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Polar Cremona Transformations

Igor V. Dolgachev

To W. Fulton

Let F(x0, . . . , xn) be a complex homogeneous polynomial of degreed. Consider
the linear systemPF generated by the partials∂F

∂xi
;we call it thepolar linear system

associated toF. The problem is to describe thoseF for which the polar linear sys-
tem is homaloidal, that is, for which the map(t0, . . . , tn)→

(
∂F
∂x0
(t), . . . , ∂F

∂xn
(t)
)

is a birational map. We shall callF with such property ahomaloidal polynomial.
In this paper we review some known results about homaloidal polynomials and
also classify them in the cases whenF has no multiple factors and eithern = 3 or
n = 4 andF is the product of linear polynomials.

I am grateful to Pavel Etingof, David Kazhdan, and Alexander Polishchuk for
bringing to my attention the problem of classification of homaloidal polynomials
and for various conversations on this matter. Also I thank Hal Schenck for making
useful comments on my paper.

1. Examples

As was probably first noticed by Ein and Shepherd-Barron [ES], many examples of
homaloidal polynomials arise from the theory of prehomogeneous vector spaces.
Recall that a complex vector spaceV is calledprehomogeneouswith respect to a
linear rational representation of an algebraic groupG in V if there exists a noncon-
stant polynomialF such that the complement of its set of zeros is homogeneous
with respect toG. The polynomialF is necessarily homogeneous and an eigen-
vector forG with some characterχ : G→ GL(1), and it generates the algebra of
invariants for the groupG0 = Ker(χ). The reduced partFred of F (i.e., the prod-
uct of irreducible factors ofF ) is determined uniquely up to a scalar multiple. A
prehomogeneous space is calledregular if the determinant of the Hessian matrix
of F is not identically zero; this definition does not depend on the choice ofF. We
shall callF a relative invariantof V. Note that there is a complete classification
of regular irreducible prehomogeneous spaces with respect to a reductive groupG

(see [KS]).

Theorem 1 [EKP; ES]. LetV be a regular prehomogeneous vector space. Then
its relative invariant is a homaloidal polynomial.
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Here are some examples.

Examples 1–4. 1. Any nondegenerate quadratic formQ is obviously a homa-
loidal polynomial. The corresponding birational map is a projective automor-
phism. It is also a relative invariant for the groupO(Q) × GL(1) in its natural
linear representation.

2. A reduced cubic polynomialF onV is a relative invariant for a regular pre-
homogeneous space with respect to a reductive groupG if and only if the pair
(V,G) is one of the following (up to a linear transformation).

2.1: G = GL(1)3 ⊂ GL(3), V = C3, the action is natural,F = x0x1x2.

2.2: G = GL(3), V is the space of quadratic forms onC3, the action is via the
natural action onC3, F is the discriminant function.

2.3: G = GL(3)×GL(3), V = Mat3 is the space of complex 3× 3 matrices,
the action is by(g, g ′) ·A = gAg ′−1, the polynomialF is the determinant.

2.4: G = GL(6), V = 32(C6), the action is via the natural action onC6; the
polynomialF is the pffafian polynomial.

2.5: G = E6×GL(1), V = C27 = Mat3×Mat3×Mat3 is its irreducible rep-
resentation of minimal dimension; the polynomialF is the Cartan cubic
F(A,B,C) = |A| + |B| + |C| + Tr(ABC).

Examples 2.2–2.5 correspond to the four Severi varieties: nonsingular nonde-
generate subvarietiesS ofP r of dimension(2r−4)/3 whose secant variety Sec(S)
is not equal to the whole space. The zero locus of the cubicF in P(V ) defines
the secant variety. The singular locus of Sec(S) is the Severi variety. According
to a theorem from [ES], any homaloidal cubic polynomialF such that the sin-
gular locus ofF −1(0) in P(V ) is nonsingular coincides with one from Examples
2.2–2.5.

3. Let us identifyP n2−1 with the spaceP(Matn). The mapA → A−1 is obvi-
ously birational and it is given by the polar linear system of the polynomialA→
det(A). The polynomial is a relative invariant from Example 2.3 (extended to any
dimension).

4. The polynomialF = x0(x0x2 + x2
1) is homaloidal. It is a relative invariant

for a prehomogeneous space with respect to a nonreductive group.

