ABSTRACT ALGEBRAIC GEOMETRY

I. V. Dolgachev UDC 513.8

The present article consists mainly of papers reviewed in Referativnyi Zhurnal ™atematika " (Soviet
Mathematical Abstracts Journal) during 1960-1971 and is concentrated around questions connected with ab-
stract algebraic geometry. By the latter we mean first of all the foundations as well as those sections
which arose in the mid-Fifties under the influence of Serre and Grothendieck, The ideas and methods of the
latter turned out to have an immense influence on almost all sections of algebraic geometry fand on many
other branches of mathematics) and gave a start to "™Modern Algebraic Geometry." A fundamental role in
the latter is played by precisely those sections to which the present article is devoted. The year 1958, when
Grothendieck announced at the Edinburgh congress his program of investigations in algebraic geometry,
serves as the starting date for this article. In it we have not included those papers on commutative algebra
and analytical geometry which were written under the dirsct influence of Grothendieck’s paper. We have
also left aside such important sections of algebraic geometry as K-theory, the theory of algebraie cycles,
the resolution of singularities, the theory of modules, and theory of intersections; the theory of group
schemata™ and of formal groups has been touched on only incidentally, and they deserve a separate survey.

§1. Foundations of Algebraic Geometry

The establishment of the fundaments of classical algebraic geometry began comparatively long ago.
Beginning with Hilbert and his successors (Noether, Krull, van der Waerden) algebraic geometry was based
on the theory of polynomial ideals. The results in the papers from this school were summarized in Brog-
ner's book [216]. After the appearance in 1946 of Weil's book [507] valuation theory and field theory (the
language of Weil's "generic points™) became the commonly-accepted fundaments of algebraic geometry.
Weil also introduced new objects of study in algebraic geometry, namely, abstract algebraic varieties. The
powerful methods of commutative and, in particular, local algebra were introduced into abstract algebraic
geometry (signifying at that time the study of abstract algebraic varieties over an arbitrary field of con~
stants) by Zariski and his school {(Samuel, Cohen, ste.). An account of these methods can be found in Sam-
uel [459].

Serre's paper [468] on coherent algebraic sheaves served as the source of a subsequent process of
reorganization of the fundaments of algebraic geomeiry ("Serre's language™. In it for the first time there
was introduced into algebraic geometry the ideas and methods of homological algebra and also was ex-
tended the notion of algebraic variety (Serre’s "algebraic space™). Another point of view on algebraic varie-
ties ("Chevalley's schemata™ was developed by Chevalley [154] and Nagata [392, 297].

Finally, in 1958 Grothendieck, by developing and generalizing Serre’s ideas, introduced into algebraic
geometry the language of functors and of the theory of categories and also essentially extended the notion
of an algebraic variety by laying the beginnings of the theory of schemata. Starting with the publication of
the first chapters of Grothendieck and Dieudonne's treatise [240-248], the language of the theory of schemata
solidly became the custom of algebraic geometers and is now most widespread and commonly accepted.
The orderliness, completeness, and geometricity of this theory permitted algebraic geometers not to dwell
any longer on the foundations and to return to solving the concrete problems of algebraic geometry, be-
queathed by previous generations, as well as to develop the connection of this science with other areas of
mathematics.

*Translator’s note: I have preferred to use "schema” (plural "schemata™ even though there is a tendency
nowadays to use "scheme?® {plural "schemes™).

Translated from Itogi Nauki i Tekhniki, Seriya Matematika (Algebra, Topologiya, Geometriya), Vol.
10, pp. 47-112, 1972,
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1. Development of the Notion of Algebraic Variety. As we see from the preceding, the development
of the foundations of algebraic geometry paralleled the development of the notion of an algebraic variety,
Beginning with the notion of Weil's abstract variety and ending with the notion of Artin’s and Moishezon's
notion of an algebraic space, this development was stimulated chiefly by various constructions in algebraic
geometry (the Jacobi variety, the Poincare schema, the space of modules, minimal modules, etc.; see §5),
The classical definition of an algebraic variety was restricted to affine or projective k-sets over an al-
gebraically closed field k, i.e., closed in the Zariski topology by subsets of an affine or projective space
over k. The idea of carrying over the construction of differentiable varieties (with the aid of pasting to~
gether) onto algebraic varieties was due to Weil. In [507] he defined abstract algebraic varieties as a sys~
tem of affine algebraic varieties (V) in each of which there are picked out open subsets W=V, consis-
tently isomorphic with the open subsets Wz, V3. Weil succeeded in extending onto these varieties all the
fundamental concepts of classical algebraic geometry. In 1950 Leray {336] introduced the notion of a sheaf
on a topological space. Cartan's 1950/51 seminar in Paris was devoted to the development of the theory of
sheaves. This notion permitted the definition of differentiable and analytic varieties from one point of
view, including them within the general notion of a ringed topological space. In 1955 Serre {468] discoverad
that a similar definition was applicable also in algebraic geometry. A ringed space locally isomorphic to
an affine variety with a sheaf of germs of regular functions on it came to be called an algebraic variety (an
algebraic space in Serre’s terminology). The additional structure of a ringed space on an algebraic varie-
ty permits not only the simplification of various constructions with abstract varieties but also introducing
in their study the powerful methods of homological algebra, connected with the theory of sheaves, At the
Edinburgh congress in 1958 Grothendieck sketched the perspective for the further generalization of the
notion of algebraic variety connected with the theory of schemata {14]. The first definitions of schemata
were presented in his report atthe Bourbaki seminar in 1959 [219], The idea of affine schemata was stated
independently also by Cartier (unpublished) and by Kihler [299].

Let X be an affine variety over a field k with a coordinate ring k (X]. Its points (in the classical sense)
are found in one-to-one correspondence with the homomorphisms f: k{X] — k, where k is the algebraic
closure of field k. The kernel of such a homomorphism is 2 maximal ideal j¢ of ring k [X]. The corre-
spondence f = j¢ defines a bijection of the set of points X (k) of variety X with coordinates in k (with iden-
tification of points conjugate over k) and with the set Specm (k [X]) of maximal ideals of ring k [X]. Further-
more, the Zariski topology on X (k) corresponds to the spectral topology on Specm (k [X]) in which closed
sets are sets of maximal ideals containing a fixed ideal /<£{X]. The lattice of a ringed space on X (k) cor-
responds to an analogous lattice on Specm (k [X]) in which the fiber at the point m&Spec m(2[X]) of the lat-
tice sheaf is a localization of ring k {X] relative to a multiplicative closed set S=4#[X|m. Conversely,
each k-algebra of finite type without nilpotent elements is isomorphic to the coordirate ring of some affine
variety in the sense of Serre,and the correspondence A — Spectm (A) is a bijective correspondence between
a k-algebra of the type being considered and affine algebraic varieties {to within isomorphism). Grothen-
dieck generalized this correspondence in ‘two essential respects. First of all he noted that it should define
a functor with values in the category of ringed spaces. For every homomorphism ofk-algebras ¢: A — B,
the only reasonable method of defining the morphism Specm (B) — Specm (A) is that to a maximal ideal
mCA there must correspond its preimage o t(m) in A. However, this ideal no longer has to be maximal,
although it always remains prime. Grothendieck suggested that space Specm (A) be replaced by the space
Spec (A) of all prime ideals with analogous spectral topology and with the lattice of a ringed space. This
generalization yields the functoriality of the correspondence A — Spec (A) and is analogous to Weil's idea
of considering the points of variety X with coordinates in an arbitrary extension K/k of the ground field k.
The next remark of Grothendieck was that we need to discard every condition on k-algebra A and fo consider
that A is an arbitrary commutative ring with unit (sometimes Noetherian). Here field k is replaced by an
arbitrary subring Bc—A. This generalization is of a meaningful nature since it allows us to explain certain
classical phenomena in Italian algebraic geometry "y the presence of nilpotent elements in ring A." A
ringed space Spec (A) is called the affine schema corresponding to ring A and is a natural generalization of
an affine algebraic variety. The standard construction of pasting together ringed spaces now permits us to
give the definition of a schema as a ringed space locally isomorphic to an affine schema. From a new point
of view algebraic varieties are reduced schemata of finite type over a field.

The characteristic features of this new theory in algebraic geometry are the following:

1. A commutative algebra becomes a part of algebraic geometry. Namely, this is a theory of local
objects of algebraic geometry, i.e., of affine schemata. The advantage of' such a viewpoint is two-fold.
Firstly, it permits us to carry over all the concepts of commutative algebra into geometric language and by
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the same token puts a powerful tool in the hands of the algebraist, namely, geometric intuition. Secondly,
by examining affine schemata within the framework of the general theory of schemata, it attracts to their
study the powerful methods of algebraic geometry.

2. The ground field k is replaced by an arbitrary ground schema 8, i.e., to examine schemata X for
which there is given a morphism f: X — S (lattice morphism of an S-schema X). Arbitrary S-morphisms,
namely, the mappings @: Xy —~ X, for which fye@ = fy, where f;: X; — S(i = 1, 2) are lattice morphisms,
become morphisms of S-schemata., Each schema X is a Z-schema, i.e., 2 schema over the affine schema
S = Spec (Z). The classical notion of the extension of the field of constants, due to Zariski and Weil, is
replaced by notion of a change of base. For any S-schema S' and S-schema X we can consider the "change
of base," namely, the S'-schema X=X >S< S’~8’, where X>§S’ denotes a direct product in the category

of S-schemata. Special cases of this operation are such concepts as the reduction of a variety by a prime
module, the fiber of a morphism, ete. Classical versions of the definitions of these notions were only slight-
ly geometric and rather awkward.

3. The introduction of nilpotent elements. The presence of nilpoteat elements in coordinate rings of
arbitrary schemata proved to be natural enough and of frequent occurrence in algebraic geometry, For
example, the fibers of a morphism of the usual nonsingular algebraic varieties are schemata with nilpotent
elements (for example, Kodaira's "multiple fibers” in the theory of algebraic surfaces). The presence of
nilpotent elements in a "schema of modules® or in "Poincare’s schema® allowed us to explain the previous-
ly not well understood phenomena of classical Italian algebraic geometry as well as certain pathologies of
algebraic varieties over a field of positive characteristic (see Mumford [376, 378, 382]). The theory of
schemata with nilpotent elements plays an important role in the study of the "infinitesimal® properties of
algebraic varieties and served as the foundation of Grothendieck’s formal geometry (see §6).

