the Gaussian measure on C").
Let

H, ={f(z) € Hol(C") : / ]f(z)|26_””z”2dz converges}.
(C’I‘L

Let

fl2)=) az = > a2t
i .

be the Taylor expansion of f(z). We have

/If(z)leM = lim / |f(2)]2dp =
(Cn

max{|z;|}<r

[ee)
= g a;aj lim / ziijdu: E aic_zj/zjdu
. . rﬁw s .
Li=1 max{|z;|}<r L Cn

Now, one can show that

/ziijd,u = (i)" /zizje_”zdzdi = (i)"/ziije_”zdzdi =0 if i#],
Cn Cn Cn
and

27

/zizid,u = H //(:ci + yi)i’“e_”(xi”i)d:cdy = H //r%ke—m%«drde =
R R 0 R

Cn k=1 k=1

n n
= H W/ti’“e_"tdt = H ik!/wi’“ = ilr I,
k=1 k=1
Here the absolute value denotes the sum i; +...+14, and i! = #;!---7,!. Therefore, we get
/ |f(2)|?dp = Z AR
Cn i
From this it follows easily that
[ H@d(@dn = 3 aibir i
Cr i

where b; are the Taylor coefficients of ¢(z). Thus, if we use the left-hand-side for the
definition of the inner product in H,,, we get an orthonormal basis formed by the functions

i

D=
-

¢i(z) = () z' (9.15)

il
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Lemma 2. H, is a Hilbert space and the ordered set of functions v; is an orthonormal
basis.

Proof. By using Taylor expansion we can write each 1(z) € H,, as an infinite series
W(z) =) adi (9.16)

It converges absolutely and uniformly on any bounded subset of C". Conversely, if 1 is
equal to such an infinite series which converges with respect to the norm in H,, then

Ci = (¢7¢1) and
18117 =D lepl* < o0

By the Cauchy-Schwarz inequality,
Z |cili| < (Z Ic;2) zemlI=l17/2,

This shows that the series (9.16) converges absolutely and uniformly on every bounded
subset of C". By a well-known theorem from complex analysis, the limit is an analytic
function on C". This proves the completeness of the basis ().

Let us look at our functions e® from S(A). Choose coordinates ¢ = (C1,...,(p) in A
such that, for any ¢ = ((y,...,(n) € A,z =(21,...,2n) € A,

(¢, 2) =7(Cr21+ ..+ Cuzn) = 7C - 2.

We have
w(l1z1+...Cnz ¢z - ﬂ-n(c'z)n N " n! i i
n=1 n=1 lil=n i

Comparing the norms, we get

li] : ,
(ewC-z,ewC.z)HH _ Z |¢1(C)‘2 _ Z ﬂ—l' K1|211 o Kn‘an _

1

S 3 3
— z:lT — ¢ = (G0 — <€€|6C>S(A)-

So our space S(A) is maped isometrically into H,. Since its image contains the basis
functions (9.16) and S(A) is complete, the isometry is bijective.

9.4 Let us find now an isomorphism between H,, and L?(R"). For any x € R",z € C", let

k(x,z) = 2% o mlIxIl* g2mixz 5 lall” (9.17)
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Lemma 3.

/k:(x, z)k(x,()dx = €<%,
Rn
Proof. We have

/k(x, 2)k(x, ()dx = 2% ¢ llal*+11<l) /e—2w||x|2€—2mx-<c—z>dx _

R7 R7

_ o5zl L /e—llyll2/26—i\/7ry~(<;—Z)dy _ 3P+ B/ — 0).
V(2mn
Rn

—

where F(t) is the Fourier transform of the function e~!¥I*/2. It is known that e—#%/2 =
e~t*/2. This easily implies that F(t) = e~ !Itl*/2, Plugging in t = \/7(z — (), we get the
assertion.

Lemma 4. Let

k(x,z) = Z hi(x) i (2)

be the Taylor expansion of k(x,z) (recall that ¢; are monomials in z). Then (h;i(x)); forms
a complete orthonormal system in L*(R"). In fact,

hi(ZEl, e ,%n) = hi1 (331) N hin(xn),

where hy(z;) = Hp(v2mx;) with Hy(x) being a Hermite function.

Proof. We will check this in the case n = 1. Since both k(x,z) and ¢; are products

of functions in one variable, the general case is easily reduced to our case. Since k(z, z) =

2 . 2
zﬁera: 6—27r(m—zz/2) , we get

hi(x) = /k(az,z)gbi(x)da: = Zi(w/i!)l/z/6”26_2”(””_”/2)21'16[:3.

R R

We omit the computation of this integral which lead to the desired answer.

