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THE EULER CHARACTERISTIC OF A FAMILY OF ALGEBRAIC VARIETIES

UDC 513.015.7

I. V. DOLGACEV

Abstract. In this paper we derive a formula for the Z-adic Euler characteristic of
a one-parameter family of algebraic varieties. We define an algebraic analog of the
local monodromy of isolated singularities of algebraic hypersurfaces, defined in the
complex case by Milnor. We discuss various conjectures connected with the definition
of the conductor of a family of algebraic varieties.

Bibliography: 26 items.

Introduction

We consider a family of algebraic varieties /: X —* Υ over a nonsingular complete

curve Υ, i.e. / is a proper flat morphism of algebraic varieties with connected fibers.

Assume that the ground field is the field of complex numbers C, and let F be a "typical"

fiber of the morphism /. In this case we have the "well-known" formula

X(X)=1(F)%(Y) + 2 * M —W. (*)

expressing the deviation from multiplicativity of the Euler characteristic (topological)

in terms of the analogous characteristic of degenerate fibers X of the morphism /. A

proof of this formula for the case when X is a smooth variety can be found in [l] (the

restriction on the dimension of X made in the statement of this theorem is inessential).

In this paper we shall prove a formula analogous to (*) and valid for an arbitrary

algebraically closed field k of characteristic p > 0. In this case it is natural to consi-

der the /-adic Euler characteristics EP(X), EP(Y) and EP(X ), and we shall prove

(see §1 for an explanation of the notation) the formula (/ is a prime number different

from p)

EP{X)=EP(X-)EP(Y) + %[EP(Xy)-EP(X-) + ay(f; /)], (**)

y€Y

where X— is the geometric fiber of the morphism / over the generic point η of the curve

Y, and α (/; Ζ) is a "higher ramification invariant" (equal to zero if p = 0 or if the
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304 I. V. DOLGACEV

fiber X is smooth). This formula is obtained by a simple application of a general

formula of Grothendieck for the Euler characteristic of a constructible etale sheaf on a

smooth algebraic curve (cf. [l5l·, [17], expose X)· In case X is a normal surface, and

also for arbitrary varieties with isolated singular points over a field of characteristic

zero, in §4 we obtain from formula (**) the independence of EP{X) of the prime number

Ι Φ- p. Our proof is "elementary" and does not use the fundamental theorems of /-adic

cohomology. With the help of these it is clear that one can obtain considerably stronger

results. Namely, for p = 0 from Artin's comparison theorem for arbitrary algebraic

schemes ([16], expose XVI) we get this result for arbitrary X. In case p > 0, as

P. Deligne explained to the author, this result can be derived for arbitrary proper ^-schemes

from the interpretation of EP(X) as the difference of the degree of the denominator and

the degree of the numerator of the ^-function of an algebraic variety over a finite field.

In §5 we discuss some conjectures connected with the definition of the conductor

of a family of algebraic varieties.

§1. Statement of the main theorem

For any proper scheme Ζ over an algebraically closed field k of characteristic

p > 0, we define the l-adic Euler characteristic of the scheme Ζ (I is a prime number

different from p) to be

where biZ; I) = dim 0 Hl(Z; Q;) is the dimension of the space of rational /-adic cohomol-

ogy of the scheme Ζ (see [17], expose VI). That this definition is legal follows from

the finiteness theorem ([l6], expose XIV) and the theorem on finite cohomological dimen-

sion (loc. cit., expose X). Moreover, as explained in the Introduction, EP(Z) does not

depend on /.

Everywhere in what follows Υ denotes a smooth connected curve over a field k,

and V its set of closed points. For any closed point y € Υ we denote by rf the spec-
h

trum of the field of fractions Κ of the henselization of the local ring Ογ . Let i :

rf •=-» Υ be the corresponding canonical morphism. For any constructible etale sheaf F

on V, annihilated by multiplication by /, the sheaf F - i* (F) on rf is identified

with a finite-dimensional G -F,-bimodule, where G is the Galois group of the separable
closure Κ of the field Κ .

y y

For any field Κ which is complete relative to a discrete valuation, with residue

field k, and for a finite-dimensional G^-F^-bimodule M, one defines "Serre's higher

ramification measure" δ(Κ, Μ) ([20]; see also[l3L [15]).