2. Multiplicative Legendre Transform

This section is borrowed almost entirely from [EKP]. LetF ∈ Pold(V ) be a ho-
mogeneous polynomial of degreed on a complex vector spaceV of dimension
n + 1. We denote byF ′ or by dF the derivative mapV → V ∗, v → (dF )v. If
no confusion arises then we also use this notation for the associated rational map
P(V ) → P(V ∗). If we choose a basis inV and the corresponding dual basis in
V ∗, we will be able to identify both spaces withCn and also the mapF ′ with the
polar map defined in the introduction. SupposeF is homaloidal, that is,F ′ de-
fines a birational mapP(V )→ P(V ∗). Then, obviously,d lnF = F ′/F defines a
birational mapV → V ∗.
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Lemma 1. Let f be a homogeneous function of degreek on V (defined on an
open subset) such thatdet(Hess(ln f )) is not identically zero. Then there exists a
homogeneous functionf∗ onV ∗ of degreek such that, on some open subset ofV,

f∗(d ln f ) = 1/f. (2.1)

Proof. Recall first the definition of theLegendre transform.LetQ be a function
onV defined in an open neighborhood of a pointv0 such that det Hess(Q)(v0) 6=
0. Let dQ(v0) = p0 ∈ V ∗. Then the Legendre transformL(Q) of Q is the func-
tionL(Q) onV ∗ defined in an neighborhood ofp0 such that

L(Q)(p) = p(vp)−Q(vp), (2.2)

wherevp is the unique critical point of the functionv→ p(v)−Q(v) in a neigh-
borhood ofv0.

Since the critical pointvp satisfiesp = dQ(vp), we obtain from (2.2) an equal-
ity of functions on a neighborhood ofvp in V :

L(Q)(dQ(v)) = dQ(v)(v)−Q(v).
Now let us apply this toQ = ln f. We have

L(ln f )(d ln f(v)) = d ln f(v) · v − ln f(v).

Recall that a homogeneous functionH of degreek satisfies the Euler formula:

kH(v) = dH(v).
Applying this toH = ln f, we have

eL(ln f )−k(d ln f ) = 1/f.

It remains to definef∗ by

ln f∗ = L(ln f )− k. (2.3)

It is immediately checked thatf∗ is homogeneous of degreek.

The functionf∗ is called themultiplicative Legendre transformof f.

Theorem 2 [EKP]. LetF ∈ Pold(V ) be such thatdet Hess(lnF ) is not identi-
cally zero. ThenF is homaloidal if and only if its multiplicative Legendre trans-
formF∗ is a rational function. Moreover, in this case

d lnF∗ = (d lnF )−1. (2.4)

Proof. SupposeF is homaloidal. Thend lnF is a rational map of topological
degree 1 in its set of definition. It follows from the definition of the Legendre
transform thatL(lnF ) is one-valued on its set of definition. Differentiating (2.1),
we obtain(d lnF∗) B (d logF ) = id; this checks (2.4). Sinced lnF∗ = dF∗/F is
a homogeneous rational function, the functionF∗ must be rational. Conversely, if
F∗ is rational then differentiating (2.1) yields (2.4) locally. Sinced lnF∗ is rational,
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we have (2.4) globally and henced lnF is invertible. This implies thatdF defines
a birational map, and henceF is homaloidal.

Corollary 1. LetF(x0, . . . , xn) be a homaloidal polynomial of degreek > 2,
and assume thatF∗ is a reduced polynomial. Then

k|2(n+ 1).

Proof. By Theorem 2,

dF∗ B dF = F k−1(x)F∗(x)(x0, . . . , xn).

This implies that the image of the hypersurfaceF = 0 under the birational map
dF : P n → P n is contained in the set of base points of the polar linear system of
F∗. SinceF∗ is reduced, the latter is a closed subset of codimension> 1. Thus
F = 0 is contained in the set of critical points ofdF (considered as a map of vec-
tor spaces) and henceF divides the Hessian determinant. The assertion follows
from this.

A natural question (posed in [EKP]) is: For which homogenous polynomialsF

is the multiplicative Legendre transformF∗ a polynomial function? A polynomial
with this property will be called ahomaloidal EKP-polynomial.It is easy to see
thatF∗ has the same degree asF and that(F∗)∗ = F. It is conjectured that any
homaloidal EKP-polynomial is a relative invariant of a regular prehomogeneous
space (the converse is proved in [EKP]). In this caseF∗ = F, up to a scaling.

A remarkable result of [EKP] is the following theorem.