Now we can define the linear map

® : L*(R™) — Hol(C"™), ¢(x)—>/k(x,z)w(x)dx. (9.18)
Rn

By Lemma 3 and the Cauchy-Schwarz inequality,

B()(@)] < ( [ K z>dx) G = =12y o)1

R~
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This implies that the integral is uniformly convergent with respect to the complex param-
eter z on every bounded subset of C™. Thus ®(1)) is a holomorphic function; so the map
is well-defined. Also, by Lemma 4, since ¢; is an orthonormal system in Hol(C™) and h; is
an orthonormal basis in L?(R"), we get

[ 1200 Pl - 5 0 D) = < o
C’I’L

This shows that the image of ® is contained in H,,, and at the same time, that ® is a
unitary linear map. Under the map @, the basis (hj(x)); of L?(R") is mapped to the basis
(¢3); of H,. Thus @ is an isomorphism of Hilbert spaces.

9.5 We know how the Heisenberg group V acts on H,,. Let us see how it acts on L?(R™)
via the isomorphism ® : L?(R"™) = H,,.

Recall that we have a decomposition Ve = A @ A of V¢ into the sum of conjugate
isotropic subspaces with respect to the bilinear form S. Consider the map V. — A,v —
v —iJv. Since Jv — iJ(Jv) = i(v — iJv), this map is an isomorphism of complex vector
spaces (V,J) — A. Similarly we see that the map v — v + ¢Jv is an isomorphism of
complex vector spaces (V,—J) — A. Keep the basis e1,...,e, of (V,J) as in 9.3 so that
Ve is identified with C". Then e; —iJe;,i = 1,...,nis a basis of A, e; +iJe;, i =1,...,n,
is a basis of A, and the pairing A x A — C from (9.6) has the form

<(C15 s 7Cn)7 (Zla s ,Zn)> = W(ZC’LZZ) - 7TC cZ.

Let us identify (V, J) with C™ by means of the basis (e;). And similarly let us do it for A
and A by means of the bases (e; —i.Je;) and (e; +1iJe;), respectively. Then V¢ is identified
with A ® A = C" @ C", and the inclusion (V,J) C V¢ is given by z — (z,Z).

The skew-symmetric bilinear form S : V¢ x Vg — C is now given by the formula

S((Z7 W)v (Z,a Wl)) =

%(z-w'—w-z').

Its restriction to V' is given by
S(z,2') = S((z,2), (z,7')) = %(zi'—iz') - %(%Im)(zi’) = mIm(z-2') = m(yx —xy’),
where z = x +iy,z = x' —iy’. Let
Vie={z €V :Im(z) =0} = {z =x € R"},
Vim ={z € V : Re(z) =0} = {z =iy € iR"}.

Then the decomposition V' = V... & V;,, is a decomposition of V into the sum of two
maximal isotropic subspaces with respect to the bilinear form S.
As in (9.8), we have, for any v =x+iy € V,

v=x+iy=a+a=(x+iy,0)+ (0,x —iy) € A® A.
The Heisenberg group V acts on Hol(A) by the formulae
x+iy - f(z) = e 5@V . af(z) = e (D@2 f(z —q) =
— e 3VATULf(y _g) = e  EOXTYV)mOAW)Z £ (7 x4 jy). (9.19)



112 Lecture 9

Theorem 2. Under the isomorphism ® : H,, — LN2 (R™), the Schrédinger representation
of V on H, is isomorphic to the representation of V on L?(R™) defined by the formula

(W 4 du, t))(x) = te™W e 2T Wo)(x — u). (9.20)
Proof. In view of (9.9) and (9.10), we have

(W +iu) - P((x)) = /(W +iu)k(x, z)(x)dx

Rn
_ /6—%(u-u+w~w)67r(w+iu)~zk<z — w4+ iu)l/J(X)dX
Rn
— / e—%(u-u+w~w)ew(w+iu)-ze27rix(—w+iu)e%(2z(—w+iu)—|—(—w+iu)~(—w—|—iu))k(x’ Z)w(X)dX
RTL
— /6—71'u~u—|—271'iu~z—27'rz'xw—271'xu—7'riw-uk(X7 z)z/)(x)dx.
R~
O((w +iu) - (x)) = /k’(x, )™ W e T WY (x — u)dx
Rn

— /k(t + u, Z)em‘w-ue—Zwi(t-i—u).ww(t>dt — /k(X + u, z)e”w'“e_2”(x+“)'w¢(x)dx

R7 R7

— /e71'u~u27'rux+27riu-z71'z'w~u27'rixwk<x7 z)q/)(x)dx.
Rn
By comparing, we observe that
(w+ i) - D)) = D((w + i) - (x)).

This checks the assertion.