We recall its definition. Let L/K be a finite Galois extension such that the Galois

group G. acts trivially on M. Thus Μ can be considered as a G-module, where G =

Gal (L/K). Let G. = {g € G\u (gin) — π) > i + 1} (where π is the uniformizing parameter

of the field K) be the higher ramification groups, e{ = U{G) and e = # G the orders of

these groups. Then
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6{K, Μ) = Σ -^-UWF^M/M0).

An equivalent definition is

ό (Κ, Μ) = dimF, Homz,[G] (Ρ, Λί),

where Ρ is the Swan module associated to G.

Applying this definition to the G -module F , we set δ (F) = δ{Κ , F ).

By the definition of the constructibility of a sheaf F there exists an open set

U C Υ such that the sheaf F \U is locally constant. This means that there exists a

finite etale morphism φ: V —* U such that 0*(F) is the constant sheaf. This condition

is also equivalent to the fact that the function y i-+ # (F—) is constant on U (see [l6],

expose IX). For any closed point y € U we obviously have δ (F) = 0. But this is true

for any point y € Υ if char (k) = 0.

Now let /: X —» Υ be a proper flat morphism with geometrically connected generic

fiber X_ of dimension n. The sheaf μ, v = Ker(G v —• G v ) on X is annihilated by
ι] ' Ι , Λ 772,Λ 772 , Λ '

multiplication by I, and so the sheaves Rlf^i χ on Υ also are ([l6], expose X).

Moreover, by virtue of the finiteness theorem (loc. cit., expose XIV) these sheaves are

constructible on Y. Thus we can set

<4 (/; 0 = δ*(ΧΚμι,χ), ay (/; /) = Σ (- l/<4if\ 0-

Now we are in a position to state the following theorem.

Theorem 1.1. We have the formula

EP (X) = EP (X-) EP (Y) + Σ [EP (*y) ~ EP (X-) + ay (f; /)],

where X— = X ®k(v) ^ ^ Z 5 a geometr^c general fiber of the morphism f.

This theorem will be proved in ^3·

Corollary 1.2. Assume that the morphism f is smooth. Then the l-adic Euler

characteristic is multiplicative, i.e. EP(X) = EP{X-)EP(Y).

In fact in this case the sheaves Rlf^ L V , for k > 0, are locally constant (special

ization theorem [16], expose XVI). Thus the /-adic sheaves lim, £%μ k = ̂ % Z ^

are locally constant, i.e. the function y ι—>&.(X_; /) is constant. Hence £P(X ) =

EP(X-) for any point y € Y. Moreover, as we saw above, the invariant δ (#%M; χ) —

α ζ (/; Ζ) = 0. Now apply Theorem 1.1.

Corollary 1.3. Suppose char(&) = 0. Then

EP (X) = EP (X-) EP (Υ) + Σ (EP (Xy) - EP (X-)).
y6Y
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// k = C,

χ{Χ) - X (F) X (K) + 2 (* (*y) -

where F is an arbitrary fiber of f over an open set U C Υ. Here χ denotes the usual

topological Euler characteristic.

In fact, as we saw above, in case char(&) = 0 the invariant α (/;/) = 0. And if

k = C, by the comparison theorem ([l6], expose XVI) Η*(Χ, (Z/lk)x) =*//^(X, Z/lk),

whence

//'" (X, Zz) = lim//'" (X, (Z//*)x) ̂  lim//^i (X, Z//*)

c - //d (X, Z) (g) Zi 0 finite group

(the last by the universal coefficient theorem). Tensoring by Qj, we get

Hc (X, Qt) = Hl (X, Z,) <g> Q/ - //^ (Χ, Ζ) ® Q,,
ζ ζ

whence b.{X; 1) = β(Χ), and hence EP{X) = χ(Χ). The equalities EP(X ) = χ(Χ ) and

EP(V) = χ(Υ) are proved analogously. It remains to observe that EP(X-) = EP(X ) for

almost all y € Υ', namely for any point y € U f] Y, where U is an open set on which the

sheaves #%μ k are locally constant.

We also note the following facts about the invariants cc:(/; /).

Proposition 1.4. The invariants o.l{f; I) depend only on the generic fiber X of

the morphism f. More precisely, if f: X —* Υ and f': X' —* Υ are proper flat morphisms

and Χ η =* X^ over η, then aHf; I) = a £ ( / f ; /) for any y € Ϋ and 0 < i < 2 dim Χη.

Proof. Recall that

4 (/; ΐ) = δ, (^ μ ι > χ ) = 6(Ky, №.μι.χ)~).

