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Polar Cremona Transformations

IGorR V. DOLGACHEV

To W. Fulton

Let F(xo, ..., x,) be a complex homogeneous polynomial of degie€onsider
the linear syster®r generated by the partlagg we call itthepolar linear system
associated t@&. The problemis to describe thogefor which the polar Imear sys-
tem is homaloidal, that is, for which the mém, ..., 1,) — (ax0 @, ..., Bx E @)
is a birational map. We shall call with such property &#omaloidal polynomlal.
In this paper we review some known results about homaloidal polynomials and
also classify them in the cases whEihas no multiple factors and either= 3 or
n = 4 andF is the product of linear polynomials.

| am grateful to Pavel Etingof, David Kazhdan, and Alexander Polishchuk for
bringing to my attention the problem of classification of homaloidal polynomials
and for various conversations on this matter. Also | thank Hal Schenck for making
useful comments on my paper.

1. Examples

As was probably first noticed by Ein and Shepherd-Barron [ES], many examples of
homaloidal polynomials arise from the theory of prehomogeneous vector spaces.
Recall that a complex vector spakes calledprehomogeneousith respect to a
linear rational representation of an algebraic gréup V if there exists a noncon-
stant polynomialF such that the complement of its set of zeros is homogeneous
with respect toG. The polynomialF is necessarily homogeneous and an eigen-
vector forG with some charactey : G — GL(1), and it generates the algebra of
invariants for the grougiop = Ker(x). The reduced patk;q Of F (i.e., the prod-

uct of irreducible factors of") is determined uniquely up to a scalar multiple. A
prehomogeneous space is caltedular if the determinant of the Hessian matrix

of F is not identically zero; this definition does not depend on the choiée @fe

shall call F arelative invariantof V. Note that there is a complete classification

of regular irreducible prehomogeneous spaces with respect to a reductiveiggroup
(see [KS]).

THEOREM 1 [EKP; ES]. LetV be aregular prehomogeneous vector space. Then
its relative invariant is a homaloidal polynomial.
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Here are some examples.

ExampLEs 1-4. 1. Any nondegenerate quadratic fo@ris obviously a homa-
loidal polynomial. The corresponding birational map is a projective automor-
phism. It is also a relative invariant for the grodg Q) x GL(2) in its natural
linear representation.

2. A reduced cubic polynomid onV is a relative invariant for a regular pre-
homogeneous space with respect to a reductive guipand only if the pair
(V, G) is one of the following (up to a linear transformation).

2.1: G = GL1)® c GL(3), V = C8, the action is naturalf’ = xgx1x5.

2.2: G = GL(3), V is the space of quadratic forms @1, the action is via the

natural action oi€3, F is the discriminant function.

2.3: G = GL(3) x GL(3), V = Mats is the space of complex:8 3 matrices,
the actionisby(g, g') - A = gAg'~%, the polynomialF is the determinant.

2.4: G = GL(6), V = A*(C®), the action is via the natural action @f; the
polynomial F is the pffafian polynomial.

2.5: G = Eg x GL(1), V = C? = Mats x Mats x Matz is its irreducible rep-
resentation of minimal dimension; the polynomialis the Cartan cubic
F(A,B,C) = |A|+ |B| + |C| + Tr(ABC).

Examples 2.2-2.5 correspond to the four Severi varieties: nonsingular nonde-

generate subvarietisof P" of dimension2r —4)/3 whose secant variety &0

is not equal to the whole space. The zero locus of the cHbic P(V) defines
the secant variety. The singular locus of &8cis the Severi variety. According
to a theorem from [ES], any homaloidal cubic polynomiakuch that the sin-
gular locus ofF ~1(0) in P(V) is nonsingular coincides with one from Examples
2.2-2.5.

3. Letus identifyIP’"z‘1 with the spacé?(Mat,). The mapA — A~lis obvi-
ously birational and it is given by the polar linear system of the polynoriat
det(A). The polynomial is a relative invariant from Example 2.3 (extended to any
dimension).