9.6 It follows from the proof that the formula (9.20) defines a representation of the group
V on L*(R™). Let us check this directly. We have
(W4 i, t)(W + ', t) - (x) = (W+ W) +i(u+u), tt'e™ W =W ix) =
_ ttleiﬂ(uvw/—wul)67ri(w—|—w')-(u—|—u')e—27rix-(w—|—w'),¢<x —u- u/) _

_ 7575/61'7r(w~u—i-w’~u'—|—2w'~u)e—27rix~(w—i—w’)w(x —u-— u/).

(w+iu,t) - (W + 0, ) (%)) = (W + i, t) - (™Y e 2 Wy(x —u')) =
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— tt/eiﬂuwef27rix'wei7ru/w/efQWi(xfu)ow'Q'b(x —u-— u/) _
_ ttleiw(w-u+w/-u/+2w/-u)6—27Tin(w—|—W')w(

x—u-—u).

So this matches. 3
Let us alter the definition of the Heisenberg group V by setting

(2,t) - (2, ) = (z + 2, />,

where z = x+1iy,z’ = x' +iy’. It is immediately checked that the map (z,t) — (z,te™Y)
is an isomorphism from our old group to the new one. Then the new group acts on L?(R™)
by the formula

(W +iu, t) - h(x) = te 2T WVeh(x — ), (9.21)

and on Hol(A) by the formula
(W + iu, t) . f(Z) — te—%(u-u+w-w)+7rz‘(w+iu)+i7rw~ujc(z o 11) —
_ e71'((z—%w)~w—%u~u)—|—z'7r(z—&—w)~uf(z _ u)‘ (9.22)

This agrees with the formulae from [Igusa], p. 35.

9.7 Let us go back to Lecture 6, where we defined the operators V(w) and U(u) on the
space L?(R™) by the formula:

U(u)ip(q) = ettty (q) = y(q — hu),
V(w)ip(q) = e/l @rtetm@nly(q) = ™ y(q).
Comparing this with the formula (9.19), we find that

U(wpila) = i d(a)., V(w)(a) = 5w ila)

where we use the Schrodinger representation of the (redefined) Heisenberg group V in
L?(R™). The commutator relation (6.18)

[U(w), V(w)] = e~

agrees with the commutation relation

. 1 . 1 mi(u-—s=w —tu-w
[lhuu _%W] = [(Zhll, 1)7 (_%Wu 1)] = (07 62 ( a )) = (07 e )

In Lecture 7 we defined the Heisenberg algebra H. Its subalgebra N generated by the
operators a and a* coincides with the Lie subalgebra of self-adjoint (unbounded) operators
in L?(R) generated by the operators P = ihdiq and () = ¢q. If we exponentiate these

operators we find the linear operators e*’@, P, It follows from the above that they
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form a group isomorphic to the Heinseberg group V, where dimV = 2. The Schrodinger
representation of this group in L?(R) is the exponentiation of the representation of N
described in Lecture 7. Adding the exponent e of the Schrédinger operator H = waa* —
57“ leads to an extension

15V =G> R —1.

Here the group G is isomorphic to the group of matrices

1 =z Y z
0 w 0 Y
0 0 wt —=z
0 O 0 1

1 x y z
0 wl, 0 y!
0 0 wll, —-xt|°
0 0 0 1

where x,y € R", z,w € R. More generally, we can introduce the full Heisenberg group as
the extension

1 -V —=G—Sp2n,R) =1,

where Sp(2n,R) is the symplectic group of 2n x 2n matrices X satisfying

On _In t __ On _In
(7 )= (T o)

The group G is isomorphic to the group of matrices

1 x vy z

0 A B y!

0 ¢C D —xt|°
0 0 O 1

where (é’ g) is an n x n-block presentation of a matrix X € Sp(2n,R).
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Exercises.

1. Let V be a real vector space of dimension 2n equipped with a skew-symmetric bilinear
form S. Show that any decomposition Vo = A @ A into a sum of conjugate isotropic
subspaces with the property that (a,b) — 2iS(a,b) is a positive definite Hermitian form
on A defines a complex structure J on V such that S(Jv, Jw) = S(v,w), S(Jv,w) > 0.

2. Extend the Schrodinger representation of Von S (A) to a projective representation of
the full Heisenberg group in P(S(A)) preserving (up to a scalar factor) the inner product
in S(A). This is called the metaplectic representation of order n. What will be the

corresponding representation in P(L?(R™))?
3. Consider the natural representation of SO(2) in Ly(R?) via action on the arguments.
Desribe the representation of SO(2) in H, obtained via the isomorphism ® : Hy & Lo(R?).