Applying the base change theorem (see [16], expose XI), we shall obtain

^ £ c μι)
Υ

= Η1 (Χ (g) η (g) Spec ^«,, μ/) = Η{ (Χη

Analogously we have

from which it follows that

4 (f; 0 = θ (/<:*, (̂ ?.μΛχ)7) = δ {Ky, («7>ι.χ')3 = 4 (f; 0.
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which was required.

Proposition 1.5. Assume that the generic fiber of the morphism f is smooth. Then

for any point y € Υ

<4 if; I) = < " ' if; /), 0 < i < 2n = 2 dim Χη.

Proof. As we saw above in the proof of Proposition 1.4,

Applying Poincare duality for etale cohomology ([22]), we will find that

(Ri^l.xTy = Hom ((/^.μ/,χ) ~ μ,).

Set M1 = (R'/^μ^ χ) . Recalling the definition of the invariants δ(Κ , Μ1), we see that

it suffices to prove that

dimp^M^ =dimF/(Hom(Mf', μ,)σ'),

where G. is a higher ramification group. But this fact, which asserts that the dimen-

sions of invariant subspaces of representations and the conjugate representations are

the same, is well known.

Corollary 1.6. Under the assumptions of Proposition 1.5,

°Οϊ\ 0 = <(/; 0 = 0.

In fact, α (/; /) = 8 (^μι χ). But, since the base Υ is normal, and the fibers of

/ are connected, f Oy = Ov ([5], Chapter III, 4.3). Hence LG V = G v , which

obviously gives /+μ^ χ = Μ/ y The sheaf μι γ — (Z//) y (not canonically!) is constant

on Y, so α (/; Ζ) = δ (μ^ γ) = 0. Now use Proposition 1.5.

§2. The Euler-Grothendieck formula

Let F be a constructible etale sheaf on a curve Y, annihilated by multiplication

by Z. In this case the cohomology groups H*{Y, F) are also annihilated by multiplica-

tion by Z, and consequently possess a natural structure of a linear space over the finite

field Fj. In particular, the Euler-Poincare characteristic of the sheaf F is defined:

Analogously, the local cohomology groups //Z(F) are F,-spaces, where y is a closed

point of Y. Set

A theorem of Grothendieck ([15], [17], expose X) asserts that

X (Y, F) = dimF/ (F-) · EP (Y) - S ε, (F), (2.1)
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where

*y(F)=dy(F) + dimF/ (F-) - ly (F).

We give a more explicit formula for the term χ (F), and together with this also one

for the entire local invariant e (F).
y

Lemma 2.1. * y ( F ) = dimF (F ).

Proof. Let Υ = Spec (0*, ), and let i : Υ —* Υ be the canonical morphism. Then

we have an "exact sequence of the pair" for local cohomology ([l6], expose XVII)

H1 fa F)c*Hl{F), Hy(F) = 0, i

Here we used the fact that Hl{Y , i*(F)) = 0, i> 0, since the scheme Υ is strictly

henselian, and the fact that Ηι{η , F ) = 0, since cd(K ) < 1. Thus we have
' y y y -

%y(F)=aimFl(Fy)-dimFi(FG

yy) + oimF{(H1(Gyt Fy)),

where G = Gal(K /K ). By the local duality theorem ([17], expose I; cf. also [12] and

[23]), H1(G , F ) — Hom(F y, μ^. However, obviously (cf. the proof of Proposition 1.5)

dimF/ (Fp) = dimF/ (Horn (?% μζ)),

from which we also get the assertion of the lemma.

Corollary 2.2.

Χ (Υ, F) = dimF/ (F-) EP (Y) - 2 idiniF, {F-)'~ dimF/ (Fy) + 6y (F)]. (2.2)

§3. Proof of Theorem 1.1

In this section the notation is the same as in the preceding sections. Consider the

Leray spectral sequence for the morphism f: X —» Ύ and the sheaf μ[ χ:

Ε™ =HP(Y, /?7,μι.χ) •* Η™ (Χ, μι.χ).

By the invariance of the Euler characteristic in the spectral sequence we have

* ( * . μΐ.χ) = Σ ( - i W » «'/•μι.χ)· (3.υ

As was already explained in §1, the sheaves Rlf^l χ are constructible and are annihi-

lated by multiplication by I. Thus we can apply the Euler-Grothendieck formula (2.2)

to it. As a result we obtain
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( 3 ' 2 )- 2 [dimF| (Λ'Λμ/,χ^ - dimF/ (tf/.μ,.