We remark that other attempts, which did not become prevalent, were made to generalize the notion
of an algebraic variety, in which a central role was played by the concept of a local ring of the field of al-
gebraic functions (Chevalley's schema [154, 392, 397, 266, 159, 509]). The idea of considering algebraic
varieties over arbitrary Dedekind rings is due also to Nagata [392].

A number of generalizations of the concept of a schema arose in certain concrete problems of al-
gebraic geometry. A natural generalization of schemata consists in the immersion of the category (Sch/S)
of S-schemata into some larger category. For example, the examination of the category of projective ob-
jects of the category (Sch/S) leads to the notion of a formal schema (Grothendieck {219, 240]) and to Serre's
pro-algebraic groups. The dual concept of an inductive system turned out to be useful in the algebraic
theory of uniformization of Pyatetskii-Shapiroc and Shafarevich [45]. An analysis of the category (Sch/S)
of contravariant functors on (Sch/S) (or its subcategory consisting of sheaves on a certain Grothendieck
topology on S; see §5 further) permitted us to identify S-schemata with representable functors. This point
of view proved to be particularly useful for the theory of group S-schemata [169-171], Grothendieck [236]
also suggested that arbitrary ringed spaces (or even the Grothendieck topology) be considered as ground
schemata. The theory of such schemata ("relative schemata® was developed in Hakim's dissertation [255],
This notion proved useful in analytical geometry.

An essential generalization of the concept of a schema are algebraic spaces introduced independently
by Artin {84] and by Moishezon (he called them ®minischemata® [38-40]). In Weil's language an analog of
such a concept was introduced in 1965 by Matsusaka (Q-varieties; see [360]) in connection with the theory
of modules of polarized algebraic varieties. The majority of definitions and results of the theory of
schemata was carried over to algebraic spaces by Knutson [314]. See §5 for details on this theory.

2. Theory of Schemata. From 1960 on,Grothendieck (in collaboration with Dieudonne) started to
publish the monumental treatise on algebraic geometry in which it was proposed to establish the founda-
tions of algebraic geometry within the framework of schemata theory. Although no further chapters of this
treatise have been published, the majority of the classical results on the foundations have found in it their
natural generalization and clarification in the theory of schemata. We remark that the degree of generality
in this theory has proved to be so great that the publications of Grothendieck and Dieudonne remain almost
unique in schemata theory proper. Papers [98-100, 107, 143, 146, 180, 205, 251-254, 274, 275, 320, 328,
329, 333, 335, 386, 428, 184, 509, 510] were devoted to certain unessential generalizations of Grothendieck's
results. A detailed analysis of Grothendieck's resuits in the theory of schemata would take up too much
space. We restrict ourselves only to a survey of the individual highlights of this theory.
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Chapter I of the treatise {240, 248] was devoted to the language of schemata; Chapters II and IV [241,
244-247] were devoted to the study and definition of various classes of morphisms of schemata. The coho-
mology theory of coherent sheaves on schemata (see §2) was developed in Chapter III [242, 243]. The ter-
minology introduced by Grothendieck in relation with the properties of morphisms of schemata includes
more than a hundred ferms, All properties of Grothendieck morphisms separate into local and global ones,
and in their own turn, those are subdivided into three categories: finiteness conditions (morphism of local
finite type, locally finitely presented morphism of finite type, finite morphism, quasifinite morphism, ete.),
topological conditions (Noetherianness, quasicompactness, open and universally submersive morphisms,
ete.), and properties which can be called good (smoothness, flatness, formal nonramifiability, ete.). Among
the most important results in the theory of morphisms of schemata are theorems of the following types:
criteria of fulfillment of a given property, construction conditions (the set of points at which a given proper-
ty is fulfilled, construectively), preservation properties after a change of base, descent of a given property,
ete. As a rule the proofs of these theorems reduce to the affine case,where they represent sometimes pro-
found results from commutative algebra. Here the technique of passing to the projective limit, developed
by Grothendieck, permits us to pass from arbitrary rings to Noether rings and even to algebras of finite
type over Z. To the global properties of morphisms refer the properties of projectivity, of the properness
of 2 morphism, investigated in detail in Chapter II.

Grothendieck's results gave a powerful impetus to the development of commutative algebra, by in-
troducing new methods, ideas, and problems., We list some of them:

1. The concept of flatness of a module (introduced by Serre in 1955 [478]) received further develop-
ment, was given a geometric interpretation, and its role in algebraic geometry and in commutative algebra
was stressed.

2. The creation of the technique of passing to the projective limit, mentioned above.

3. The connection of the notion of the depth (or homologic dimension) of 2 module, introduced and
developed by Serre [49], with cohomology theory and, in particular, with local cohomology theory {227, 234].

4. The creation of the theory of excellent rings, generalizing and systematizing the results of Zariski
and Nagata on local Noetherian rings [401].

5. The theory of Henselian rings, first established by Nagata, was essentially developed and was
made the foundation of the theory of &tale cohomologies, of smooth morphisms, ete. [247, 453, 467].

8. The theory of descent (see §5 further on) provided an influx of new ideas and problems into com-
mutative algebra (for example, see [455]).

7. The application of global methods of algebraic geometry and of cohomology theory permitted the
solving of certain problems of factorial rings {15-17, 227, 344].

Concrete problems of algebraic geometry made it necessary to study schemata of a more special
type. For example, the theory of singularities of algebraic varieties was connected with the study of local
schemata, i.e., of open sets of schemata of the form Spec (A), where A is a local ring. A natural generali-
zation of the concept of an algebraic group into the language of schemata (group schema, see [169-171})
proved to be suitable for the study of the reduction of an Abelian variety. In this language Raynaud [444]
gave a very simple and natural definition of the Neron model of an Abelian variety. This concept, introduced
in Weil's language by Neron [414], plays an important role in the arithmetic of Abelian varieties. Lichten-
baum [340] and Shafarevich [463] developed the theory of two-dimensional regular schemata over a Dede~
kind ring and, in particular, the theory of "arithmetic surfaces” (also see [112, 128]). Other aspects of the
application of schemata theory in the arithmetic of algebraic varieties are the theory of finite group
schemata [421, 424, 425, 497], the theory of p-divisible groups [51], the theory of Abelian schemata (Mum-
ford [380, 385]), Greenberg schemata [209, 210].

The technique of blowing down sheaves of ideals to schemata, due to Grothendieck [241] (also see
[321]), proved to be a powerful technical tool in the resolution of the singularities of algebraic varieties
over a field of zero characteristic (Hironaka {269]). The concept of an ample sheaf, introduced by Grothen-
dieck in [241], played an important role in the theory of projective immersions of abstract algebraic varie-
ties (see 34). See [20, 32, 173, 174, 194, 348, 476] for surveys and textbooks on schemata theory.

3. General Facts on Algebraic Varieties. Parallel with the development of schemata theory inves-
tigations were continued on the general properties of algebraic varieties in the spirit of classical algebraice
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geometry. Kuan's results [317-319] relate to theorems of Bertini type: if a variety possesses a certain
property, then its common hyperflat section also possesses this property. An analog of Bertini's theorem
for local domains was obtained by Chow [157]., Cartier [148] introduced the notion of a local principal
divisor (Cartier's divisor) and gave a criterion for the rationality of a divisor. Chevailey's 1958/59 semi-
nar [466] was devoted to the theory of divisors. The last section of Chapter ¢ of Grothendieck's "Elements®
[447] was devoted to the general properties of Cartier’s divisors and their connection with Weil's divisors.
Papers {134, 178, 267, 305, 408, 420, 461, 462, 466] also are devoted to the theory of divisors. Interesting
results have been obtained on endomorphisms of algebraic varieties. Ax [96, 97] proved that any injective
endomorphism is surjective. Another proof of this fact was given by Borel [133]. The lattice of an al-
gebraic group was introduced in Ramanugam's paper [437] on the automorphism group of a complete alge-
braic variety. Later Matsumura and Oort {358] reproved this result in a stronger form (see §5). Many
papers have been devoted to the differential properties of algebraic varieties. Each variety X over a field
k defines a sheaf Q;( k of germs of one-dimensional regular differential forms on X. The fiber of this
sheaf at a point x € X is the €x,- -module Ql@X,x/k of the Kidhler differentials of the ring &x,: over field k.

The general properties of the sheaves ﬂég/k (and, more generally, even of sheaves Q;;/s for an arbitrary
S-schema X) were studied by Grothendieck in {247] (also see [467]). Many properties of algebraic varisties
were expressed in terms of the properties of sheaf QX /e Thus for example, the smoothness of X over a
perfect field k is equivalent to the local freedom of sheaf qu /% (Grothendieck [247, 467], Nakai [405], Kunz
[322]). The case of an imperfect field k was investigated by Asaeda [90]. Grothendieck [247] obtained anal-
ogous criteria for the smoothness of a morphism within the framework of schemata theory. Other proper-
ties of varieties (for example, normality), expressed in terms of the properties of 9%( /k» were investigated
in [185, 304, 325, 342, 498, 503]. The book [111] is devoted to the analogs of these results ir analytical
geometry. In [342] Lipman conjectured that if char (k) = 0, then variety X is nonsingular if and only if the
dual sheaf 8% =Homg (ks ¢x) of tangent vectors is locally free. Papers (316, 342, 343] are devoted to
this conjecture. Arima [75, 76], Kodama [315], and Kunz [323] addressed themselves to differential forms
of the second kind on an algebraic variety over a field of positive characteristic. The general properties
of finite coverings of algebraic varieties are taken up by Abhyankar [69] and Popp [435]. One of the central
results of this theory is the Zariski-Nagata purity theorem for the ramification set. This theorem states
that the set of ramification points of a finite covering f: V— W is a divisor if V is normal and W is non-
singular. In the case when the ground field k has a zero characteristic, this result was proved by Zariski
in 1958 [514]. Nagata [396] proved it simultaneously (for arbitrary k). Later on, this theorem (in a differ-
ent version) was proved over again by various authors [18, 93, 139, 195, 227, 325, 326]. Various analogs
and generalizations of the Zariski~Nagata purity theorem were obtained by Grothendieck (for the Brauer
group [231] and for a birational morphism [247]), Dolgachev [18, 179] (for the property of smoothness of a
family of curves), and Artin (SGA4). For textbooks on algebraic geometry (without schemata theory) see
{55, 101, 154, 195, 297, 331, 459, 460].