4. Consider the natural representation of SU(2) in Hy via action on the arguments.
Describe the representation of SU(2) in Ly (R?) obtained via the isomorphism & : Hy &
Lo(R?).
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Lecture 10. ABELIAN VARIETIES AND THETA FUNCTIONS

10.1 Let us keep the notation from Lecture 9. Let A be a lattice of rank 2n in V. This
means that A is a subgroup of V' spanned by 2n linearly independent vectors. It follows
that A is a free abelian subgroup of V' and thus it is isomorphic to Z2". The orbit space
V/A is a compact torus. It is diffeomorphic to the product of 2n circles (R/Z)?". If we
view V' as a complex vector space (V,J), then T has a canonical complex structure such
that the quotient map

T V-o>V/A=T

is a holomorphic map. To define this structure we choose an open cover {U, };c; of V such
that U; NU; +~ = 0 for any v € A. Then the restriction of 7 to U; is an isomorphism and
the complex structure on 7(U;) is induced by that of U;.

The skew-symmetric bilinear form S on V defines a complex line bundle L on T" which
can be used to embed T into a projective space so that T" becomes an algebraic variety.
A compact complex torus which is embeddable into a projective space is called an abelian
variety.

Let us describe the construction of L. Start with any holomorphic line bundle L over
T. Tts pre-image n*(L) under the map 7 is a holomorphic line bundle over the complex
vector space V. It is known that all holomorphic vector bundles on V' are (holomorphically)
trivial. Let us choose an isomorphism ¢ : 7*(L) = L xp V — V x C. Then the group A
acts naturally on 7*(L) via its action on V. Under the isomorphism ¢ it acts on V x C by
a formula

v-(0,t) =(v+7y,ay()t), yeAveV,teC. (10.1)

Here o, (v) is a non-zero constant depending on v and v. Since the action is by holomorphic
automorphisms, «.(v) depends holomorphically on v and can be viewed as a map

a: A= 0OWV), v—=ay(v),

where O(V') denotes the ring of holomorphic functions on V' and O(V)* is its group of
invertible elements. It follows from the definition of action that

iy (V) = ay (v + 7 )y (V). (10.2)
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Denote by Z'(A, O(V)*) the set of functions « as above satisfying (10.2). These func-
tions are called theta factors associated to A. Obviously Z1(A,O(V)*) is a commutative
group with respect to pointwise multiplication. For any g(v) € O(V)* the function

ay(v) = g(v+7)/9(v) (10.3)

belongs to Z'(A,O(V)*). 1t is called the trivial theta factor. The set of such func-
tions forms a subgroup B'(A,O(V)*) of Z1(A,O(V)*). The quotient group is denoted
by H*(A,O(V)*). The reader familiar with the notion of group cohomology will recog-
nize the latter group as the first cohomology group of the group A with coefficients in the
abelian group O(V*) on which A acts by translation in the argument.

The theta factor a € ZY(A,O(V)*) defined by the line bundle L depends on the
choice of the trivialization ¢. A different choice leads to replacing ¢ with g o ¢, where
g:V xC — V x C is an automorphism of the trivial bundle defined by the formula
(v,t) = (v, g(v)t) for some function g € O(V)*. This changes a to a,(v)g(v +7)/g(v).
Thus the coset of v in H*(A, O(V)*) does not depend on the trivialization ¢. This defines
a map from the set Pic(T’) of isomorphism classes of holomorphic line bundles on T to the
group HY(A,O(V)*). In fact, this map is a homomorphism of groups, where the operation
of an abelian group on Pic(T) is defined by tensor multiplication and taking the dual
bundle.

Theorem 1. The homomorphism
Pic(T) — H' (A, O(V)*)

is an isomorphism of abelian groups.

Proof. Tt is enough to construct the inverse map H(A, O(V)*) — Pic(T). We shall
define it, and leave to the reader to verify that it is the inverse.

Given a representative a of a class from the right-hand side, we consider the action
of A on V x C given by formula (10.2). We set L to be the orbit space V' x C/A. It comes
with a canonical projection p : L — T defined by sending the orbit of (v,t) to the orbit of
v. Its fibres are isomorphic to C. Choose a cover {U;};c; of V' as in the beginning of the
lecture and let {W;};c; be its image cover of T'. Since the projection 7 is a local analytic
isomorphism, it is an open map (so that the image of an open set is open). Because T is
compact, we may find a finite subcover of the cover {W;};c;. Thus we may assume that
I is finite, and 7= (W) = HyeA(Ui + 7). Let m; : U; — W; be the analytic isomorphism
induced by the projection 7. We may assume that =, '(W; N W;) = 7Tj_1(W,- NW;) + 7vij
for some v;; € A, provided that W; N W, # ). Since each U; x C intersects every orbit of
Ain V x A at a unique point (v,t), we can identify p~(W;) with W; x C. Also

W; x C D p; H(Wi N W;) = p; H(Wi nW;) € W x C,

where the isomorphism is given explicitly by (v,t) — (v,ay,;(v)t). This shows that L is

a holomorphic line bundle with transition functions gw, w, () = a.,, (7; L(x)). We also
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leave to the reader to verify that replacing a by another representative of the same class
in H! changes the line bundle L to an isomorphic line bundle.