Theorem 3. A homaloidal EKP-polynomial of degree3 coincides with one from
Examples 2.

Example 5. Consider the polynomialF from Example 4. We have

d lnF =
(

2x0x2 + x2
1

x0(x0x2 + x2
1)
,

2x1

x0x2 + x2
1

,
x0

x0x2 + x2
1

)
.

Inverting this map, we obtain

(d lnF )−1=
(

8x2

4x0x2 + x2
1

,
4x1

4x0x2 + x2
1

,
4x0x2 − x2

1

(4x0x2 + x2
1)x2

)

= d ln
(4x0x2 + x2

1)
2

x2
.

Thus, the multiplicative Legendre transform ofF equals

F∗ = (4x0x2 + x2
1)

2

x2
;

it is a homogeneous rational but not polynomial function.
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3. Plane Polar Cremona Transformations

Here we shall classify all homaloidal polynomials in three variables with no mul-
tiple factors.

Since the set of common zeros of the polars∂iF is equal to the set of nonsmooth
points of the subschemeV(F ), this is equivalent to requiring that the polars∂iF
have no common factors, that is, the linear systemPF has no fixed part.

Let f : P2 99K P2 be a rational map defined by homogeneous polynomials
(P0, P1, P2) of degreed without common factors. LetJ (f ) ⊂ k [x0, x1, x2] be
the ideal generated by the polynomialsP0, P1, P2. The corresponding closed sub-
schemeBf = V(J (f )) of P2 is the base locus subscheme of the linear system
spanned byP0, P1, P2. The quotient sheafOP2/J (f ) is artinian, and we denote
by µ̃x(f ) the length of its stalk at a pointx ∈V(J (f )).
Lemma 2. ∑

x∈P2

µ̃x(f ) = d2 − dt ,

wheredt is the degree of the mapf.

Proof. See [Fu, 4.4].

Recall that, for any singular pointx of V(F ), we have the conductor invariantδx
defined as the length of the quotient moduleŌC,x/OC,x, whereŌC,x is the nor-
malization of the local ringOC,x. Let rx denote the number of local branches of
C atx. We have the following lemma.

Lemma 3. Let µ̃x = µ̃x(f ), wheref is the map defined by the polar linear sys-
temPF . For anyx ∈C,

µ̃x ≤ 2δx − rx + 1. (3.1)

Proof. Without loss of generality, we may assume thatx = (1,0,0). Let P̃(X, Y )
denote the dehomogenization of a homogeneous polynomialP with respect to the
variablex0. Applying the Euler formuladF = x0F0 + x1F1+ x2F2, we obtain
that

Jx =
(
F̃ ,
∂F̃

∂X
,
∂F̃

∂Y

)
x

.

By Jung–Milnor’s formula (see [Mi, Thm. 10.5), the lengthµx of the module(
k [X, Y ]/

(
∂F̃
∂X
, ∂F̃
∂Y

))
x

is equal to 2δx−rx+1. It only remains to observe thatµ̃x ≤
µx.

The next lemma is a well-known formula for the arithmetic genus of a plane curve.

Lemma 4.

pa(C) = (d − 1)(d − 2)

2
=

h∑
i=1

gi +
∑
x

δx − h+ 1, (3.2)
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whereh is the number of irreducible componentsCi of C andgi is the genus of
the normalization ofCi.

The next formula is an easy consequence of the incidence relation count for pairs
of lines, but just for fun we give a high-brow proof of this.

Corollary 2. Let {L1, . . . , Ls} be a set of lines inP2. Letai denote the number
of points that belong toi ≥ 2 distinct lines. Then

s(s − 1) =
s∑
i=2

aii(i − 1). (3.3)

Proof. We apply the previous formula to the curveL = L1+ · · · +Ls. Each sin-
gular point ofL lies on the intersection ofi ≥ 2 lines. It is isomorphic locally to
the singular point of the affine curve given by an equation

∏i
j=1(αjX+βjY ) = 0.

It is easy to computeδx, which is equal toi(i − 1)/2. Sincerx = i, by Lemma 4
we have

(s − 1)(s − 2)

2
=

s∑
i=2

aii(i −1)

2
− s +1.

This is equivalent to the claimed formula.

Theorem 4. LetF be a homaloidal polynomial in three variables without mul-
tiple factors. Then, after a linear change of variables, it coincides with one from
Examples 1, 2.1, or 4. In other words,C = V(F ) is one of the following curves:

(i) a nonsingular conic;
(ii) the union of three nonconcurrent lines;

(iii) the union of a conic and its tangent.