§2. Cohomologies of Algebraic Varieties and of Schemata

As is well known, the foundation for the topological and transcendental methods of studying complex
algebraic varieties is the presence, on the one hand, of the theory of cohomologies with complex coefficients
and, on the other hand, of the theory of cohomologies with coefficients in a coherent analytic sheaf. The
prefoundness of the results, generalizing the classical results of Picard, Poincare, Lefschetz, obtained by
these methods at the beginning of the Fifties (Hodge, Hirzebruch, Kodaira, Chern), raised the natural ques-
tion of the presence of analogs of cohomology theories for abstract algebraic varieties. The necessity for
such a theory was stressed,on the other hand, by Weil in connection with his significant conjectures in
diophantine geometry. In 1955 Serre constructed a theory of coherent algebraic sheaves., In 1962 there
appeared the theory of étale (or covering) cohomologies of Grothendieck — the first of the theories of the
Weil cohomologies destined to replace cohomologies with complex coefficients. Later on,other theories of
Weil cohomologies were proposed by 2 number of authors (Lubkin, Monsky, Washnitzer, Grothendieck,
Verthelot).

1. Cohomologies of Coherent Algebraic Sheaves. In the fundamental paper [46, 468] Serre included
algebraic varieties in the general category of locally ringed spaces and for the latter defined the concept
of a coherent sheaf of modules over a lattice sheaf of rings. He also developed the cohomology theory of
such sheaves, In the case when X is analgebraic variety over the complex number field C, any coherent
algebraic sheaf F on X induces on the corresponding analytic space X2% a coherent analytic sheaf F2%,
Serre's classical results [478] (well known under the designation "GAGA ™ show that for projective varieties




there holds the canonic isomorphism of cohomology spaces ui (X, 7y =gl (Xan Fan). Moreover, Serre has
oroved that for any coherent algebraic sheaf # on X2 there holds the isomorphism F =&, where F is
some coherent algebraic sheaf on X. Later on,these results were generalized by Grothendieck [217, $42]

to the case of complete varieties (not necessarily projective) and by Hartshorne {261, 264] to the case of
guasiprojective varieties. Grothendieck transferred Serre's theorems to a formal geometry (see §6). An
essential development of Serre’s work were Grothendieck's results on the cohomologies of coherent sheaves
on arbitrary schemata (242, 243]. The following finiteness theorem is a central result. For any proper
morphism f: X — S and coherent sheaf F on X, the sheaves R4 fx (F) associated with the presheaf U — gl
(f 1), ¥/f-(U)) are coherent.

In the case when S is the spectrum of field k and X is a projective variety over k, this result (estab-
lishing in this case the finite dimensionality of the k-spaces H4 (X, F)) was proved by Serre. Serre's af-
fineness criterion [469], contained in the characterization of affine varieties by the property of HY(X, D=0
for any sheaf of ideals I, was carried over to the case of affine schemata by Grothendieck [242] and by
Nastold [412] (also see [194]). The techniques of Grothendieck’s formal geometry allowed us to give a coho-
mological generalization of the connection theorem and of Zariski's theory of holomorphic functions (see
36). The general theory of duality for coherent algebraic sheaves is ancther direction in the generalization
of Serre's results. Grothendieck gave an outline of this theory at the Edinburgh congress {14] and in a re-
port at the Bourbaki seminar (218]. Serre's theorem [513] states that for any nonsingular projective varie-
ty over a field k of dimension n and for a locally free sheaf L on X the spaces gl X, L and AH7i(X, LBwy)
are dual to each other. Here wy is the sheaf of germs of regular n-forms on X,and L is a sheaf dual to L.

In report [218] Grothendieck gave certain generalizations of this theorem and then at the Edinburgh
congress [14] formulated and discussed the general duality theorem for arbitrary complete varieties.
Hartshorne's seminar [259] was devoted to this theorem (and its generalization for an arbitrary proper S-
schema). The general formalism of duality, established in the language of arbitrary Weil categories,
developed in [259, 501], was then used in other duality theories [118, 417, 499]. Anocther approach to the
proof of the general duality theorem is due to Deligne (see [259], Appendix). The connection between these
approaches was shown by Verdier {502]. The Altman-Kleiman seminar {71] was devoted to the specializa-
tion of Grothendieck's results for the case of projective varieties. A very beautiful approach to the theory
of duality on a curve was indicated by Tate [52]. Also see Nastold [411, 413]. The language of sheaf theory
proved to be very convenient for the formulations and proofs of many results of classical algebraic geome-
Ty, namely, the questions connected, first of all, with the Riemann-Roch theory and the theory of linear
systems (see {31, 513)).

Sampson and Washnitzer [457, 458] obtained important results on the behavior of Hl (X, F) relative to
monoidal transforms and the Kilnneth formula. The latter was significantly generalized by Grothendieck
[242]. The behavior of cohomologies relative to proper mappings and algebraic correspondences was
studied by Snapper [492, 495] and Matsumura [357], The first of them proved a very important theorem
stating that for any coherent sheaf F on a nonsingular variety X and Euler divisors Dy, ..., Dy, the charac-
teristic 1(X, FB®Cx (n,D\+ ... +n,D,)) is a polynomial in ny,..., nx [493]. This result was used by him to
define the intersection number for divisors [494] and was then generalized to quasiprojective varieties by
Cartier [149]. Borelli {134] introduced the concept of a divisoral variety a special case of which is a non-
singular or quadiprojective variety and extended Snapper’s theorem to this variety. A genmeralization of
Snapper's theorem is due also to Moishezon [37].

While the cohomologies of projective and affine varieties have been studied in sufficient detail, there
have remained many questions on the cohomologies of arbitrary quasiprojective varieties. The first re-
sult in this direction was Grothendieck's theorem [234] stating that H(X, F) = 0 for any coherent sheaf F
on an n-dimensional variety X all of whose irreducible components are improper. An elementary proof of
this theorem (not using local cohomology theory) was given by Kleiman [310]. Fundamental results on the
cohomological dimension of quasiprojective varieties were obtained by Hartshorne {260, 261]. In particular,
he has proved that cd(P*\C)=1 if C is a curve, and this put an end to the attempts to give a cohomological
proof to Kneser's old problem [313]. Together with Goodman he gave a characterization of varieties the
cohomology groups on which are finite-dimensional.

The main technical tool in the preceding theory is the theory of local cohomologies of coherent sheaves,
due to Grothendieck [227, 234]. By generalizing the classical definition of cohomologies with compact sup-
ports, he defined groups (respectively, sheaves) of local cohomologies H}Z X, F) (respectively, #5(F)) of
sheaf F relative to a closed subschema Z=X. Here are the most important resuits of this theory:



a) A cohomological characterization is given of the important concept of the depth, depthr (F), of a
sheaf F relative to subschema Z. This concept is the global variant of the notion of the depth (or homologi-
cal dimension) of an A-module M, due to Serre [48]. There holds the theorem depth, (FYzkaxtlif=0,
i<k,

b) The exact sequence
o H (X F) >~ HY X, F) = HY (XN Z, F) = HE™ (X, F)— . ..

allows the connection of groups Hi(X, Fyand H{(XN\Z,F).

c) A theorem on local duality is proved permitting the computation of the group Extg (M, A) for an
A-module M in terms of the local cohomologies Hpy (M)= Em} (Spec (A), M) {under certain restrictions on
ring A).

d) The theorems on the finiteness of sheaves #%(F), due to Grothendieck [227] and then generalized
by Hartshorne {262] and Peskine [430].

We mention the most important applications of this theory. The concept depthy (F) is closely con~
nected with the question of the coherent extension of a sheaf F|X—Z. In particular, results in item a) per-
mit us o prove again a part of the assertions of M. Baldassarri and his students {101-106, 351-355] on the
characterization of torsion-free sheaves as well as one of Hartshorne's results [256], The results in item
d) were applied to the theorems on the finiteness of cohomologies for quasiprojective varieties {261, 428].
Sheaves of local cohomologies play an important role in duality theory [259]. With their aid we can con-
struct the canonic injective resolvent of a sheaf (the Cousin complex), which plays one of the central roles
in this theory. Sharp [485] has studied this complex in the case of affine schemata. The theorems of finite-
ness of local cohomologies were applied for the generalization of the comparison and existence theorems
(see §6) to the case of not necessarily proper morphisms [227]. In [262] Hartshorne proved the affine dual-
ity theorem stated as a conjecture by Grothendieck in [227].

Important applications of local cohomology theory relative to "Lefschetz-type" theorems on the com-
parison of the Picard group (or the fundamental group) of schema X and of its subschem& Y of codimension
1 were obtained in [227]. This comparison is carried out in three stages. At first Pic X) and Pic (U) are
compared, where U is an open set containing Y while X is the formalacompletion of X along Y (see §6).
Next, Pic (U) and Pic (X) are compared, and finally Pic (X) and Pic (Y). Local cohomology theory has a
bearing only on the first two stages, the last stage being studied by the methods of formal geometry, The
investigation of the second stage is connected with the condition of factoriality of the rings of points x €
X/U. Here Grothendieck obtained important results, one of which is the affirmative answer to the following
conjecture of Samuel: a local Noetherian ring A, being a complete intersection and factorial in codimen-
sion =3, is a factorial ring (see Giraud's report [199] for a survey of these results). In the investigation of
the analogous stage for a fundamental group Grothendieck generalized the Zariski-Nagata purity theorem
(see §1) to the case of local Noetherian rings of dimension = 3, being complete intersections.

Grothendieck obtained both local as well as global versions of Lefschetz's theorems on hyperflat
sections. A special case of these results is, for example, the following theorem. For any complete inter-
section X in PB of dimension = 3 (respectively, 22), Pic (X) = Z and is induced by 2 hyperflat section (re-
spectively, Ty (X) =0). These results generalize the classical facts true for the case when X is nonsingular
and complex (cf, [41, 197, 198]). A generalization of Grothendieck's theorem was given by Raynaud [438];
also see Hartshorne [261].