4. The polynomialF = xg(xgx2 + xf) is homaloidal. It is a relative invariant
for a prehomogeneous space with respect to a nonreductive group.

2. Multiplicative Legendre Transform

This section is borrowed almost entirely from [EKP]. Lte Pol, (V) be a ho-
mogeneous polynomial of degréeon a complex vector spadé of dimension

n + 1. We denote byF’ or by dF the derivative mayy — V* v — (dF),. If

no confusion arises then we also use this notation for the associated rational map
P(V) — P(V*). If we choose a basis iiW and the corresponding dual basis in

V* we will be able to identify both spaces witti" and also the map”’ with the

polar map defined in the introduction. Suppdsés homaloidal, that isF’ de-

fines a birational ma(V) — P(V*). Then, obviouslyd In F = F'/F defines a
birational mapV — V*.
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LemMa 1. Let f be a homogeneous function of degkeen V (defined on an
open subsetsuch thatdet(HesgIn f)) is not identically zero. Then there exists a
homogeneous functiofy on V* of degreek such that, on some open subsettof

feldIn f) =1/f. (2.1)

Proof. Recall first the definition of theegendre transformLet Q be a function
onV defined in an open neighborhood of a paigtsuch that det He$®)(vg) #
0. LetdQ(vg) = po € V*. Then the Legendre transforin( Q) of Q is the func-
tion L(Q) on V* defined in an neighborhood ¢ such that

L(Q)(p) = p(vy) — Q(vy), (2.2)

wherev, is the unique critical point of the function— p(v) — Q(v) in a neigh-
borhood ofvg.

Since the critical poinb,, satisfiesp = dQ(v,), we obtain from (2.2) an equal-
ity of functions on a neighborhood of, in V:

L(Q)(dQ(v)) =dQv)(v) — Q(v).
Now let us apply this t@ = In f. We have
L(n £)dIn f(v)) =dIn f(v) -v—In f(v).
Recall that a homogeneous functifinof degreek satisfies the Euler formula:
kH() = dH(®).
Applying thistoH = In f, we have
e D=kgIn £y = 1/f.

It remains to defing’, by

Inf, =L({n f)—k. (2.3)

It is immediately checked thaf, is homogeneous of degrée O
The functionf, is called themultiplicative Legendre transforof f.

THEOREM 2 [EKP]. Let F € Pol,;(V) be such thatlet Heséln F) is not identi-
cally zero. TherF is homaloidal if and only if its multiplicative Legendre trans-
form F, is a rational function. Moreover, in this case

dinF,={dnF)L (2.4)

Proof. SupposeF is homaloidal. Then/In F is a rational map of topological
degree 1 in its set of definition. It follows from the definition of the Legendre
transform that_ (In F) is one-valued on its set of definition. Differentiating (2.1),
we obtain(d In F,) o (d log F) = id; this checks (2.4). Sinc¢In F, = dF,/F is

a homogeneous rational function, the functidnmust be rational. Conversely, if
F, isrational then differentiating (2.1) yields (2.4) locally. Siada F is rational,
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we have (2.4) globally and henddn F is invertible. This implies thaiF' defines
a birational map, and hendeis homaloidal. O

CoroLLARY 1. Let F(xo, ..., x,) be a homaloidal polynomial of degrée> 2,
and assume thaf, is a reduced polynomial. Then

k|2(n +1).
Proof. By Theorem 2,
dF, odF = FF¥"Yx)F.(x)(x0, ..., Xn).