Proof. SincePF is homaloidal, we can apply Lemma 2 and obtain

d2 − 2d =
∑
x∈C

µ̃x. (3.4)

By Lemma 3,

d2 − 2d ≤
∑
x∈C
(2δx − rx +1).

By Lemma 4,

d2 − 3d = 2
h∑
i=1

gi + 2
∑
x∈C

δx − 2h. (3.5)

Let C1, . . . , Ch be irreducible components ofC and letdi = degCi. Using (3.4)
and (3.5), we obtain

h∑
i=1

(2− di) = −d + 2h ≥ 2
h∑
i=1

gi +
∑
x∈C

(rx −1) ≥ 0. (3.6)
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The rest of the proof consists of analyzing this inequality. First observe that
each point of intersection of two irreducible components gives a positive contri-
bution to the sum

∑k
i=1(ri − 1). This immediately implies thatdi = 1 for some

i unlessC is an irreducible conic. In the latter case it is obviously nonsingular
(otherwise, the polar linear system is a pencil); this is case (i) of the theorem. So
we may assume thatC1, . . . , Cs are lines. It follows from (3.6) that

0 ≥
h∑

i=s+1

(2− di) ≥ 2
h∑
i=1

gi +
∑
x∈C

(rx −1)− s. (3.7)

If s = 1, then each point of intersection ofC1 with other component ofC contrib-
utes at least 1 to the sum

∑k
i=1(ri − 1). HenceC = C1+ C2, whereL intersects

C2 at one point andd2 = 2. This is case (iii) of the theorem.
Assume thats ≥ 2. Let x1, . . . , xN be the intersection points of the lines

C1, . . . , Cs, and letaj be the number of points among them that belong toj ≥
2 lines. Then

∑s
j=2 aj = N, and

∑
x∈C

(rx −1)− s ≥
N∑
i=1

(ri −1)− s ≥
s∑

j=2

jaj −N − s =
s∑

j=2

(j −1)aj − s. (3.8)

By (3.3),

s =
s∑

j=2

j

s −1
aj(j −1).

Assume that not all lines pass through one point, that is,as = 0. Thenj ≤ s − 1
for all j with aj 6= 0. In this case

s ≤
s∑

j=2

aj(j −1), (3.9)

and the equality holds if and only ifaj = 0 for all j 6= s −1. If pi is a point lying
ons−1 lines, then the remaining line must intersect other lines at points different
frompi; this gives thata2 6= 0. So, if the equality holds, we haves = 3 anda2 =
N = 3. If h 6= s, thenCh is of degree> 1. Its points of intersection with three
lines give positive contribution to the sum

∑
x 6=x1, ...,xN

(rx −1)− s. Thus (3.8) is
a strict inequality, contradicting (3.7);C is therefore the union of three noncon-
current lines, which is case (ii) of the theorem.

It remains to consider the case when all lines pass through one point. In this
case,s < h (see Lemma 7) and soCh is of degree> 1. Assumex1 ∈ Ch. Then
r1 ≥ s +1 and∑

x∈C
(rx −1)− s = (r1−1− s)+

∑
x 6=x1

(rx −1) ≥ 0. (3.10)

It follows from (3.7) thatCh is a nonsingular conic. Sinces ≥ 2, one of the lines
is not tangent toCh at x1 and hence intersectsCh at some pointx 6= x1. Thus



198 Igor V. Dolgachev

(3.10) is a strict inequality, which contradicts (3.7). Ifx1 /∈Ch, thenCh intersects
each line so that we have

∑
x 6=x1

(rx −1) ≥ s and∑
x∈C

(rx −1)− s = (r1−1− s)+
∑
x 6=x1

(rx −1) ≥ s −1> 0;

again we have a contradiction.

Let us note the following combinatorial fact, which follows from the proof of
Theorem 4 in the case whenC is the union of lines.

Corollary 3. LetC consist ofs lines l1, . . . , ls . For each lineli , let ki be the
number of singular points ofC on li and let t be the total number of singular
points. Assume thatt > 1. Then

s∑
i=1

(ki − 1) ≥ t,

with equality if and only ift = 3 ands = 3.