By the base change theorem ([l6], expose XII),

Substituting (3·2) in (3·1) and using the notation of §§1 and 2 we will obtain

, μ,,Χ) = χ (x- μ/ΐΧ-) ΕΡ (Υ) + 2 ιχ (**. μ/) - χ ( χη' μθ + α* (/; 0ΐ· (3.3)

We have used the fact that 8 (R°f^[ χ) = a (/; 1) = 0 is equal to zero (cf. the proof of

Corollary 1.6).

To prove Theorem 1.1 it remains to prove the following assertion.

Lemma 3.1. Let Ζ be a proper k-scheme. For any prime I £ p we have

χ(Ζ, μιζ) = EPiZ).

Proof. Let μ,οο denote the sheaf lim, μ , on Ζ. For any integer k > 0 we have

an exact sequence

lk

0 -»- μ,*ζ -• μζ=ο ~* μζ=ο -> 0.

The corresponding exact cohomology sequence has the form

( 3 . 4 )

Here and later on for any abelian group A we let A (respectively A ) denote the

cokernel (the kernel) of the homomorphism of multiplication by n: A —• A {a \—• na).

Passing to the projective limit over powers of / in exact sequence (3.4), we will

obtain the exact sequence

>Γ ζ(#£(Ζ, μ.β))-».0. (3.5)

Since the groups H\Z, μ/ 0 Ο) are of finite type (this follows from the finiteness of

the groups HKZ, μ k) and an exact sequence (3-4)), they have the form

where tl{Z; I) are finite groups.

On the other hand, it follows from (3·5) that

Q5< ( Z : / ) =// l (Z, Qd^H'iZ, 2&(l))<g)Q/i-71i(//i(Zf μ,.)) <g>Qi = Qf'.
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Hence b.(Z; l) = β. and

HC(Z, μ[<χ>) = (Q,/Z,)*<(Z:/) e tc(Z; /).

Now applying (3·4) for k = 1 we will obtain

dimF/ (tf£ (Ζ, μ,,2)) = bt (Z; /) + dimF i (Γ1 (Z; 0®) + dimF/ (tc (Z; /)/)•

Hence

Χ (Ζ, μ / , ζ ) = EP(Z) + 2 ( - 1/ (dimFj (<* (Ζ; /)(/)) - dimF/ {f (Z; 0/)]·

Since the groups iz(Z; /) are finite, the expressions in the square brackets are equal to zero.

Replacing χ( , μ^ by EP( ) in (3-3), we will obtain the formula of Theorem 1.1.

§4. An application

In this section we let IS denote the class of projective ^-schemes X such that all

singular points of the corresponding reduced scheme X , are isolated.

We let P r denote projective space of dimension r over k, and P r the dual projec-

tive space of hyperlanes of P r . A line D in P r , considered as a closed point of

Gr(/, r), is called a pencil of hyperplanes in P r . We shall denote by Η a hyperplane

corresponding to a point t € D. The intersection of two hyperplanes Η · Η (ί. ?ί tS)

will be called an axis of the pencil.

Definition. Let i: X <-» P r be a projective imbedding of a scheme of class IS. A

pencil D € Gr(l, r) will be called good for the imbedding i if

a) an axis of D intersects X transversally (cf. [5], Chapter IV, 17.3),

b) there exists an open set VCD such that Η{ intersects X transversally for all

/ € U, and

c) Η intersects X transversally for all tQ € D\U except for a finite number of

points.

In the case where X is smooth and if in condition c) Η has only ordinary double

points, the definition of a good pencil turns into the definition of a Lefschetz pencil in

the sense of Katz' lecture ([18], expose VII).

An imbedding i: X —> P r will be called good if there exists a good pencil relative

to i.

Let Υ C Χ χ P r be the subscheme of "incidences" of the Pr-scheme X x P r whose

fiber at the point Η € Pr{k) is ΧΉ. An equivalent definition is that Υ is the graph of

a rational map X —» P r defined by a complete linear system of hyperplane sections of X.