This implies that the image of the hypersurfa€e= 0 under the birational map
dF . P" — P" is contained in the set of base points of the polar linear system of
F,. SinceF, is reduced, the latter is a closed subset of codimensidn Thus

F = 0is contained in the set of critical points&f (considered as a map of vec-
tor spaces) and hende divides the Hessian determinant. The assertion follows
from this. O

A natural question (posed in [EKP]) is: For which homogenous polynontials
is the multiplicative Legendre transforf) a polynomial function? A polynomial
with this property will be called Aomaloidal EKP-polynomiallt is easy to see
that F, has the same degree Asand that(F,), = F. Itis conjectured that any
homaloidal EKP-polynomial is a relative invariant of a regular prehomogeneous
space (the converse is proved in [EKP]). In this cBse= F, up to a scaling.

A remarkable result of [EKP] is the following theorem.

THEOREM 3. A homaloidal EKP-polynomial of degr&eoincides with one from
Examples 2.

ExamMpLE 5. Consider the polynomid from Example 4. We have

2xox2 + x2 2x1 X0
dinF = ( L, 5, 5 -
xo(xox2 +x7) Xox2 +x7 Xox2 + X7

Inverting this map, we obtain

8x> 4xq 4xpxp — xf >
Axoxo + xf 4xoxo + xf (4xoxo + xf)xz

mmm1=<

N (dxoxo + xf)z.
X2

=dl

Thus, the multiplicative Legendre transformBfequals

_ (Axoxa +xD)?

X2

F,

it is a homogeneous rational but not polynomial function.
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3. Plane Polar Cremona Transformations

Here we shall classify all homaloidal polynomials in three variables with no mul-
tiple factors.

Since the set of common zeros of the polais is equal to the set of nonsmooth
points of the subschemé(F), this is equivalent to requiring that the polaxg”
have no common factors, that is, the linear systrhas no fixed part.

Let f: P? --» PP? be a rational map defined by homogeneous polynomials
(Po, Py, P,) of degreed without common factors. Le¥ (f) C k[xo, x1, x2] be
the ideal generated by the polynomi&s P, P,. The corresponding closed sub-
schemeB; = V(J(f)) of P2 is the base locus subscheme of the linear system
spanned byPy, P, P,. The quotient sheaDy2/ 7 (f) is artinian, and we denote
by i.(f) the length of its stalk at a pointe V(7 (f)).

LEMMA 2.
Y () =d*—d,
xeP2?

whered, is the degree of the mafy
Proof. See [Fu, 4.4]. O

Recall that, for any singular pointof V(F'), we have the conductor invariafi
defined as the length of the quotient mod(ﬁg,x/Oc,x, where@c,x is the nor-
malization of the local rin@)c¢ .. Letr, denote the number of local branches of
C atx. We have the following lemma.

LemMA 3. Letn, = i, (f), wheref is the map defined by the polar linear sys-

temPr. Foranyx € C,
My <28, —re+1 (3.1

Proof. Without loss of generality, we may assume that (1, 0, 0). Let P(X,Y)
denote the dehomogenization of a homogeneous polynamiath respect to the
variablexq. Applying the Euler formulalF = xoFy + x1F1 + x2F», we obtain

that L
7 (5 F OF
UCexTay )

By Jung—Milnor’s formula (see [Mi, Thm. 10.5), the lengihy of the module

(k[X, Y]/(g, %))x is equalto 3, —r, +1. It only remains to observe that, <

M- U
The next lemmais a well-known formula for the arithmetic genus of a plane curve.

LEMMA 4.

d—1Dd—-2) <
pa(C>=f=;gi+XstX—h+L (3.2)
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whereh is the number of irreducible componeris of C and g; is the genus of
the normalization of’;.

The next formula is an easy consequence of the incidence relation count for pairs
of lines, but just for fun we give a high-brow proof of this.