10.2 So, in order to construct a line bundle L we have to construct a theta factor. Recall
from (9.11) that V acts on S(A) by the formula

v- et = e—(b,b)/2—(a,b>ea—&—b7

where v = b+ b. Let us identify V with A by means of the isomorphism v — b = v — iJv.
From (9.6) we have

(v —iJv,w+iJw) = 4H (v, w) = 45(Jv,v) + 4iS(v, w).

Thus B B
e—(b,b)/Q—(CL,b) — 6_2H(77’7)_4H(U77) X
Set
a, (v) = e 2H(v,)—4H (v,y)
We have

/ / / / ’ ’ ’
iy (v) = e 2HO+Y ) —4H (vy+7") — o —2H(v)—2H(y' ") —4ReH (v,7")—4H (v,y)—4H (v,y")

— pdiImH (v, )=2H (v,y)—4H (v+",7)=2H(v' v )—4H (v,y") _ e’4umH(%7/)a7(v + )y (v).

We see that condition (10.2) is satisfied if, for any v,7" € A,
ImH(v,7') = S(v.7') € gZ-
Let us redefine a by replacing it with
o (v) = e~ ™H (v,y)—2mH (v,7y) (10.4)

Of course this is equivalent to multiplying our bilinear form S by —7. Then the previous
condition is replaced with
S(AxA)CZ. (10.5)

Assuming that this is true we have a line bundle L,. As we shall see in a moment it is
not yet the final definition of the line bundle associated to S. We have to adjust the theta
factor (10.4) a little more. To see why we should do this, let us compute the first Chern
class of the obtained line bundle L.

Since V' is obviously simply connected and 7 : V' — T is a local isomorphism, we can
idenify V with the universal cover of 7" and the group A with the fundamental group of T'.
Since it is abelian, we can also identify it with the first homology group H;(T,Z). Now,

we have
k

Hy(T,Z) = \(H\(T, Z)
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because T is topologically the product of circles. In particular,

H*(T,Z) = Hom(H,(T, Z),Z) = /\(H\(T,Z))* = (/\ A)*. (10.6)

This allows one to consider S : A x A — Z as an element of H?(T,Z). The latter group is
where the first Chern class takes its value.

Recall that we have a canonical isomorphism between Pic(T) and H'(T, O%) by com-
puting the latter groups as the Cech cohomology group and assigning to a line bundle L
the set of the transition functions with respect to an open cover. The exponential sequence
of sheaves of abelian groups

271
0—Z—0r = 0hL—1 (10.7)
defines the coboundary homomorphism
HYT,0%) — H*(T,Z).

The image of L € Pic(T) is the first Chern class ¢ (L) of L. In our situation, the cobound-
ary homomorphism coincides with the coboundary homomorphism for the exact sequence
of group cohomology

HY(A,OV)) = H' (A, O(V)) -% H2(A,Z) = HX(T,Z)

arising from the exponential exact sequence

1—Z-—0V) 5 oW) — 1. (10.8)
Here the isomorphism H?2(A,Z) = H?(T,Z) is obtained by assigning to a Z-valued 2-
cocycle {c o} of A the alternating bilinear form é(vy,~’) = ¢,y — ¢4/.4. The condition for
a 2-cocycle is

Cyavs — Cyatyivs T Cripvatys = Cyipre = 0 (10.9)
It is not difficult to see that this implies that ¢ is an alternating bilinear form.

Let us compute the first Chern class of the line bundle L, defined by the theta factor
(10.4). We find B, (v) : A x V — C such that a.,(v) = €?™%+(¥). Then, using

L= aypqy (v)/ay (v + 7)oy (v),
we get
C%W’(v) = Bv-l—v’(v) - Bw’('U + ’7/> — ﬁy(v) c7Z.

By definition of the coboundary homomorphism §(L,) is given by the 2-cocycle {c, ~}.
Returning to our case when a.,(v) is given by (10.4), we get

5:(0) = 2 (H(3,7) + 2H(v,7),
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Cy iy (V) = Bygy (V) = By (0 +7") = By (v) = %(2R6H(%7’) —2H(v',7)) = —ImH(v,7").

Thus
cl(La) = {C’Y,’Y/ - C’y’,v’} = {—2]mH(7,'y')} = —28.