2. Weil Cohomologies of Schemata, In 1949 Weil pointed out the need for some theory of the coho-
mologies of abstract algebraic varieties, analogous to the theory of complex cohomologies, which would
possess all the formal properties (Poincare duality, Kiinneth formula) for the derivation of an analog of
Lefschetz's formula on fixed points. More precisely, such a theory should be described by the foilowing
assignments and axioms:

There exists a contravariant functor X — H™* (X) from the category of smooth projective k-varieties
into the category of finite-dimensional anticommutative graded algebras over a field K of zero character-
istic, Here the following properties should be fuifilled:

A, Poincare duality. Namely: a) groups gl {X), = 0 for i > 2n (n = dimX), b) the orientation isomor-
phism H?® (X) ~ K exists, c) the canonical coupling H!(X) x H*?! (X) — H?1(X) ~ K is nondegenerate.
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B. Kinneth formula. Letpy: Xy X X, — Xj(i= 1, 2) be projections. The cancnic mapping a6 —
pi(a)- p2(b) defines the homomorphism /* (Xl)gﬂ* (Xo) = H* (X X Xa).

C. Gysin homomorphism. There exists the homomorphism of groups Y CP(xX) = H?P(X), where
CP(X) is the-group of algebraic cycles of codimension p of variety X. Such a homomorphism should be
functorial with respect to X, multiplicative (yxxr (£ X W) =1x(Z)®1r(W)), and central (if P is a point, then
C*(P) =~ Z - H*(P) = K is a canonic imbedding).

The presence of such a theory permits us in a formal manner to derive Lefschetz’s formula for the
fixed points of the correspondence and, in particular, if k is the algebraic closure of a finite field, to ob~-
rain proofs of the first two conjectures of Weil on the ¢-function (rationality and functional equation) (see
{311]). In case k = C the functor X — H* (X2P, C) yields the theory of Weil cohomologies.

Serre's attempts to construct such a theory, starting from the theory of coherent sheaves, was not
crowned with success. To be precise, in [471] Serre proposed to examine the cohomology Hi(X, W (€x))
with coefficients in the sheaf of rings of Witt vectors over local rings X. Although these cohomologies
proved useful for many questions connected with algebraic varieties over a field of positive characteristics
(for example, see [381]), they turned out to be unfit for Weil's theory. Even for Abelian varieties the coho-
mologies (X, W (¢%)), considered as modules over the Witt ring W(k), are not finitely generated (Serre
[4791). We have not succeeded even in obtaining the "true” Betti numbers of variety X with the aid of co-
herent sheaves {286, 471],

A completely different approach to the definition of Weil cohomologies was first suggested by Gro-
thendieck [141]., The first publication on this theory (Grothendieck's covering or &tale cohomologies) ap-
peared only in 1962 in the form of reports at Artin's seminar at Harvard [78]. Surveys [1, 30, 79, 83, 200]
are devoted to sketching the milestones in this theory. The Artin-Grothendieck seminar in 1963/64 (SGA 4)
as well as Verdier's paper [499] was devoted to the proofs of the fundamental theorems on étale coho-
mologies (with the aid of these theorems it was established that a variant of the theory of étale cohomolo-
gies, i.e., of I-~adic cohomologies, is the theory of Weil cohomologies). These results as well as the ap-
plications to £ -functions on algebraic varieties were the subject of Grothendieck's seminar of 1965 (SGA 3).
Tate [50], Kleiman [311], Grothendieck {228], and Deligne [164] (cf. the survey {44]) have discussed the ap-
plications of this theory to the arithmetic questions of algebraic varieties, Other methods of determining
Weil cohomologies were suggested by Lubkin in 1967 [345] and by Grothendieck [237] (see later on about
them).

3. Grothendieck Cohomologies of Schemata. The construction of these cohomologies is based on the
general notion of Grothendieck's topology. The latter signifies the giving of a certain category T with fiber
bundles and of a collection Cov(T) of families of morphisms {U,—~U},g;, ¢, called the coverings of object
U. Here certain natural axioms should be fulfilled, turning into the usual axioms for a topological space if
as T we take the category of open sets of some topological space (morphisms turn into embeddings), The
general formalism of Grothendieck's topology and of its variant, leading to the notion of a topologized
category (site), was developed in (SGA 4) (also see Giraud [200] and [468, 469]). At the present time this
theory plays an independent role in homological algebra, category theory, and logic. If X is a schema,if T is
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some subcategory of the category of X-schemata (Sch/X), and if the families {U‘-—:U} 1¢; of X-morphisms
into T such that U ='Lé\ {L(U;) are coverings, then we obtain the notion of Grothendieck’s topology of schema

X, associated with the category T, For example, if as T we take the category of &tale morphisms, we then
obtain the &tale topology for schema X,which we denote Xg¢. The idea for such a topology was suggested
by Grothendieck in Serre [470]. If T is the category of strictly flat quasicompact morphisms, then we ob-
tain the fpqe-topology of schema X, denoted X Fpace- Other Grothendieck topologies of schemata — the quasi-
finite X, 5, the strictly flat finitely presented X , etc. — are obtained analogously. In particular, if T is
the category of Zariski-open subsets of X, then we obtain the usual Zariski topology Xz 4y of schema X.
Later on, Grothendieck generalized the notion of a sheaf with values in a category C to a topological space
by defining a sheaf on the Grothendieck topology T as a certmin contravariant functor F: T — C satisfying
a certain axiom (the sheaf axiom). For any Abelian sheaf (C is the category of Abelian groups) the coho-
mology groups HY (T, F) are defined by the usual methods. (in the non-Abelian case,cohomology theory was
developed by Giraud [202, 204]), In particular, for schema X there have been defined various Grothendieck
cohomologies: the dtale cohomology Hi Xgt F), the fpge-cohomology "2 X ac F), etc. All of the usual
formalism of sheaf theory takes piace within the framework of the theory of sheaves on Grothendieck



topologies [78, 189] (SGA +4). When X = Spec (k), where k is a field (i.e., X is a "point™), the giving of a
sheaf F on Xet is equivalent to the giving of the Gal (k/k)-module F (&)= .1mF(K ). where K/k are all possible
extensions of the Galms field k. The groups of cohomologies HI (Xq, F) are precisely the Galois cohomolo-
gies Hi(Gal (k/k), F(k)). From this point of view the theory of Galois cohomologies, set forth, for example,
in Serre's book {48], can be considered as a point cohomology theory. Commutative group X-schemata [421}
furnish examples of Abelian sheaves on Xq¢ and X¢,,,. For example, the multiplicative group schema G
defines the sheaf G, x ({U=Gnx(U)==T (U, )} the constant group A defines the constant sheafA (U —
AToU)y, A crenerahzatwn of "™Hilbert's theorem 90," proved by Grothendieck, states that H! Xq ‘{) e
Pic (X). The group H? Xapr G 'm,X) turned out to be closely related to the Brauer group Br (X) of schemaX
The latter concept, generahzmg the classical concept of the Brauer group of a field, was introduced by
Auslander and Goldman [95] for the case of commutative rings and was extended to the case of arbitrary
schemata by Grothendieck. The foundations of this theory and certain important computations are contained
in three fundamental papers [299-301] of Grothendieck. Other computations of the Brauer group are to be
found in {23, 366, 464]. The first computatmns of &tale cohomologies for algebraic curves and surfaces
were made by Artin. In this case the groups H! Xeat,(Z/n)x) ((n, char (kp)) = 1) are completely analogous to
the classical groups mi Xan z/n) ifXisa complex curve or surface. Later on Artin proved a comparison
theorem H' (Xgt, (Z/n)x)> H! (X288, Z/n) for algebraic varieties over field C (SGA 4) (also see [200]). The
computation in [443] of cohomologies H{X.. %), where % is the sheaf associated with the Neron model of an
Abelian variety A over the field of rational functions of curve X, allowed us to interpret and generalize the
results of Ogg [416] and of Shafarevich [53] on principal homogeneous spaces over A. When X is a two-
dimensional regular schema over a homogeneous regular schema B, group Br (X) proves to be closely re-
lated with the Shafarevich group AY(B,, %), where ¥ is the Neron model of the Jacobi variety of the com-
mon fiber X. In the geometric case when X is an elliptic surface, this connection was d1scovered by Shafa-
revich [54]. In the case of algebraic surfaces X the Betti numbers, calculated as dimyp, (H', Heg, (Z/1)y)
(I is a prime not equal to chark), coincide with those determined previously by Igusa [ZZS'T] Furthermore,
in this case the group Br(X) (its divisible part) can be interpreted as an analog of the group of transcenden-
tal cycles on X. We also note the decisive role of the Brauer group in the Artin and Mumford resolution of
Lurotte's conjecture {165], The fundamental properties of étale cohomologies were proved by Artin and
Grothendieck (SGA 4). Artin proved a theorem on homological dimension (cdX = dim X for algebraic varie-
ties) and a finiteness theorem: the group gl (X, ¥) is {inite for any periodic sheaf F either on a proper
schema X or on an excellent schema X of characteristic zero. To Grothendieck are due a "theorem on change
of base," a Kiinneth formula, and a theory of cohomologies with compact supports. Verdier [499, 500] an-
nounced general duality theorems and Lefschetz formulas analogous to the Atiyah-Singer-Bott formulas for
elliptic complexes., Lefschetz formulas for étale cohomologies were considered by Raynaud {439, 441]. For
any algebraic variety X over k and for a prime ! = chark the étale cohomologies define [-adic cohomologies
of X, By definition, AYX,Z,)=limHY(X,n(Z/1%)). The Qj-spaces A'(X,Q)=H'(X, Z,)?;Q, play the role of
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Weil cohomologles for X. The interesting question of the independence of the Betti numbers b, (X; =
dlle ;i X, Qp) from ! has been answered only in special cases (for example, dimX = 2), See [50, 228]

as well as the survey [44] for the application of !-adic cohomologies to arithmetic.