COROLLARY 2. Let{Lq,..., L,}be asetoflinesii??. Leta; denote the number
of points that belong té > 2 distinct lines. Then

s(s =1 =Y ai(i — D). (3.3)
i=2

Proof. We apply the previous formula to the curlie= L, + - - - + L. Each sin-
gular point ofL lies on the intersection af> 2 lines. It is isomorphic locally to
the singular point of the affine curve given by an equaﬁﬁﬁzl(ajx +p8;Y)=0.
It is easy to computé,, which is equal ta(i — 1)/2. Sincer, = i, by Lemma 4
we have

(s — 1)2(s -2 _ Z a,-i(iz— Dy
=2

This is equivalent to the claimed formula. O

THEOREM 4. Let F be a homaloidal polynomial in three variables without mul-
tiple factors. Then, after a linear change of variables, it coincides with one from
Examples 1, 2.1, or 4. In other words,= V(F) is one of the following curves

(i) anonsingular conig
(ii) the union of three nonconcurrent lines
(iii) the union of a conic and its tangent.

Proof. SincePr is homaloidal, we can apply Lemma 2 and obtain

d?—2d = fi,. (3.4)
xeC
By Lemma 3,
d*—2d <) (28, —re +1).
xeC
By Lemma 4,
h
d*—3d=2) g +2) 6, —2h (3.5)
i=1 xeC

Let Cy, ..., C, be irreducible components 6f and letd; = degC;. Using (3.4)
and (3.5), we obtain

h h
Y @-d)=-d+2n>2) g+ (n—1 0. (3.6)

i=1 i=1 xeC
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The rest of the proof consists of analyzing this inequality. First observe that
each point of intersection of two irreducible components gives a positive contri-
bution to the sun{jle(ri —1). This immediately implies thad; = 1 for some
i unlessC is an irreducible conic. In the latter case it is obviously nonsingular
(otherwise, the polar linear system is a pencil); this is case (i) of the theorem. So
we may assume that, ..., C; are lines. It follows from (3.6) that

h h
0> Y (2-d)=2) g+ (n—1D—s. (3.7)
i=s+1 i=1 xeC

If s =1, then each point of intersection 6f with other component of contrib-
utes at least 1 to the suEf.‘zl(ri —1). HenceC = C; + C,, whereL intersects
C, at one point and, = 2. This is case (iii) of the theorem.

Assume thats > 2. Let xq,...,xy be the intersection points of the lines
Cy, ..., Cs, and leta; be the number of points among them that belong t®
2 lines. Thery_’_, a; = N, and

N s s
Y =D=s5=> (i-D-s5s=) ja—N—-s=)Y (j—Daj—s. (3.8)
1 j=2

xeC i= i j=2
By (3.3),
J

_1
="

S =

aj-(j — 1)

Assume that not all lines pass through one point, that;is; 0. Thenj <s —1
for all j with a; # 0. In this case

s< Y a(j-D, (3.9)
j=2

and the equality holds if and onlydf = O for all j # s — 1. If p; is a point lying
ons — 1lines, then the remaining line must intersect other lines at points different
from p;; this gives thati, #£ 0. So, if the equality holds, we have= 3 anda, =
N = 3. If h # s, thenCy, is of degree> 1. Its points of intersection with three
lines give positive contributiontothe supd ., (. —1) —s. Thus (3.8) is
a strict inequality, contradicting (3.7§; is therefore the union of three noncon-
current lines, which is case (ii) of the theorem.

It remains to consider the case when all lines pass through one point. In this
cases < h (see Lemma 7) and 36, is of degree> 1. Assumex; € C;,. Then
ri>s+2land

Z(rx—l)—s=(r1—l—s)+Z(rx—l)20. (3.10)
xeC xX#x1

It follows from (3.7) thatC}, is a nonsingular conic. Sinee> 2, one of the lines
is not tangent taC;, at x; and hence intersects, at some pointt # x;. Thus
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(3.10) is a strict inequality, which contradicts (3.7)x{f¢ C;, thenC,, intersects
each line so that we haye ., (r» —1) > s and

D =D -s=01-1-9+ ) (n-Dzs-1>0

xeC XF#X1

again we have a contradiction. O

Let us note the following combinatorial fact, which follows from the proof of
Theorem 4 in the case whéhis the union of lines.