We would like to have ¢1(L) = S. For this we should change H to —H/2. However the
corresponding function a, (v)’ = e3H M+ 7H®.Y) j5 not a theta factor. It satisfies

057—‘,—'7’('0)/ _ eiﬂ—s(%’y/)Oé»y(U + 7/)/067/ (U)l.
We correct the definition by replacing o, (v)" with a,(v)"x(7), where the map
x:A—C]

has the property . /
X(v+7") = x(Mx ()T vy, 4 € A (10.10)

We call such a map a semi-character of A. An example of a semi-character is the map
x(7) = €™ () where S’ is any bilinear form on A with values in Z such that

S"(v,4") = S8'(v' ) = S (v, %) (10.11)
Now we can make the right definition of the theta factor associated to S. We set
oy (v) = eZ T (), (10.12)

Clearly v — x2(v) is a character of A (i.e., a homomorphism of abelian groups A —
C7). Obviously, any character defines a theta factor whose values are constant functions.
Its first Chern class is zero. Also note that two semi-characters differ by a character and
any character can be given by a formula

X(7) = 2™,

where [ : V — R is a real linear form on V.
We define the line bundle L(H, x) as the line bundle corresponding to the theta factor
(10.12). It is clear now that
ca(L(H,x))=S. (10.13)

10.3 Now let us interpret global sections of any line bundle constructed from a theta factor
a € ZHV,O(V)*). Recall that L is isomorphic to the line bundle obtained as the orbit
space V' x C/A where A acts by formula (10.2). Let s : V' — V x C be a section of the
trivial bundle. It has the form s(v) = (v, ¢(v)) for some holomorphic function ¢ on V. So
we can identify it with a holomorphic function on V. Assume that, for any v € A, and
any v € V,

B0 +7) = oy (0)(0). (10.14)
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This means that v - s(v) = s(v + ). Thus s descends to a holomorphic section of L =
V x C/A — V/A = T. Conversely, every holomorphic section of L can be lifted to a
holomorphic section of V' x C satisfying (10.14).

We denote by I'(T, L,,) the complex vector space of global sections of the line bundle
L., defined by a theta factor a. In view of the above,

D(T, La) = {6 € Hol(V) : ¢(z +7) = a, (v) $(v) . (10.15)

Applying this to our case L = L(H, x) we obtain

[(T, L(H, X)) = {¢ € Hol(V) : ¢(v +7) = e3 07Oy (3)¢(v), Yo € Vi € A},
(10.16)
Let 8,(v) = g(v +7)/g(v) be a trivial theta factor. Then the multiplication by g defines
an isomorphism

I(T, Ly) = T(T, Lag)-

We shall show that the vector space I'(T, L(H, x)) is finite-dimensional and compute
its dimension.
But first we need some lemmas.

Lemma 1. Let S : A X A — Z be a non-degenerate skew-symmetric bilinear form. Then
there exists a basis w1, . ..,ws, of A such that S(w;,w;) = d;i0itn, j,7 =1,...,n. Moreover,
we may assume that the integers d; are positive and di|ds|...|d,. Under this condition
they are determined uniquely.

Proof. This is well-known, nevertheless we give a proof. We use induction on the
rank of A. The assertion is obvious for n = 2. For any v € A the subset of integers
{S(v,7"),~ € A} is a cyclic subgroup of Z. Let d, be its positive generator. We set d;
to be the minimum of the d,’s and choose wy, wy, 41 such that S(wi,wy,y1) = di. Then for
any v € A, we have dy|S(v,w1), S(7,wn+1). This implies that

S(y,w S(vy,w
N (7, 1)wn+1 _ (v, n+1)w1 e N = (Zw + an_H)L‘
dq dq
Now we use the induction assumption on A’. There exists a basis wa, . .., W, Wni2,-- -, Wan

of A’ satisfying the properties from the statement of the lemma. Let ds,...,d, be the
corresponding integers. We must have d |dz, since otherwise S(kwi + wo, wpt1 + Wna2) =
kdy + do < dy for some integer k. This contradicts the choice of dy. Thus wy,...,ws, is
the desired basis of A.

Lemma 2. Let H be a positive definite Hermitian form on a complex vector space V and
let A be a lattice in V' such that S = Im(H) satisfies (10.5). Let w1,...,wa, be a basis
of A chosen as in Lemma 1 and let A be the diagonal matrix diag|dy,...,dy,]|. Then the
last n vectors w; are linearly independent over C and, if we use these vectors to identify V'
with C™, the remaining vectors wyi1, . ..,ws, form a matrix Q = X +1Y € M,(C) such
that
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(i) QAL is symmetric;
(ii) YA~ is positive definite.
Proof. Let us first check that the vectors w11, ...,ws, are linearly independent over
C. Suppose \iwp41 + ... + Apwa, = 0 for some \; = z; + iy;. Then

n n
= - E TiWn4i =1 E YiWnti = 0.