Using the concept of the Grothendieck topology, we can give a construction of the classifying space
for an algebraic or a discrete group G [236]. A detailed exposition of the corresponding theory is contained
in Giraud's book {204]. Grothendieck also gave an algebraic definition of Chern classes of the representa-
tion of a diserete group G over an arbitrary field k [236]. The generalization of these ideas to arbitrary
Lie groups and their representations was given by Geronimus [9-11],

Shatz [486-490] and Mazur {363, 364] devote themselves to the study of the general properties of other
Grothendieck cohomologies as well as to certain computations. Mumford [{379] applied the Grothendieck
topology to module problems. Mazur's papers (cf. [27]) contain a computation of flat cohomologies {(fpqc or
Sfopf) for number schemata as well as applications to the arithmetic of algebraic varieties. The topologies
X foqe and X fopf have proved to be particularly useful in the theory of group schemata {168-171]. For ex-

ample, we mention the interpretation of groups of principal homogeneous spaces of a group S-schema G as
the group gls , @) [34, 369, 490]. We remark that by virtue of Grothendieck's theorem [231], if Gisa
smooth schema, then 7S , &) = gl et G). A part of parallel results on Grothendieck cohomologies in
another language was obtained in [151-183, 1771.

o
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4. Other Cohomology Theories of Schemata, a) De Rham cohomologies of algebraic varieties. The
beginnings of this theory were set forth in Grothendieck's fundamental paper {232]. For any S-schema X
Grothendieck defines the de Rham cohomology H}DR (X/S) as the hypercohomology H® (X, Oy /s) of a complex
of sheaves of relative differentials of schema X, When S = Spec (C) and X is a smooth algebraic variety
over S, Grothendieck, developing the ideas of Atiyah and Hodge [91], proved the comparison theorem
HRg (X/C) ~ H*(X?", C). This theorem permits us to compute the cohomologies of a complement to a hy-
persurface in a projective space with the aid of the cohomology classes induced by rational differential forms
with poles on this hypersurface. This result was used by Atiyah, Bott, and Girdingin [8].

More generally, Grothendieck defined the sheaves of relative de Rham cohomologies as #! ,(X/S)=
R!f.(R%;s), where on the right stand the values of the i~th hyperderivative functor of the direct image func-
tor of sheaf f, on the de Rham complex ﬂ)'(/s. If f X — S is a proper smooth morphism of complex al-
gebraic varieties, then from Grothendieck's comparison theorem follows the existence of a canonic isomor-
phism of analytic coherent sheaves #%,(X/S)* = R fan (C)Eeé@sam Katzand Oda {25] gave analgebraic definition

of a canonic integrable connection (the Gauss-Manin connection) on the sheaves #{,5(X/S). In the preceding
situation this definition reduces to the connection on a vector bundle definable by a locally free sheaf

H! o (X/S)n whose sheaf of horizontal sections coincides with R‘/?*(C). When X/S is an algebraic curve
over a functional field, the Katz-Oda construction reduces to the one proposed earlier by Manin in {28]. Tn
a slightly less general case an algebraic definition of the Gauss-Manin connection was given by Grothendieck
[237]. Katz gave an algebraic proof of the regularity theorem for the Gauss-Manin connection [302]. Ana-
Iytical proofs were given by Griffith {215] and Deligne [163]. The concept of a regular connection generalizes
the classical notion of a differential equation with a regular singular point and is the subject of Deligne’s
book [163] (also see {302, 350]), A generalization of Grothendieck’s comparison theorem also is given in it,

Katz [300, 301] gave an interpretation of Dwork’s results {182] with the aid of de Rham cohomologies
and of the Gauss-Manin connection on them. Oda [415] studied the connections between H%)R (X/%), where
X is a complete variety over a perfect field k of characteristic p > 0, and the Dieudonne modules corre-
sponding to the Picard schema Piey [k

Since the spaces HIIDR (X/%) havd been defined, generally speaking, over a field of zero characteristic,
the de Rham cohomologies are not the Weil cohomology theory. Nevertheless, Hartshorne [261] has proved
Poincare duality for H%R (X/k), while in the case of a zero characteristic he has given an algebraic defini-
tion of the Gysin homomorphism and of the Kiinneth formula. Herrera and Liebermann {285] proved that
for a smooth subschema YSX of an algebraic variety over field C there holds the isomorphism H* (Y. C)
= iimH;,R (Y®/C), where Y is the k-th infinitesimal neighborhood of subschema Y. This result was ob-
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tained independently also by Deligne. The latter has also investigated in detail the connection between de
Rham cohomologies and Hodge cohomologies for varieties over a field of zero characteristic [162].

b) Crystal cchomologies. The de Rham cohomologies found their natural generalization in the frame-
work of crystal cohomologies. The basic constructions of this theory and also the program for future in-
vestigations in this area formed the subject of Grothendieck's 1966 lectures [237]. The fundamental re-
sults of this theory, establishing that erystal cohomologies are Weil cohomologies, were announced later
on by Berthelot [113-121].

For any S-schema X Grothendieck proposed to examine topologized category (X/S)Crys whose objects
are all nilpotent S-imbeddings {/T-T, where U is a Zariski-open subset of X, while the ideal of U in T is
provided with a lattice of separated degrees. Morphisms of the pair (U, T) are defined in the natural way,
and the Grothendieck topology on (X/S)Crys is induced by the Zariski topology on X. The sheaf on (X/S)crys
is given by the system of sheaves F(yy, T) on T. The lattice sheaf @, s defined by the system £

—_“_@
wn="r
If X is smooth over 3, then each coherent sheaf # on schema X, provided with an integrable connection,
defines a sheaf of modules on (X/S)Crys. Berthelot [115] proved the isomorphism H*((X/S)CWS, chs)c:

H* (X,4 ¥®2y,). where on the right stand the hypercohomologies of the complex 9@, - of coherent sheaves
on X, defined by the connection on &. When the S-schema is of zero characteristic, this result was proved
by Grothendieck [237]. In particular, if ¥ =&, this result shows that oo (XISY=HA* ((X/S)Crys@ y)s) and, in
particular, the de Rham cohomologies can be computed without differential forms (!). In order to obtain

the Weil cohomologies from crystal cohomologies, for any schema X, over a perfect field k we need to set
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Hérys(xo/k)“—‘lif_ﬂ H*(Xo/Sa)cryssPxs,)  where S = Spec (W/pP"'W) is the spectrum of the quotient ring of

the Witt ring \%7(1:) If X, is proper, smooth on k and is lifted upt to the very same schema X over S =

Spec (W (k)), then there holds the isomorphism HCrys (X k) = HDR (X/S). This result shows the invariance
of the de Rham cohomologies HDR (X/S) relative to the different liftings of schema Xgupto schema X. This
result was obtained by other methods by Lubkin [345] and Monsky-Washnitzer (cf, [237]). The cohomology

groups HZ;,YS (Xo/k)vf?)/( (K is the field of particular rings W (k)) satisfy the conditions of Weil cohomologies

{121]. In (118] Berthelot constructed a theory of local crystal cohomologies and in [122, 123], together

with Illusie, defined the Chern classes of a sheaf with value in crystal cohomologies. A comparison theorem
of crystal cohomologies with classical ones over field C is due to Deligne (unpublished). Grothendieck's
work on representations of profinite groups {239] has application also to crystal cohomologies. The appli-
cation of crystal cohomologies to Dieudonne modules and to p-divisible groups is contained in Grothendieck's
report at the Nice congress and also in Messing's dissertation [365].

We remark that a theory of crystal cohomologies is a p-adic theory of cohomologies in the sense of
Grothendieck [237]. That is, in contrast to the theory of I-adic cohomologies, it gives information on the
p-torsion in the cohomologies (p = chark). Other Grothendieck cohomologies (the fpac- or the fppf-coho-
mologies) give good p-adic cohomologies only in small dimensions (since by virtue of Artin’s theorem,
H! X fopfr Z/p Yy=0, {> dimX + 1).

c¢) The p-adic cohomologies of Monsky-Washnitzer and of Lubkin. Other possible approaches to the
theory of p-adic cohomologies were suggested by Monsky-Washnitzer [372-375] and by Lubkin (346, 347].
In a brief note [374] in 1964 the first authors proposed to define cohomologies in the following way. First
of all they defined a certain class of smooth algebras over a Witt ring W (k) (the Monsky-Washnitzer
"w.c.f.g."™-algebras) and proved that for any smooth k-algebra A, there exists a functorial lifting up to an
algebra A with A ® k A,. The assignment Ay = HDR (A/W (k)) defines a cohomological functor from the

category of smooth k-algebras into the category of W (k)-modules. By localizing this functor relative to the
Zariski topology, Monsky and Washnitzer obtain the cohomology sheaves #uw (X) for any smooth schema

X over a perfect field k. Global sections of these sheaves furnish "good" invariants in small dimensions.
For example, for a curve X of genus g, H%(X, #uw (X)) is a free W (k)-module of rank 2g. Working only
with k-algebras of finite type, Monsky succeeded in using his own theory to prove a fixed-point formula
(using completely continuous operators) and the rationality of the ¢-function of smooth schema [372, 373].
The question of the globalization of the Monsky-Washnitzer idea for obtaining a theory of Weil cohomologies
remains open until now (see [237] for a discussion of this).

In [346] Lubkin, on the basis of the Monsky-Washnitzer ideas, gave a definition of p-adic Weil coho-
mologies for the subcategory of varieties liftable to characteristic zero. We remark that by virtue of
Serre's example [475], such varieties do not exhaust the class of all smooth projective varieties. Also, as
Grothendieck's crystal cohomologies, these cohomologies can be computed on the basic only of the usual
Zariski topology of schema X. If X is a lifting of a nonsingular projective variety X over a fleldk up to a
flat proper #-schema, where the residue field of ring @ is k, while the fraction field K has zero character-
istic, then Lubkin assumed H*(X)=FHpg (XgK /K) and proved that this is not dependent on the lifting of X to

X. In this paper the author developed a general technique of hypercohomologies gl (X, U, F*) of finite com-
plexes of sheaves on a topological space X with respect to a module of an open set U,

d) Combinatorial Lubkin cohomologies. In [345] Lubkin, using an étale topology of a schema X, as-
sociated with each such schema a certain prosimplicial complex §(X)=1imS(X, U) and, after this, defined
[

H* (X, M)=1§§ H*(S (X, U), M). for any Abelian group M. The author's main theorem asserts that these
u

cohomologies coincide with the Grothendieck étale cohomologies a* Xats (M)x). The author announced
theorems analogous to the fundamental Artin-Grothendieck theorems and, from these theorems, derived in
a standard manner the first two Weil conjectures as well as proved that the classes of algebraic cycles are
finitely generated with respect to numerical equivalence. The latter fact follows formally from any theory
of Weil cohomologies [311],

e) Grothendieck's theory of motifs. The presence of so many different cohomology theories of
schemata posed the question of the creation of some "universal cohomology theory."
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The idea of such a theory was suggested by Grothendieck in 1967 (unpublished). The first publication
on this theory, in which the main constructions of Grothendieck were set forth, belongs to Manin {33], Later
on,this theory as well as Manin's results,which we take up below, was the subject of Demazure’s report
[167]. Grothendieck's construction is extremely sharp and, roughly speaking, consists of the following.