CoroLLARY 3. LetC consist ofs lines!y, ..., ;. For each linel;, let k; be the
number of singular points o€ on/; and lett be the total number of singular
points. Assume that> 1. Then

N

Y k=1 =1,

i=1

with equality if and only it = 3ands = 3.

Proof. Let d be the degree of the map given by the polar linear system of the
polynomial definingC. We resolve the indeterminacy points by blowing up the
singular points ofC. Let E, be the exceptional curve blow-up from the pojnt

leth be the class of a general line, andrgtbe the multiplicity of a singular point

p. Then

2
d= ((s -Dh— > (m, - 1)Ep> =(-D*— > (m,—1% (311

peSingC) peSingC)

Leta; = #{p : m, = i}. Applying equality (3.3), we can rewrite (3.11) as follows:

d:s(s—l)—(s—l)—Zai(i —1)i+2a,-(i—l)

i=2 i=2
s S s
=—(s—-1+ Zai(i —D=—-s+1+ Ziai — Zai.
i=2 i=2 i=2
Now the standard incidence relation argument gives us

s

Xs:iaiZ Z m,,:Zk,».
i=2

peSing(C) i=1

This allows us to rewrite the expression fbim the form

d=l+i:(ki—1)—t.

i=1
Now d > 1 unless all lines pass though one point; by Theorea 4 1 if and
onlyif s =3 andr = 3. O
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REMARK. As explained to me by Hal Schenck, for a real arrangement of lines
Corollary 3 follows easily from the Euler formula applied to the cellular subdivi-
sion of RP? defined by the arrangement. Interpret the left-hand side as the num-
ber f1 of edges and the right-hand side as the numbaf vertices; then use that
fo=sandf, > fo+ 1if the arrangement is not a pencil (see [Gr, pp. 10, 12]).

The argument used in the proof of Theorem 4 does not, unfortunately, apply
to nonreduced polynomials. However, the following conjecture seems to be
reasonable.

CONJECTURE. LetF = A7l .. A”s be the factorization o into prime factors.
LetG = A;--- A;. Then the polar linear systefir is homaloidal if and only if
Ps is homaloidal.

4. Arrangements of Hyperplanes inP?3

Here we shall consider the special case whes []/_; L; is the product of lin-
ear polynomials in four variables without multiple factors. Its set of zeros is an
arrangement of hyperplanesli.

Let A = {Hy, ..., Hy} be the set of planed.; = 0}, let £ be the set of lines
that are contained in more than one pldifi¢ and letP be the set of points that
are contained in more than two plan€s For anyl € L, set

ki =#{i:l CH,)}, a=#peP:pell.

For anyp € P, set
k, =#{i: peH}.

We defined 4 to be the degree of the polar linear system defined by

LEMMA 5.

da=(N-D3= "k, =D+ (ki = D@ —D.

peP lel

Proof. We can resolve the points of indeterminacyyf by first blowing up each
point p € P followed by blowing up the proper transforms of each lirel. Let

D=3 (k, —DE,+ Y (ki —DE,
peP lel
where the notation is self-explanatory. We have (see [Fu]) that
da=((N-DH - D),

whereH is the preimage of a general plane in the blow-up. Using the standard
formulas for the blow-up a smooth subvariety, we have

El3=—c1(N,)=—[<4H 2 Y E ) I— ]=2a1—2.

leL, pel
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Herel denotes the proper transform of the linender the blowing up the points
from P, and N;j is the normal bundle df Next, we have

E} E,=-1 E =1
Collecting this together yields

D¥=% (k=120 =2+ ) (k, —=D*=3 > (ki — Dk, -1,

lel peP le L, pel
H-D?>= Z(kl —1%E,-H = —Z(k; - 12
lel lel
H?.D =0.
This gives
da=(N-D=3(N-1) (k =D*=) (k —D’Ra; -2
lel leL
=Y k=243 > (ki — Dk, — D).
peP leL,pel