We have S(iv,v) = S(w,v) = 0 because the restriction of S to Rw,41 + ... + Rws, is
trivial. Since S(iv,v) = H(v,v), and H was assumed to be positive definite, this implies
v=w=0and hence x; =y, =\; =0,2=1,...,n.

Now let us use wy, 41, .. .,ws, to identify V with C™. Under this identification, w,+; =
ei, the i-th unit vector in C". Write

wj = (Wij, .., wnj) = (T1js-- > Tnj) + (Y15, - - Unj) = Re(w;) + ilm(w;), j=1,...,n.

We have

n

dibij = S(wiej) = Y (wxiS(ex ;) +yriS(iex, e;)) Zykz (tex,ej) = ) S(iej, ex)yni-
k=1 k=1

3

Let A = (S(iej, ex))jk=1,...n be the matrix defining H : C* x C™ — C. Then the previous
equality translates into the following matrix equality

A=A-Y. (10.17)

Since A is symmetric and positive definite, we deduce from this property (ii). To check
property (i) we use that

0= 5w, wj) = E xkzek+ymzek,§ Tpjer + Yrjier) =
k=1 k=1
n n
-/
= E Thj E YriS i€k, ex) —E wm(g yr S (iey, ex)) =
k'=1 k=1 k'=1

= Z xk/jdidk/i — szzdjékj = l'zjdz — l’jidj = dzd] (il?ljdj_l — .’Eﬂd;l)
k/=1 —

In matrix notation this gives
X - A7l=(X.ATH

This proves the lemma.
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Corollary. Let H : V x V — C be a Hermitian positive definite form on V such that
Im(H)(A x A) C Z. Let II be a 2n x n-matrix whose columns form a basis of A with
respect to some basis of V over R. Let A be the matrix of Im(H) with respect to this
basis. Then the following Riemann-Frobenius relations hold

(i) HA™I! = 0;

(i) —iIIA~'IIE > 0.

Proof. 1t is easy to see that the relations do not depend on the choice of a basis. Pick
a basis as in Lemma 2. Then, in block matrix notation,

M=(Q I,), A:(EZ (ﬁ) (10.18)

This gives

—177t On A QY 1o -1 _
[MA™II" = (Q In)(_A—l 0, I )= AT+ QAT =0,

o im 0, AT\ QM _
AT = —i (Q In)(—A_l 0, 1 )=

= —i(—ATIY + QAT = —i(2iYATYH) =2vyA > 0.

Lemma 3. Let A : I' = Cj be a character of A. Let w1, ...,ws, be a basis of A. Define
the vector c, by the condition:

AMw;) = e2mSwien) 4 =1 . on.
Note that this is possible because S is non-degenerate. Then
$(v) = P(v + ¢, )em TN

defines an isomorphism from I'(T, L(H, x)) to T'(T, L(H, x - \)).
Proof. Let

P(v) = p(v + cy)e™ ),
Then

(g(v_}_ry) — 67TH(’U+’YaC)\)¢(/U+C)\+7) — eﬂ-H(’U7C>\)¢<U+CA)x(ry)eﬂ(%H(’y”Y)—FH(v—'_c)\aV))eﬂ-H(ﬂ}/vck)
_ (z;(v)eﬂ(ﬂ(%cA)—H(CA77))€7T(%H(%W)‘FH(%W))X(,}/) _ é(v)e%is(%m)eﬁ(%H(%v)JrH(vﬁ))X(,y)

= B(v)emGHODTHEDy (3)A(7).
This shows that ¢ € (T, L(H,x - \). Obviously the map ¢ — ¢ is invertible.
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10.4 From now on we shall use the notation of Lemma 2. In this notation V is identified
with C™ so that we can use z = (z1,...,2,) instead of v to denote elements of V. Our
lattice A looks like

AN=Zw+...+ 2w, +Ze1 +...+ Ze,.

The matrix
Q=lwy,...,wn (10.19)

satisfies properties (i),(ii) from Lemma 2. Let
Vi=Re; +...+Re, ={z € C": Im(z) =0}.