Let 5(Y) be the subscheme of singular points (i.e. points where it is not smooth) of the

morphism /: Υ —• P r induced by the projection Χ χ j> r — P r . Let X = f{S(Y)) be the

projection of S(Y) onto P r . In case X is smooth, X is the variety "dual to X". The

points of S(Y) are interpreted as pairs (x, H), where either χ is singular on X, or Η

is tangent to X at χ (i.e. Η · X is singular at x).
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Lemma 4.1. Assume that the morphism f: S(Y) —> X is quasi-finite over every

maximal point of X. Then the imbedding XC+P r is good.
V V -

Proof. Let F C X be a subset of points Η € X such that dim /"*(/ /) > 0. By

Chevalley's theorem (see [5], Chapter IV, 13·1) this set is closed in each irreducible
ν ν

component of X. Since dim X < τ — 1 (Bertini's theorem for hyperplane sections LllJ),

we have dim F < r — 2. Now we note that the pencil D in P r is a good pencil if and

only if

a) an axis of D intersects X transversally,

b) D is not contained in X, and

c) D does not intersect F.
ν \κ

We choose a point Η € P r outside of X. Then Η · X is a smooth subscheme of X,

imbedded in Η — P r , and dim Η · X < r — 2. We choose a line D passing through Η

and not intersecting Η · X and F. This can be done since the codimension of the varie-

ties H'X and F are > 2 (see, for example, [lO], p. 88). Obviously the line D will

also be the desired pencil.

The proof of the following proposition was suggested by F . Zak.
Proposition 4.2. For any imbedding i: X<UP ro/fl scheme of class IS the composition

where s, is the Segre imbedding, (d, p) = 1, d> 1, is a good imbedding.

Proof. Let X be the variety dual to X relative to the imbedding s, ° i. We shall

show that for any nonsingular point xQ £ X there exists a point Η € X such that Η · Χ

has an isolated singularity at xQ. From this it will follow that for any irreducible com-

ponent S. of the scheme S(Y) there exists a fiber of the morphism /.: 5. —* X consist-

ing of a finite number of points. From this we obtain that the morphism /. is quasifinite

over a general point of fiS). After this we use Lemma 4.1. Having chosen suitable

homogeneous coordinates i Q i · · · > t in P r , we may assume that xQ is the point (1, 0,

• · · , 0) and that the functions *Ζ·ΛΟ' z = 1» * · ·» &» are local coordinates on X in a

neighborhood of xQ. Consider a hypersurface Γ with the equation t. + · · ·+ t, = 0.

However, the intersection Γ · X is the intersection Η · X, where Η is the correspond-

(rdd) -1

ing hypersurface in Ρ and the point xQ is the only singular point of H'X.

This proves the proposition.

Now let X be an arbitrary reduced ^-scheme of class IS. By the preceding propo-

sition we may assume that X is well imbedded in P r . We choose a good pencil of hyper-

plane sections on X and let φ: X —> Ρ be the corresponding rational map.

Proposition 4.3. Assume that dim X < 3 in case p > 0. There exists a commutative

diagram of rational maps

l/f

P1
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where η is a birational morphism which is a composition of monoidal transforms with

nonsingular centers·, and f a projective morphism with fibers of class IS with geometri-

cally connected smooth general fiber.

Proof. The morphism π is none other than the resolution of points where the rational

map is undefined, whose existence was proved by Hironaka [6] (p = 0) and Abhyankar

[2] {p > 0 and dim X < 3). The fibers of the morphism will belong to the class IS; and

moreover, by the definition of a good pencil, all the fibers of / are smooth, and conse-

quently the general fiber is also smooth. It is obvious that it is geometrically connected.

Proposition 4.4. Let φ: Χ —* X be a monoidal transformation {with nonsingular

center Υ of codimension d) of algebraic k-schemes. Assume that the imbedding

i: Υ <-* X is regular and the scheme is normal. Then

EP(X')=EP(X) + (d—l)EP(Y).

Proof. Since the imbedding i: Υ £-* X i s regular, the structure of the scheme X is

well known (see [5], Chapter IV, 19.4), and also [9], 12.2). Let Y' = Χ' χ Υ, and let

g: Y' —> Υ be the restriction of the morphism φ to Y*. Then a) φ is an isomorphism

outside Y', and b) g is the canonical projection P(/V) —> Y, where Ν is the projecti-

vized conormal bundle to Y. By virtue of the invariance of the Euler characteristic in

the spectral sequence

Εξ'" = Hp (X, R\fr,x>) •* Η™ (X\

we have

X(X\ μι.χ.) =

Since X is normal, Ά*μ; χ' ~ ^ι χ (c^· t * i e proof of Corollary 1.6); and, moreover, the

sheaves ^φ^,μ, χι, i> 0, are concentrated on Υ and, by the base change theorem,

coincide with the sheaves Rlg*Pi γ>· Hence

χ(Χ\μ,.χ.)«χ(Χ.μι.χ)+ 2 <

The sheaves Rlg*Pj γ> are easily calculated (see [18] for example). We haveγ

1 0 , i = 2ft+l<2d —2.