Observe now that

Z(kp—l):ka—a,:(a,k,—}—N—k,)—al:(a,—l)kl—i—N—al.

pel pel

This allows us to rewrite the expression by as

da=(N-D*=3(N-1) (k =D* =) (k —D*QRa - 2)

lel lel
= y =D+3Y (k=D =D+ 3N =D Y (k —1?
peP lel lel
=(N=-D°=> (ky =D+ (ki = D@, — D,
peP lel
which proves the lemma. O

LEMMmA 6. Let
ty,=#peP . k,=s)}, t,)=#lel ki =q)},

ty= Y #pelik,=s).

leL kj=q

<Z> =2 @f o> @ (1 = 14D).

N

Then

Proof. This is a 3-dimensional analog of Corollary 2 to Lemma 4. It easily fol-
lows from the incidence relation count for triples of distinct planes and points and
lines. O
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COROLLARY 4.

di=N—-1— Z(k,, —1)+Z(a/ —D(k; — D).

peP lel

Proof. Combine the previous two lemmas. O

LemMA 7. Let A be an arrangement oV hyperplanes ifP® defined by a poly-
nomial F. Then the following properties are equivalent

(i) all planes pass through a point
(i) the partials of F are linearly dependent
(iii) dq =0.

The proof is obvious.

LemMma 8. Let A be an arrangement oV planes, and letd’ be a new arrange-
ment obtained by adding one more plane4oAssume thaf 4 £ 0. Then

dy >dy.
Proof. Let
P'={peP:peH)} L' ={lel:]lcC H)},
L'"={lel:p¢lforanypeP’},
N={{CHNHU---UHy}\L.

Note that each liné e A is a double line and that each lihe £” contains one
new singular poin#d N [ of multiplicity k; + 1. Applying the previous corollary,
we obtain

dy=N- > (k=D=> k= > ki+Y kil@-1

PEP\P’ peP’ leL” leLl’
+ Y (ki=Da+ ) (@ -1,
leL\L' leN

wherea; denotes the numbey defined for the extended arrangement. Applying
the corollary again yields

dA/—dA=1+( > (k;—l)—#P’)

le L\(L'UL"
+ <Z(a,’ ~1) —#c”> + ) @ —1). (4.1)
leN lel'

For eachp € P’ there exists a liné e £\ (L' U L") passing throughp. Since
k; > 1for eachline, we see that . -\ o, (ki —1) —#P’ > 0. Now consider
the arrangement of lines in the plaieformed by the lineg € N. Its multiple
points are the points of intersection Hf with lines in £L”. Applying Corollary 3
to Theorem 4, we see that,_ . (a; —1) —#L"” > 0 unless there is only one line
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in £L” when this difference is equal tel. But in this cased must contain at least
one line from£ and hence there is an additional tepri). . (a; — 1). If it is zero,
then each liné € £’ contains only one singular point of the arrangement. This
implies that all planes except perhaps one contawhich means that all planes
pass through a point arty; = 0. Hence the term is positive, and we have proved
the inequalityd 4+ > d 4. 0

THEOREM 5. Let A be an arrangement oN planes inP3 withd 4 = 1. ThenA
is the union of four planes in general linear position.

Proof. According to Lemma 8, deleting any plafefrom the arrangememnd de-

fines an arrangemem’ with d 4 = 0. We may assume thaf does not pass
through the common point of the planes frofh In the notation of the proof of
Lemma 8, where the new arrangement is guand the old one isA \ {H}, we

have #2” = N — 1. Now the term(>",. \-(a/ — 1) — #£") in (4.1) must be equal

to zero, since otherwis¢, > 1. By Lemma 6,N — 1 = 3; thus,N = 4. Since

d 4 # 0, the planes do not have a common point and hence the arrangement is as
in the assertion of the theorem. O
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