We know that the restriction of S to Vj is trivial. Therefore the restriction of H to Vj is a
symmetric positive definite quadratic form. Let B : V x V — C be a quadratic form such
that its restriction to Vi x V; coincides with H (just take B to be defined by the matrix
(H(e;,e;)). Then

ol (v) = a (v)e TBEN=EBO) - Oéfy(’U)(6_%B(z+’y’z+7)/6_%B(Z’Z))

— X(/y)eﬂ-(H_B)(z”Y)"_% (H_B)(’VV’Y) X

Since « and o’ differ by a trivial theta factor, they define isomorphic line bundles.
Also, by Lemma 3, we may choose any semi-character x since the dimension of the
space of sections does not depend on its choice. Choose x in the form

Yol() = €5 (1), (10.20)

where S’ is defined in (10.11) and its restriction to V7 and to Vo = Rwy + ... + Rw, is
trivial, For example, one may take S’ to be defined in the basis wi,...,wy,€1,...,€, by

the matrix ((;" A g [n) . We have

Xo(v) =LyeWVuVs.
So we will be computing the dimension of I'(T', L:) where
Oéfﬁy(Z) = yo(7)e™H=B)z)+ 5 (H=B)(v.7) (10.21)

Using (10.17), we have, for any z € V and k=1,...,n

n

(H = B)(z,ex) = > z(H — B)(ej, ex) =0,

(H — B)(z,wi) =z (H(ei, ;) - wp —z- ((Bles, €5)) - wi = 2(H (e, €5)) (0r — wi) =
—2iz - (S(ie;, ej)) - Imwy, = —2iz - (AY )er, = —2iz - A - e, = —2idy 2. (10.22)
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Theorem 2.
dimcI(T,L(H, x)) = |A| =dy - - dy.

Proof. By (10.22), any ¢ € I'(T, L},) satisfies
QS(Z + ek) = Qe (Z)¢(Z) = ¢(Z)7 k=1,...,n,

Dz + wi) =, (2)B(z) = e 2GRt g(7) k=1, n. (10.23)
The first equation allows us to expand ¢(z) in Fourier series
¢(Z> _ Z CLre27ri1c'-z'
rczZn

By comparing the coefficients of the Fourier series, the second equality allows us to find
the recurrence relation for the coefficients

ap = e IOtk g L (10.24)

Let
M:{m:(ml,...,mn)EZ”:Ogmi<di}.

Using (10.24), we are able to express each a, in the form

ay = 627rz>\(r) Um,

where A\(r) is a function in r, r = m mod (dy, ..., d,), satisfying

1
)\(I‘ — dkek) = )\(I‘) — T Wi — §dkwkk

This means that the difference derivative of the function A is a linear function. So we
should try some quadratic function to solve for A\. We can take

Ar) = %r Q- (A7),

We have .
)\(I‘ - dkek) = §<—dk€k + I‘) - (—ek + AL I‘) =

1 1
:)\(r)—5(—dkek-QA_1-r—r-Q-ek—}—dkek-Q-ek) :)\(r)—r-wk—ﬁdkwkk.

This solves our recurrence. Clearly two solutions of the recurrence (10.24) differ by a
constant factor. So we get

$(z) = Y cmbm(2),

meM
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for some constants ¢y, and

Gm(z) _ Z egm'A(nH_A.r)egﬂiz.(m+A.r) _ Z eﬂi((m.A—l—|—r)~(AQ).(A—1m+r)+2z~(m—|—A-r)).

reczZn rcZzn
(10.25)

The series converges uniformly on any bounded subset. In fact, since ' = Q- A=l is
a positive definite symmetric matrix, we have

17m(Q- A7Y) - rl] > Cflr]]?,
where C' is the minimal eigenvalue of 2'. Thus

Z ‘627ri)\(m+A-r) ‘ |€27riz~(m—|—A-r)| _ Z |e—7rIm(Q’)||(m—|—A~r)||2 ’qm—&—A-r‘
rezZn rczZn

< 2{: e—Canr+AqﬂF|an+¢3r

— )

rezn

where q = €2™%%. The last series obviously converges on any bounded set.

Thus we have shown that dimI'(T, L,) < #M = |A|. One can show, using the unique-
ness of Fourier coefficients for a holomorphic function, that the functions 6, are linearly
independent. This proves the assertion.

10.5 Let us consider the special case when

This means that 1S|A x A is a unimodular bilinear form. We shall identify the set of
residues M with (Z/dZ)™. One can rewrite the functions 6, in the following way:

Qm(z) _ Z em(%m—l—r)‘(dQ)(§m+r)+27ridz‘(%m—l—r)' (1026)
rezZn»

Definition. Let (m,m’) € (Z/dZ)" © (Z/dZ)™ and let Q be a symmetric complex n x n-
matrix with positive definite imaginary part. The holomorphic function

O (2:9) = 3 i ((Fmt) 2 (meen) 20t o) (mt)

reczZn

is called the Riemann theta function of order d with theta characteristic (m,m’) with
respect to 2.

A similar defini