The category V/k of algebraic varieties over a field k is immersed at first into an additive category CV/k
(by an introduction of supplementary morphisms, i.e., of all possible correspondences relative to some
theory of intersection C) and next into a pseudo-Abelian category CV/k (by an association formally of the
kernels and images of all possible projectors into CV/k). Every object (motif) of category CV/k is rep-
resented as a direct sum of "n-dimensional pieces of varieties,” i.e., of objects of the form (X, p), where
X is an n-dimensional variety and p is a projector from C2(X x X). The motif h(X) = (X, id) is called the

2
motif of variety X,and its expansion into the direct sum 4(X) =§0 h(X) yields the definition of the "groups

of motif cohomologies h' (X)" of variety X. Any functor of cohomologies X — " X) passes through functor
h. Grothendieck called H* {X) a realization of motif h (X). Unfortunately, the proof that the functor X —
h(X) itself is a theory of Weil cohomologies is based on the as yet unproved assumptions on algebraic cy-
cles (the standard conjectures; see [238, 311)).

Nevertheless, Manin succeeded inshowing in [33] that, without using the hypothetical part of theory of
motifs, we can progress rather far in their computations and obtain important applications. This paper
clarifies the behavior of motifs under monoidal transformations and finite coverings and also defines the
"motif intermediate Jacobian® of a three-dimensional unirational variety. Using the functoriality of the lat-
ter, Manin proved the Weil conjectures for such varieties. The articles [56, 57] of Shermenev serve as con-
tinvations of Manin's work, in which Shermenev computes in explicit form the motif of a cubic hypersur-
face, of an Abelian variety, and of a Weil hypersurface (the latter has not been published).

In conclusion we remark that a cohomology theory of schemata, established chiefly in Grothendieck's
fundamental papers, has turned into a fascinating area of algebraic geometry with a lot of unsolved prob-
lems and with rich applications.

§3. Fundamental Group and Homotopic Invariants

of Schemata

As the foundation of the algebraic definition of the fundamental group of 2 schema we take the clas-
sical fact that this group should classify nonramified coverings. By the latter in schemata theory we mean
an arbitrary finite &tale morphism. When X is a normal irreducible algebraic variety, the group 7, (X) was
defined by Abhyankar [63] as a Galois group (a profinite group) of a maximal nonramified extension of the
rational function field k {X) of variety X. By virtue of Riemann's classical existence theorem, when the
ground field k is the complex number field, T (X) is a profinite completion of the usual fundamental group
{(for example, see [442]).

In 1960 Grothendieck {467] gave a definition of 7y (X) for any schema X, which reduces to the above
definition if X is normal and irreducible. For this he defined the concept of a Galois covering of schema X,
proved the prorepresentability of the functor X' — Homy (§, X" from the category of such coverings into the
category of sets (§ is a geometric point of schema X), and then set =, (X, E)—-=HE Aut (P,j, where (Pz)ie.r is the

prorepresentative object of the functor being considered. For a connected schema X the group 7 (X, £)
does not depend (to within isomorphism) on £, Later Grothendieck [170] modified the definition of 2 funda-
mental group (groupe fondamental élargi) so as to take into consideration the infinite coverings of schema
X. When schema X is one-branched (for example, is normal), these groups coincide. In the general case
the extended group 71‘1_ (X) is not profinite (for example, for a rational curve X with a regular double point,
"751 (X) = Z). Murre's lectures [391] were devoted to Grothendieck's definition.

Another definition of the fundamentl group (coinciding with Grothendieck's extended fundamental
group) was given by Lubkin [345].

The series of papers [63-68] by Abhyankar was devoted to the first algebraic computations of the
fundamental group. In the main they were devoted to the computation of the group = (V\ W), where WcV
is a divisor on a nonsingular algebraic variety V of dimension =2. In case chark > 0 there has actually
been computed the subgroup =i (V\W)c= (V\W) classifying the coverings which are prolonged upto tamely
ramified coverings of V. Abhyandar’s results generalize the classical computations of the Zariski group
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= (P*\ C), where C is a curve. Serre's article [473] and Popp's book [435] survey Abhyankar’s work. Ed-
munds (182] also concerns himself with this same group of questions. In his fundamental paper {219]
Grothendieck computed the group = (X\ (P, ....,}) for a nonsingular point curve X. This result played a
central role in the papers of Shafarevich [53] and Ogg {416]. Grothendieck's computations were based on
the lifting of the curve to characteristic zero and on the application of the topological results in [4¢40]. An
analogous computation for a complete curve X (the first of which computation was proved without the use of
the methods of formal geometry) was carried out also by Popp [431, 432]. The assumption of tame ramifi-
cation was removed by Fulton {191]. A purely algebraic computation of = (X\{P}, ..., P,}) is as yet not
known. In [435] Popp showed that everything reduces to the three-point problem, i.e., to the case when n=3
(also compare with {1761).

The method for computing the fundamental group with the aid of lifting to characteristic zero is based
on the following theorem of Grothendieck. If f: X — Spec(A) is a proper morphism with a closed connected
fiber X,, where A is a full Noetherian local ring, then T (X) = 7, (Xy). This same theorem, with A replaced
by an arbitrary Henselian Noetherian local ring, was proved by Artin [85], From it follows the theorem on
the change of base in Grothendieck's etale cohomologies. Artin also compared the groups 7 (U) and 7, (U),
where U is an open set in Spec (A) and U is its preimage in Spec (A) {81, 8s1.

See §2 on the Lefschetz theorem for the fundamental group. A variant of the Lefschetz theorem for
the case of a quasiprojective variety V was proved by Popp [434]. In the classical case, when V is an open
set in a projective space, this result was proved (with gaps) by Zariski in 1937. De Bruin's paper [144]
also was devoted to Zariski's theorem. In [433] (also see [435]) Popp studied the behavior of the fundamen-
tal group of the complement of a curve on a smooth surface as the curve varies within a family.

Questions connected with the local fundamental group, i.e., with the calculations of T (U), where U is
an open set of the spectrum of a local Henselian ring, turned out to be very interesting. An impetus tothese
questions was provided by Mumford [26], who computed the fundarnental group of the boundary 8V of some
"e-neighborhood™ of a normal singular point P on a complex algebraic surface. In particular, Mumford
proved a criterion for simplicity (conjectured by Abhyankar): point P is nonsingular if and only if 7, 8V} =
0. An algebraic analog of set 8V {as was noted apparently for the first time by Grothendieck; cf. {227],
exp. XTI) is the schema X =Spec A\ (M}, where A is the Henselization (or completion) of the local ring of a
point P of an arbitrary normal algebraic surface and m is a maximal ideal of ring A. Using Artin's theo-
rem [82] on the lifting of a two-dimensional singularity to characteristic zero and his results from {81], we
can apply Mumford's topological computations to compute the group rt(X')(P), namely, the factor group of
7y (X") by the normal divisor generated by a Sylow p-subgroup (p = chark). Grothendieck and Murre [249]
proved the topological finite-generability of the group ™ (X"(P), We note that Mumford's criterion of sim~
plicity does not carry over directly to the case of a positive characteristic p. Indeed, by virtue of Nagata's
example [398] (also see [82]) there exist an irregular ring R and a radical morphism f: Spec (Rf) —

Spec (R), where R' is a regular ring. Hence it follows that = (Spec(R)\ (m})=w, (Spec(R)\ {®})=0 (the spaces
Spec (R) and Spec (R" are homeomorphic). It is as yet not known whether the condition that X' be homeo~
morphic to the point spectrum of a regular ring is a necessary one for the vanishing of 7y (X",

We note Serre's result [472] on the simple-connectedness of a unirational variety and Grothendieck's
theorem on the birational invariance of 7, (X) {467]. Using the theory of descent,Grothendieck established
many important properties of Ty; in particular, he constructed the start of the exact sequence of homotopy
groups (the first six terms) for a flat proper morphism.

The computation of the fundamental group of an Abelian variety (actually, contained in Lang and Serre
[332]) can be found also in [467]. Serre [474] computed Ty for an arbitrary algebraic group.

We remark that the Galois theory of rings (for example, see {151]) in commutative algebra was de-
veloped in parallel with the "geometric” study of the fundamental group of schemata. Many resuits of this
theory are easily interpreted and reduced to the corresponding results on the algebraic fundamental group
or on the étale cohomologies of affine schemata. Takeuchi devoted his paper [496] to the connection of
these theories,

The definition of higher homotopic invariants of schemata was proposed independently by Lubkin [345]
and by Artin-Mazur (83, 88]. A detailed account of the latter theory is contained in [89]. Both these theo-
ries are very close to each other and are based on the Verdier-Lubkin construction of a functor from the
category of locally Noetherian schemata into the category of pro-objects of the homotopy category of sim-
plicial sets. Taking the composition of this functor with the functor of "geometric realization," Artin and

276



Mazur obtained a certain pro-CW-complex Xt canonically comparable to schema X and called the homo-
topy type of schema X. The Verdier-Cartier construction of hypercoverings (SGA4, exp.V, Appendix) per-
mits us to generalize the preceding construction and to determine the homotopy type of an arbitrary Grothen-
dieck topology. The generalization of homotopy theory to pro-objects allows us to determine the homotopy
groups T;(Xgt). For example, T (Xgy) is an "extended” Grothendieck fundamental group. Artin and Mazur
mtroduced important notions of a proflmte completion K of a cell complex K and, by generalizing Riemann's
existence theorem, proved that C/Xg¢ = Xd for a normal schema X over a field. Here X, is the usual CW-
complex defined by the complex space X21, From this theorem it follows, in particular, that = (X,,)

o~ ;./l(\X,,), and for simply connected X, =;(X.,) = é(\/\’c,), i>1, where a profinite completion of the group oc~-
curs everywhere oa the right. Among the other results in {89] we note, for example, e followmg fact. If
3y ot kB C are distinct immersions of an algebraically closed k into a field C, then Xcl ~ X2 21 holds for
the corresponding complex varieties X!, X? obtained from the k-variety X by a change of base. By virtue
of the well-known example of Serre [477], here it is impossible, in general, to remove the A,

34. Ample Sheaves. Projective Imbeddings

of Abstract Varieties

Ever since Weil introduced the notion of an abstract algebraic variety, the natural question was posed
of their projective immersibility. As Weil himself proved, the Jacobian variety of a curve (its construction
was the original purpose for the introduction of an abstract variety) is always projective. Later on,Chow
proved that any homogeneous space is projective [156]. The first example of an incomplete abstract varie-
ty not immersible into a projective space was presented by Nagata in 1956 [393]. Next he constructed an
example of a complete nonprojective algebraic surface (with singular points) [394]. Finally, in 1958 he
constructed and example of a nonsingular nonquasiprojective surface (which, moreover, is even rational)
[395]. Later on, examples of nonprojective varieties were constructed by Hironaka [268].