Substituting this in (4.1), we will obtain

χ (Χ', μ ι > Χ , ) = χ(Χ, μΛ Χ) + (d _ ΐ) χ (κ, (Ζ//)ν).

Now we use Lemma 3·1·
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Theorem 4.5. Let X be an algebraic scheme of class IS over a field k of charac-

teristic zero. Then EP(X) does not depend on the prime number I.

Proof. By [16] (expose IX) we may assume that X is reduced. We shall argue by

induction on dim X. In the case dim X = 1 the assertion follows from direct computations

(a spectral sequence applied to the normalization morphism; cf. [3], §2). Apply Proposi-

tion 4.3 to X. Let

x<~x
P1

be the diagram whose existence is asserted in Proposition 4.3· By the induction hypo-

thesis and Proposition 4.4 it suffices to prove the assertion for the scheme X. For

this we use Corollary 1.3 and the induction hypothesis again. The theorem is proved.

Theorem 4.6. Let X be a scheme of class IS over a field k of characteristic

p > 0. Assume that dim X < 2. Then EP(X) does not depend on the prime number I.

Proof. Arguing as in the last proof, we reduce everything to the case of a surface

X for which there exists a proper morphism /: X —> Ρ with geometrically connected

smooth general fiber. By Theorem 1.1 it suffices to prove that the higher ramification

invariants d (/; /) do not depend on /. In view of Corollary 1.6, we have α (/; /) =

δ (β1/*/*/ χ}- However δ (R1/*/^/ χ) = ̂ (K , Α (Κ ){), where A is the Jacobian of the

general fiber of /. The last invariant does not depend on the prime number / (in case

dim A = 1 see [l3l; in the general case see [18], expose IX).

§5. The conductor of a family of algebraic varieties

In this section the notation is the same in the preceding sections. Let f: X —» Υ

be a proper flat morphism of a scheme X onto a smooth complete curve Υ with geomet-

rically connected generic fiber X of dimension n. We have (Theorem 1.1)

EP(X)-EP(Y)EP(X-) = J [EP{Xy)-EP(X-) + ay{f;t)]. (5.1)
yeY

It is natural to conceive of the right side of this formula as an invariant of the degener-

ation of the morphism /.

Definition. The exponent of the conductor of the morphism f at a point y £ Υ is

the number

cy(f;l) =EP{Xy) -EP(X-) -f ay(/; I).

Conjecture 1. c (/; /) does not depend on the prime number Ι Φ- p.

Proposition 5.1. Conjecture 1 holds in the following cases'.

a) p = 0.

b) The generic fiber of f is a geometrically irreducible algebraic curve.
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Proof. In case a) the assertion is obvious, since α (/; /) = 0. In case b) we must

prove that α (/; /) does not depend on /. Since the fibers of / must be geometrically

irreducible (by hypothesis), we have R /*μ, χ = (Z//) y , whence a (/; /) = 0. Thus it

remains to prove that α (/; /) = δ (R ^μ{ χ) does not depend on / for any y € Y. Let

/ be the generalized Jacobian of the curve X— (or, what is the same, the

connected component of the Picard scheme Pic(X—/ki.rj))). The group / is an

extension of an abelian variety Λ by a linear commutative group L. The latter, in turn,

is a direct product of a torus Τ ̂  Gs by a unipotent group U (see [19])· Since the

group U(K ) is uniquely divisible by /, we have an exact sequence

ο -> (μζ ̂ ) s -* J (7g z - A {Ky\ -+ α

Since the invariant 8(Ky) is additive, we will obtain 8(Ky, /(K ),) = 8(Ky, A(R ),). The

last number does not depend on / by virtue of the result of Grothendieck already cited

(see [18], expose IX). The proposition is proved.

Definition. The divisor

on Υ will be called the l-conductor of the morphism f.

Conjecture 1 implies the independence of the /-conductor on /, which would allow

us to have a good definition of conductor.