Proof. Let d be the degree of the map given by the polar linear system of the
polynomial definingC. We resolve the indeterminacy points by blowing up the
singular points ofC. Let Ep be the exceptional curve blow-up from the pointp,

leth be the class of a general line, and letmp be the multiplicity of a singular point
p. Then

d =
(
(s −1)h−

∑
p∈Sing(C)

(mp −1)Ep

)2

= (s −1)2 −
∑

p∈Sing(C)

(mp −1)2. (3.11)

Letai = #{p : mp = i}. Applying equality (3.3), we can rewrite (3.11) as follows:

d = s(s −1)− (s −1)−
s∑
i=2

ai(i −1)i +
s∑
i=2

ai(i −1)

= −(s −1)+
s∑
i=2

ai(i −1) = −s +1+
s∑
i=2

iai −
s∑
i=2

ai.

Now the standard incidence relation argument gives us
s∑
i=2

iai =
∑

p∈Sing(C)

mp =
s∑
i=1

ki.

This allows us to rewrite the expression ford in the form

d = 1+
s∑
i=1

(ki −1)− t.

Now d ≥ 1 unless all lines pass though one point; by Theorem 4,d = 1 if and
only if s = 3 andt = 3.
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Remark. As explained to me by Hal Schenck, for a real arrangement of lines
Corollary 3 follows easily from the Euler formula applied to the cellular subdivi-
sion ofRP2 defined by the arrangement. Interpret the left-hand side as the num-
berf1 of edges and the right-hand side as the numberf0 of vertices; then use that
f0 ≥ s andf2 ≥ f0 +1 if the arrangement is not a pencil (see [Gr, pp. 10, 12]).

The argument used in the proof of Theorem 4 does not, unfortunately, apply
to nonreduced polynomials. However, the following conjecture seems to be
reasonable.

Conjecture. LetF = Am1
1 · · ·Amss be the factorization ofF into prime factors.

LetG = A1 · · ·As. Then the polar linear systemPF is homaloidal if and only if
PG is homaloidal.

4. Arrangements of Hyperplanes inPPP3

Here we shall consider the special case whenF = ∏n
i=1Li is the product of lin-

ear polynomials in four variables without multiple factors. Its set of zeros is an
arrangement of hyperplanes inP3.

LetA = {H1, . . . , HN} be the set of planes{Li = 0}, let L be the set of lines
that are contained in more than one planeHi, and letP be the set of points that
are contained in more than two planesHi. For anyl ∈L, set

kl = #{i : l ⊂ Hi}, al = #{p ∈P : p ∈ l}.
For anyp ∈P, set

kp = #{i : p ∈Hi}.
We definedA to be the degree of the polar linear system defined byF.

Lemma 5.

dA = (N −1)3−
∑
p∈P

(kp −1)+
∑
l∈L
(kl −1)(al −1).

Proof. We can resolve the points of indeterminacy ofPF by first blowing up each
pointp ∈P followed by blowing up the proper transforms of each linel ∈L. Let

D =
∑
p∈P

(kp −1)Ep +
∑
l∈L
(kl −1)El,

where the notation is self-explanatory. We have (see [Fu]) that

dA = ((N −1)H −D)3,
whereH is the preimage of a general plane in the blow-up. Using the standard
formulas for the blow-up a smooth subvariety, we have

E3
l = −c1(Nl̄) = −

[(
4H − 2

∑
l∈L,p∈l

Ep

)
· l̄ − 2

]
= 2al − 2.
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Here l̄ denotes the proper transform of the linel under the blowing up the points
fromP, andNl̄ is the normal bundle of̄l. Next, we have

E2
l · Ep = −1, E3

p = 1.

Collecting this together yields

D3 =
∑
l∈L
(kl −1)3(2al − 2)+

∑
p∈P

(kp −1)3− 3
∑

l∈L,p∈l
(kl −1)2(kp −1),

H ·D2 =
∑
l∈L
(kl −1)2El ·H = −

∑
l∈L
(kl −1)2,

H 2 ·D = 0.

This gives

dA = (N −1)3− 3(N −1)
∑
l∈L
(kl −1)2 −

∑
l∈L
(kl −1)3(2al − 2)

−
∑
p∈P

(kp −1)3+ 3
∑

l∈L,p∈l
(kl −1)2(kp −1).

Observe now that∑
p∈ l
(kp −1) =

∑
p∈l

kp − al = (alkl +N − kl)− al = (al −1)kl +N − al.