In 1961 Moishezon [35] announced a criterion of projectivity of nonsingular abstract varieties. This
criterion was next generalized to singular varieties [36], and a detailed account of previously obtained re-
sults appeared in 1964 [37].

Ag is well known, each birational mapping @¢: X — P2 is given by some linear system, i.e., by an in-
vertible sheaf £ on X and by a set of its sections sy,..., 8. The sheaf 2 is said to be very ample if the
complete linear system |[£| defines the closed imbedding ¢: XC.P” (2=dim . /#°(X, £)—1). The sheaf £
is said to be ample if some tensor power Z®® of it is very ample. The projective criterion is in fact an
ampleness criterion for the sheaf. The first such criterion, coinciding with the corresponding Moishezon
criterion,was given for nonsingular projective surfaces by Nakai in 1960 [404], In 1963 he succeeded in ex-
tending his own result to arbitrary projective schemata [406]. At the present time this criterion (general-
ized to complete schemata by Kleiman [307]) is called the Nakai-Moishezon criterion and is stated as fol-
lows. A sheaf Zon a complete k-schema X of dimension n > 1 is ample if and only if (D, ..., D,y £)>0.
for any effective divisors Dy,..., Dy.q on X, Here the intersection number is determined with the aid of
Snapper's theorem (see §2).

A beautiful ampleness criterion is due to Seshardi (cf. [261]).

A numerical criterion for a very ample sheaf on a nonsingular surface is due to Mumford [381].
Beautiful characterizations of very ample sheaves in the language of the geometry of cones of ample sheaves
are contained in Kleiman'spaper [309] and in Mumford's bock [381].

The following Kleiman's theorem (expressed as a consequence of Chevalley's conjecture) serves as
an example of 2 "nonnumerical® projectivity criterion {309]. A nonsingular variety X is projective if and
only if each finite set of closed points of X is contained in an open affine set. An example of a™onnumerical
ampleness criterion” is Grauert's criterion [341].

If an effective divisor D on schema X is ample (i.e., the sheaf Z=¢x (D) is ample), then the comple-
ment X\ D is affine. Gizatullin [12] and Goodman [206] independently proved that the converse also is true
in the case of surfaces all of whose singular points lie on D. Hence we obtain a new proof (also see [309])
of the old Zariski theorem stating that an algebraic surface X is projective if all its singular points lie in
an affine piece (Zariski had further assumed the normality of X), By virtue of Artin’s result [77] each
normal surface over a finite field is projective. The Gizatullin-Goodman theorem does not carry over
directly to the case of varieties of dimension greater than two (for example, the Zariski variety; cf. [206}).
A generalization of this theorem is due to Goodman and Hartshorne [206, 261].
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Hartshorne (258] defined an ample vector bundle (or locally free sheaf). One of the equivalent defini-
tions of an ample sheaf ¢ consists of the requirement that the tautological invertible sheaf @5 (I) on P =Py (%)
be ample. Various characterizations and properties of an ample sheaf are proved in [258]. For example,
if chark = 0, then the tensor power of an ample sheaf is ample. Barton [109] succeeded in proving this re-
sult in the case of a positive characteristic,

In [261] Hartshorne discussed various possible generalizations of the notion of an ample divisor on a
subvariety WcX of larger codimension. These definitions are closely related to the question of the coho-
mological dimension of the complement X\ W and also to the ampleness of the normal bundle to W. Grif-
fiths [215] suggested that analogous and other possible properties of ampleness of a subvariety be taken as
a definition in the analytic case.

Block and Gieseker [130] proved Hartshorne's conjectures in the zero-characteristic case: if a sheaf
¢ is ample, then its Chern classes ¢,(¥) are numerically positive. The latter signifies that (¢, (%)-¥)>0 for
any effective cyele Y of codimensionn—i. Kleiman [312] (and Barenbaum [7], independently) has proved this
result earlier for the case of surfaces over an arbitrary field.

Chow's results on the projectivity of homogeneous spaces were generalized to a considerable degree
by Raynaud to the case of arbitrary group schemata [449]. We note, for example,that even an Abelian S-
schema for an arbitrary schema S proves to be not necessarily projective (we need to require the normali-
ty of S).

By generalizing his own result of [399], Nagata proved a theorem which is very useful for applications:
each S-schema of finite type can be imbedded as an open subvariety into a proper S-schema.

§5. Construction Techniques in Algebraic Geometry

1, General Results and Technical Tools. a) Representable functors. In a series of reports {220-226]
at the Bourbaki seminar in 1959/62 Grothendieck subjected to detailed analysis, significantly clarified, and
generalized certain classical constructions in algebraic geometry (the Poincare variety, the Chow variety,
etc.). The fundamental concept introduced for this purpose by Grothendieck was the concept of a represent-
able functor. We consider a certain category %, and we let % be the category of contravariant functors on
% with value in the category of sets. Grothendieck's fundamental idea consists in that the functor %:%-—&,
defined as £(X}: Y —Homg (Y, X) =X(Y) for any X€z, effects the imbedding of category % onto the complete
subcategory %. Objects from % of the form h (X) are called representable functors. For example, in appli-
cation to schema theory, when #%=(Sch/S), this remark of Grothendieck permits us to identify the S-schema
X with the functor "of a point with value in an S-schema® h(X): Y — Homg (¥, X) = X(Y). In this context
Grothendieck succeeded in showing that all the known constructions in algebraic geometry are examples of
representable contravariant functors on the subcategory (Sch/k) consisting of k-varieties. For example,
the classical Poincare construction consists of associating with each nonsingular variety X over an al-
gebraically closed field k the factor group Pic’(X) of divisors algebraically equivalent to zero by the sub-
group of principal divisors. The problem of the existence of the Poincare variety is the following. Does
there exist for a given variety X a universal variety B(X) parametrizing the group Pic’ (X)? The latter
signifies that there exists a ™universal class of divisors® ® on XX%(X) such that for any D € Pic? (X) we
can find a unique point z€B(X), for which D = np (X x {z} -®). In the case of an affirmative answer to this
question the group Pic’(X) is in an essential way provided with the structure of an algebraic variety (the
elements of Pic?(X) are found in bijective correspondence with the points of variety 3(X)). Grothendieck
remarked that under the existence condition the variety % (X) represents the following functor on the cate-
gory of k-varietieg: ¥V -Pic?® (X >§ Y) (here the divisor ® corresponds to the identity morphism B(X)~B(X)).

The existence problem in algebraic geometry now becomes the problem of the representability of a
contravariant functor on the category of schemata.

The language of representable functors turned out to be very convenient for defining many classical
objects in algebraic geometry within the framework of schemata theory (the Grassmann schema, vector
bundles, the flag schema, etc. [248}).

The first profound theorems on representability belong to Grothendieck. In 1964 Murre gave a cri-
terion for the representability of an Abelian functor (i.e., with value in Abelian groups) and applied it to the
construction of the Poincare schema [389]. The criterion was generalized by Matsumura and Oort [358] to
arbitrary group functors (not necessarily Abelian). Murre's report [390] was devoted to one criterion of
Grothendieck. Paper [491] also relates to general representability criteria.

278



b) Prorepresentable functors. An important necessary condition for the representability of a functor
is its prorepresentability. The latter concept was introduced by Grothendieck in [221]. We consider the
category of pro- ¥ -pro-objects of acategory 4, i.e., arbitrary projective systems (XJ)icr of objects of cate-
gory % (the morphisms of projective systems are defined in the natural way). Each functor F:%--(Ens) is
continued by a natural method up to the functor F:pro-8-~(Ens). To do this we need to set F_((}\:',-)le,):_—liEF(Xi).

iel'
A functor F is said to be prorepresentable if Fis representable, in other words, if there exists a pro-object
(Pigr such that F (X)=1i{n Hom (X, P,) for any X€@.
. P

Grothendieck formulated important criteria for the prorepresentability of a functor F on category %
with fiber bundles and with a final object ¢. The following conditions are necessary conditions for prorep-
resentability: 1) F(®) = {one point}, 2) (left-exactness) F(X X V)=F (X)Z?E)F (Y) for any objects X, Y, Z of

category 4. Grothendieck showed that in many important cases these conditions are also sufficient. Groth-
endieck's program of research in this area was carried out by Levelt {339].

Particularly simple is the situation when category @ is Noetherian or Artinian (i.e., the set of pro-
objects of each object of category % possesses the ascending or descending chain condition) while functor F
is Abelian. In this case Gabriel [193) proved that a2 contravariant functor on an Abelian Noetherian category
defines a prorepresentable functor on the corresponding dual Artinian category. The application of this
fact to the theory of local duality is contained in Grothendieck's seminar [227] {(also compare [48, 234}).

The most important application of the theory of prorepresentable functors relates to the case when
category % is the category Cp of Artinian A-algebras, where A is a Noetherian local algebra over its own
residue field k.

Schlessinger [58] proved that the functor F: Cp — (Ens) is prorepresentable if and oanly if it is left-
exact and dim F (k {€]) < », where k[€] is the algebra of dual numbers. Besides this, he gave a method for
verifying the left-exactness of functor F. In this case the prorepresenting object is identified with some
complete A-algebra @; by the same token, F(A)=Hom,(A,@) for any A € Cp. If, furthermore, the
functor F is formally smooth, i.e., the mapF (A" — F(A) is surjective for each surjection A'— A in Cy,
then algebra & is isomorphic with A[[ty,..., tyl], n = dimF (k [€]).