In any case, by formula (5.1),

c(/) = degC(/;/)= 2 cy(f;[)=EP(X)-EP(X-)EP(Y)

does not depend on /.

In the case where the scheme X is smooth and the fibers of / are reduced, we can

give an invariant interpretation of the number c(/) = deg C(f; I) by means of the local

invariants of singularities of the morphism / (see [7]). We have

c(f) = 2 (— 1 ) ί + Π " 1 dtaifcErf(Ox.*· (/))> <5·2>

where Κ (/) is some complex of sheaves associated to the morphism / (see loc.cit.).

If all the fibers of the morphism / have only isolated singularities, then formula (5.2)

degenerates into the following:

tf. if)) = (— 1)η"ΜίπιΛ//0(Χ,0^/θΧ/7), (5.3)

where ϋχ/γ is the Jacobi sheaf of the morphism / (or different in the sense of [4]). In

case dim X = 2, formula (5-3) was proved in [4].

The following conjecture is connected with the question of "localization" of

formula (5.2).
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Conjecture 2. Let X = Χ ® 0γ , and let ζ: Χ c+ X be the canonical imbedding. If X is

smooth, and the fibers of f are reduced, then

CyifU) = 2 ( - l r ^ d i m a E x i ^ , Γ (Κ. </))).

It holds in case dim X = 2 and p = 0 (see [7]). An unclear proof of this fact can

be found also in Jung ([8], Chapter VI).

Conjecture 3. The invariants a l (/ ; 1) = 8 (/?%μ, χ) do not depend on the prime

I £ p. In particular, the invariants a (/; /) and c (/; /) do not depend on I.

Assume further that the general fiber of / is smooth; then by virtue of Corollary 1.6

it suffices to prove this conjecture only for the values 1 < ι < η, where η = dim X .

Moreover, as in the proof of Proposition 5.1 (case b)), we may assume that ζ > 1. In

particular, if dim X = 3, it remains to verify the invariance of α (/; /).

In the general case it is easy to verify that the preceding conjecture follows from a

conjecture of Serre and Tate on /-adic representations (see [2l], Appendix).

Let rf be the general point of the scheme Spec(O y ) and X~ be the geometric

general fiber of the corresponding morphism / : X ® y 0γ —> Spec(O y ). The Galois

group G of the field Κ = k(rf ) acts on the rational /-adic cohomology HlXy) =

WZ(X~ , Q,). Let £Z(X_; /) be the codimension of the invariants H\{y) y, and let

Following Serre and Tate, we could define the exponent of the conductor (respectively

the conductor) at a point y of the generic fiber X of the morphism / by setting

cy (Χη; /) = ey (Χη; /) + dy (/; /)

respectively, C (Χη; 1) = ]g Cy (Χη; /)

ye?

Conjecture 4. Assume that the Y-scheme X is Y-Neron in the sense of Raynaud

[14]. Then

We note that this conjecture holds in case X is a smooth algebraic surface.

Furthermore, we assume that all the singular points of fibers of the morphism / are

isolated and the scheme X is smooth. Let x be a closed point of X, and y = fix).

Consider the canonical morphism fχ: Spec(o£ χ) —> Spec(Oy ) induced by the natural

imbedding 0* yC_ θ £ χ. Let X(x) denote the Ky -scheme Sp'ecCO^ ® h Κ ) ,

and let X(x) = X(x) ®^ Κ be the geometric general fiber of the morphism / . The



316 I. V. DOLGACEV

Galois group G = Gal(/C /K ) acts in a natural way on X(x). Thus we have defined a

representation

P^Gy^Aut^H1 (Χ(χ),μιΓχ{Χ))),

which we shall call the local monodromy at the point x. This representation is an alge-

braic analogue of the local Picard-Lefschetz monodromy studied in [25]> [26].

Proposition 5.2 .a) H*(X{x), μι £ ( χ ) ) = 0, ί > η.

b) The spaces Hl{X(x), μ, γ , *) are finite-dimensional over the field F,.

c) // the morphism f is smooth at the point x, then Hl{X(x), μ{ χ(χ^ = 0 for i > 0.