This allows us to rewrite the expression fordA as

dA = (N −1)3− 3(N −1)
∑
l∈L
(kl −1)2 −

∑
l∈L
(kl −1)3(2al − 2)

−
∑
p∈P

(kp −1)3+ 3
∑
l∈L
(kl −1)3(al −1)+ 3(N −1)

∑
l∈L
(kl −1)2

= (N −1)3−
∑
p∈P

(kp −1)+
∑
l∈L
(kl −1)(al −1),

which proves the lemma.

Lemma 6. Let

ts = #{p ∈P : kp = s}, tq(1) = #{l ∈L : kl = q},
tsq =

∑
l∈L:kl=q

#{p ∈ l : kp = s}.

Then (
N

3

)
=
∑
s

(
s

3

)
ts −

∑
s,q

(
q

3

)
(tsq − tq(1)).

Proof. This is a 3-dimensional analog of Corollary 2 to Lemma 4. It easily fol-
lows from the incidence relation count for triples of distinct planes and points and
lines.
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Corollary 4.

dA = N −1−
∑
p∈P

(kp −1)+
∑
l∈L
(al −1)(kl −1).

Proof. Combine the previous two lemmas.

Lemma 7. LetA be an arrangement ofN hyperplanes inP3 defined by a poly-
nomialF. Then the following properties are equivalent:

(i) all planes pass through a point;
(ii) the partials ofF are linearly dependent;

(iii) dA = 0.

The proof is obvious.

Lemma 8. LetA be an arrangement ofN planes, and letA′ be a new arrange-
ment obtained by adding one more plane toA. Assume thatdA 6= 0. Then

dA′ > dA.

Proof. Let

P ′ = {p ∈P : p ∈H }, L′ = {l ∈L : l ⊂ H },
L′′ = {l ∈L : p /∈ l for anyp ∈P ′ },
N = {l ⊂ H ∩ (H1∪ · · · ∪HN)} \ L.

Note that each linel ∈N is a double line and that each linel ∈ L′′ contains one
new singular pointH ∩ l of multiplicity kl + 1. Applying the previous corollary,
we obtain

dA′ = N −
∑

p∈P\P ′
(kp −1)−

∑
p∈P ′

kp −
∑
l∈L′′

kl +
∑
l∈L′

kl(al −1)

+
∑
l∈L\L′

(kl −1)al +
∑
l∈N

(a ′l −1),

whereal′ denotes the numberal defined for the extended arrangement. Applying
the corollary again yields

dA′ − dA = 1+
( ∑
l∈L\(L′∪L′′

(kl −1)− #P ′
)

+
(∑
l∈N

(a ′l −1)− #L′′
)
+
∑
l∈L′

(al −1). (4.1)

For eachp ∈ P ′ there exists a linel ∈ L \ (L′ ∪ L′′) passing throughp. Since
kl > 1 for each line, we see that

∑
l∈L\(L′∪L′′ )(kl −1)− #P ′ ≥ 0. Now consider

the arrangement of lines in the planeH formed by the linesl ∈ N. Its multiple
points are the points of intersection ofH with lines inL′′. Applying Corollary 3
to Theorem 4, we see that

∑
l∈N (a

′
l −1)− #L′′ ≥ 0 unless there is only one line



202 Igor V. Dolgachev

in L′′ when this difference is equal to−1. But in this caseH must contain at least
one line fromL and hence there is an additional term

∑
l∈L′(al −1). If it is zero,

then each linel ∈ L′ contains only one singular point of the arrangement. This
implies that all planes except perhaps one containl, which means that all planes
pass through a point anddA = 0. Hence the term is positive, and we have proved
the inequalitydA′ > dA.

Theorem 5. LetA be an arrangement ofN planes inP3 with dA = 1. ThenA
is the union of four planes in general linear position.

Proof. According to Lemma 8, deleting any planeH from the arrangementA de-
fines an arrangementA′ with dA′ = 0. We may assume thatH does not pass
through the common point of the planes fromA′. In the notation of the proof of
Lemma 8, where the new arrangement is ourA and the old one isA \ {H }, we
have #L′′ = N −1. Now the term

(∑
l∈N (a

′
l −1)− #L′′) in (4.1) must be equal

to zero, since otherwisedA > 1. By Lemma 6,N − 1= 3; thus,N = 4. Since
dA 6= 0, the planes do not have a common point and hence the arrangement is as
in the assertion of the theorem.
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