Proof. First we shall prove c). Since the morphism / is smooth at the point x,

there exists an open set U containing x, and an etale V-morphism U —* Υ\.Τ,,· · · , Τ ],

where

η κΥ\Τν ... ,Tn] =K®Spec(Z[r i, . . . , Τη])
Ζ

(see [5], Chapter IV, 17.11.4). From this it obviously follows that the scheme X(x) is

isomorphic to the local henselian scheme Spec(K {Tj, · · · , Τ \), where Κ \T., · · · , Τ \

is the henselization of the localization of the ring of polynomials Κ [Τ , · · · , Τ ] at the

point (θ, · · · , 0). Thus the scheme X(x) = Spec {Ky\ Τχ, · · · , 7Μ) is strictly henselian,

and consequently Hl(X{x), μι χ(χ·) = 0, i> 0.

Now we shall prove assertion b). Let X = X ® y Of, —* Spec (Or, ) be the can-

onical base change morphism and X~ = Χ ® , Κ its geometric general fiber.
*/ y y Ο "^

Υ ,y

Consider the canonical morphism z: X~ —* X , which is a composition of the canoni-
cal projection morphisms X~ —* Χ ® , Κ —* X . Let

Εξ* = Hp (Xv, # * . μ ^ ) -* Hp+q (X~, μ,) (5.4)

be the Leray spectral sequence fcr the morphism i and the sheaf μ, y^ . For any closed
'· 1 y

point χ € X we have ([16], expose VIII)

By c) it follows from this that the sheaves R9i^[ ^^ for q > 0 are concentrated at
' Vy

the singular points of the fiber X . Thus in the spectral sequence (5.4) the terms E^'q with p,
q>0 are equal to zero. Since the terms E^' a r e finite-dimensional over Fj and the abutments

Hp+q are also finite-dimensional, the terms £ *q are finite-dimensional.

Assertion a) follows from the fact that X(x) is an affine scheme of dimension η

([16], expose XIV). This proves the proposition.
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Definition. Set

bx(f;l) = 2 ( - l)i-1di
1 = 1

σχφί) = 2 (- ^(ΚνΒ'
t = l

Proposition 5.3. Under the assumptions indicated above

EP(xy)-EP(x-)= 2 **&*>> a*(M = 2

/« particular

Proof. As we saw in the proof of Proposition 5.2,

***J*,X~= θ Η*(Χ(χ),μΓ )

is a constant sheaf concentrated at the singular points of the fiber X . By the spectral

sequence (5.4), this implies

χ(ΧίΓ,μζ) = χ(Χ, , Ι > α ^)- 2 **tf;0.

Since the schemes X(x) are connected, ζ̂ μ^ ^«, = μ{ ^ . By virtue of the base

change theorem, from this we have

^ Λ . *>α~) = * (Χ*, μ/) Η x (Χν **£ ί α - ) = χ ( χ ν ^.^ } ·

Applying Lemma 3·1·, we will obtain the equality

EP(XM)-EP(X-)= 2 **№*>·

*6Xy(fc)

It is easy to see that, thanks to the action of the group G on the sheaves /?9ζ+μ^ χ-,
' Ί y

the spectral sequence (5.4) is a spectral sequence of G -modules (cf. [24], p. 290). By

the invariance of the additive function δ{Κ ) in the spectral sequence, we will obtain

2
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= 2 (-1)'* (*„.#' <** μ*)) - 2 2 ( - irt (*„ Η1 (χ (χ), μ/)).

. 'V·

Since G y acts as the identity on Hl(X , μ^, we will obtain the desired equality

«ex^ (*>

This proves the proposition.

Conjecture 50) . For any closed point χ εΧ {k)

bx(f; I) + σχ(/;/) = (— I f 1 dim*(0x,x/®X/Y.x),

where &χ/γ is the Jacobi sheaf of the morphism f.

Remarks. 1. If all the singular points of the fiber X are isolated, Conjecture 3

obviously follows from Conjecture 5 (cf. (5.3))·

2. Conjecture 5 is an algebraic analogue of a theorem of Milnor (see [25], and also

[26], Appendix). This theorem also suggestes a conjecture that the groups Hl(X(x), μ,)

are equal to zero for 1'• Φ· 0, n.

3. Analogous to the local monodromy pl: G —» AutP (Hl{Xix), μ,)) we can consider

the Z-adic representation 'ρι

χ: G —» Aut z (Hz(X(x), Zp) and state an analogue of the

Serre-Tate conjecture for ^τ

χ (see [2l], Appendix). From the validity of these conjec-

tures we would get, for example, that the numbers δ (/; /) do not depend on /.
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