The application of the preceding situation to contravariant functors on the category of schemata is
based on the following reasoning. Let G be a contravariant functor of the category of preschemata over
Spec (A) and let e € G(Spec (k)). For any ring A € Cy we denote by F (A)=G(Spec(A)) the set of £ €G(Spec(A))
such that G(1)§ = e, where i is an imbedding of Spec (k). Artin {86] calls functor G prorepreseantable in e if
the corresponding functor F is prorepresentable by some A-algebra W. If G is a representable functor and
X is the schema representing it, then e defines a rational point x € X and functor F is prorepresentable by
the ring Gy =W.

Functor G is said to be effectively prorepresentable in e if there exists an element z € G (Spec (W))
which induces a compatible system of elements 2,6G (Spec (W/m*)} with z4 = e. Artin's theorem on the al-
gebraization of formal moduli [86)] asserts that in this case there exist a k-schema X of finite type, a closed
point x € X, a k-isomorphism k(x) = k, and an element 2 € G(X) inducing ¢ € G(Spec(k)) and such that the
ring 6 ..prorepresents the corresponding functor F (itis assumed, furthermore, that k~algebra A has a
finite type). In many cases effective prorepresentability follows from prorepresentability and Grothendieck's
existence theorem. (The application of this theory to formal moduli is given in the next section.)

Levelt's papers [337, 338] are devoted to the connection between the prorepresentability criteria of
Schlessinger and of Grothendieck and also to their generalization.

¢) Grothendieck's theory of descent [201, 220, 4687]. One of the first problems of the theory of descent
wasg the following one, stated clearly by Weil in [508]. We are given an algebraic variety V over a finite
normal extension k' of field k. Can we "lower" V {o k (i.e., do there exist a k-variety W and a k'-isomor-
phism W%k’ =V)? Weil gave an affirmative answer to this question for the case when V is quasiprojective

and satisfies natural necessary conditions for such a descent: there exist canonical k'-isomorphisms hg:

V — V9 satisfying the "pasting-together condition” hyy = (hc’r') -hy. Here o, T € Gal (k'/k), while V7 is the
image of V relative to the action of & on the coefficients of the equations defining V. Cartier [148] examined
the analogous problem for an inseparable extension. Grothendieck noted that one and the same common~
category situation lies at the base of the Wei]l and the Cartier problems.

279



Let #be a fiber category over category %, i.e., a category ¥ is associated with each object S€%
and a fupctor o*:# . »F, is associated with each morphism ¢: S'—~ S into . For any such morphism and
for an object XeFs the "giving of a descent™ onto X consists in the existence of an isomorphism u: p‘; X)=

P
p._f (X) (where 5'§3' %:S’ are morphismsofa projection) satisfying the pasting-together condition pfg(u)-
F*u
Dag (W) = p1*3 (1) (where S’>S<S’>§S’E'S'>§S’ are morphisms of projections). The giving of a descent is said to
P
be effective if there exists an object Yé#; such that o* (Y) = X. Here the functor #"'F;—F, realizes the
equivalence of category &, and subcategory F; consisting of objects with the effective giving of a descent.

The problem of the theory of descent counsists in finding the conditions on morphism f in order that any con-~
dition of descent on the object Xe#;. be effective.

The application of this common~category problem to algebraic geometry refers to the case when %
is the category of schemata. The morphism f: S'— S of schemata is called a morphism of effective descent
relative to the fiber category # if any giving of a descent on object X€x;. is effective. By generalizing the
results of Weil and Cartier, Grothendieck proved that an absolutely flat quasicompact morphism is a mor-
phism of effective descent for the categories of quasicoherent sheafs, of affine or guasiaffine S-schemata,
of étale S-schemata of finite type, and of some others. The same is true for a finite surjective morphism
and for the categories of unramified coverings, of quasiprojective schemata (if, moreover, the morphism
is locally free), or of all schemata (if the morphism is radical) [¢467].

Important criteria for the descent of group schemata were obtained by Raynaud [449]. In the presence
of an effective descent we can consider the additional problem: it is required to preserve the properties
of the lowered object (for example, the local freedom of a lowered sheaf, the flatness of 2 lowered schema,
ete.). These problems were solved by Grothendieck in [467].

The ideas of the theory of descent (particularly the last problem} proved to have a great influence on
commutative algebra. Among the mass of papers devoted to these problems we note [455]. Among the ap~
plications of the theory of descent in algebraic geometry we note the following:

1) The representability of functors was proved first for the category (Sch/S), and next, by applying
the theory of descent, the representability of a functor on the category (Sch/S) was obtained. Here S'=— S
is the morphism of effective descent (see [223-225, 295]).

2) Criteria for the ratiomality of divisors (Cartier [148], Oort [420]) and their generalizations, namely,
"Hilbert's theorem 90" in étale cohomologies (SGA4).

3) Proof of the topological invariance of the éfale topology (i.e., the categories X 4 and (Xypaqlet 2re
equivalent).

4) Descent properties for various classes of schema morphism [247, 467].

d) Equivalence relations on schemata. The problem of the theory of descent is a special case of the
general problem of existence of a factor of a schema by some equivalence relation. The latier problem is
one of the most important technical tools for proving the representability of various functors.

In [222] Grothendieck defined an equivalence relation on an object X of an arbitrary category % with
fiber bundles as a certain subfunctor Rch (X)X £(X) such that R(T)cX(T)X X(T) is the graph of the equiv-

21
alence relation on the set X (T). If R;; X is the restriction of projection morphisms to R, then the factor

X/R by the equivalence relation R is called the cokernel (py, P»), i.e., the object representing the covariant
functor Z ~ {@ € X(Z)|lop; = cppz}. The factor X/R = Y is said to be effective if the canonic monomorphism
R-X ;<X is an isomorphism.

A typical example of an equivalence relation is the case when there acts on object X a group object
G of category ¥ (i.e., h (B is a presheaf of groups on 4). By definition, the action of G on X is given by the
morphism G X X — X,and the image of the morphism G X X - X X X/({g, x) ~= (gx, x)) defines an equiv-
alence relation on object X,the factor by which is denoted by X/G.

As is well known (for example, see [268]), the factor X/G does not always exist for the category of
schemata. Grothendieck proved the existence of factors X/R in the following cases: 1) the projection
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py: R~ X is a finite morphism, and each equivalence class relative to R is contained in an open affine set;
2) X is quasiprojective over S,and py is a proper morphism; 3) X is quasiprojective over S,and R is closed
in X;(X [169, 222].

Raynaud [451] proved the existence of an open dense set UcX for which U/R exists. Furthermore,
ifR is closed in X i(X , then U contains points of codimension=1. Some other criteria for the represent-

ability of factor X/R by a flat equivalence relation (i.e., the projections py, py: R == X are flat) also were
obtained by Raynaud [450, 452]. He has also obtained important applications of these results to the repre-
sentability of the Neron-Severi schema, of the Poincare schema, and of the Neron model [451].

Corollaries of Grothendieck's results in the existence problem of the factor of a group schema by
some subgroup are discussed in {168, 169]. See further on for applications to the Poincare schema. In
[380] Mumford obtained profound theorems on the existence of the factor X/G of schema X by a reductive
group G.

A more general situation (equivalence prerelations) was studied with the aid of the formalism of
groupoids in [168, 169, 450].

¢) Artin-Moishezon algebraic spaces. The absence in the general case of a factor of a schema by an
equivalence relation forces us to seek a natural extension of the category of S-schemata (Seh/S) in which
this factor always exists. The obvious solution is to immerse (Sch/S) into the category of locally ringed
spaces. However, this category is too broad to obtain any "reasonable” results in it. If S = Spec (C), then
it is natural to seek the factor X/R in the category of complex spaces. Hironaka's example in {268] showed
that such a factor can exist in this category but does not possess an algebraic structure (or even a Kihler-
ian one). In 1965 Matsusaka developed the general theory of Q-varieties in Weil's language [360]. In this
category the factors of algebraic varieties by an algebraic equivalence exist "by definition.” Another ap-
proach is due to Grothendieck and has been applied particularly successfully in the theory of group schemata.
Here the category (Sch/S) is identified with the category of representable sheaves on the topology Squc.
Fundamental to such an identification is the theory of descent for absolutely flat quasicompact morphisms.

The concept of an algebraic space, proposed by Artin in 1968 ("8tale schemata® or "varieties" in the
original terminology) and, from other considerations, independently by Moishezon ("minischemata® in his
terminoclogy), connected up in a natural way the points of view of Matsusaka and Grothendieck. By definition,
an algebraic space over a schema S is the name given to a sheaf on Sgt, being a factor of some S-schema U
of locally finite type by an equivalence relation R whose projections R=3U are étale morphisms. We note
that the factor is considered in the category of sheaves on Sgt.

When S = Spec (C), the algebraic space over S possesses in natural fashion the structure of Moishe~
zon's analytic space,and conversely, each such space is an algebraic space {40, 87].

The immersion of the category of S-schemata into the category of algebraic S-spaces permits us to
examine the question on the representability of a functor in two stages: first, to investigate the question of
its representability by an algebraic space, and next, to prove the representability of the latter by some
schema. We remark that a satisfactory answer to the first question already yields a quite good solution to
the problem being considered, sirice the various aspects and the naturalness of the concept of an algebraic
space, investigated by Artin, Moishezon, Knutson {38-40, 86, 87, 314], allow us to consider the latter as a
completely reasonable generalization of an algebraic variety. The general properties and techniques of the
theory of schemata were transferred to algebraic spaces by Knutson [314].

In [86] Artin proved a representability criterion for a contravariant functor by an algebraic space.
One of them is its effective prorepresentability. The proof of the representability criterion is based on the
following ubiquitous Artin theorem on approximations [85]. Let R be a field or an excellent discrete valua-
tion ring, A be the Henselization of some R-algebra of finite type with respect to a prime ideal, and m be a
maximal ideal of A, Lety= (51, ciey }N) be a solution of the system of algebraic equations f { () = 0 with
coefficients in A, whose coordinates belong to the m-adic completion of A. Then for any integer ¢ > 0 2
solution y = (yy,..., yy) € AN exists such that ¥: =y, (mod m),

A special case of Artin's theorem (dim A = 1) was obtained earlier by Greenberg (213, 214] and
Ershov [21].



The close connection between Matsusaka's Q-varieties and algebraic spaces is reflected in the follow-
ing result of Artin [84]. Let R—-U >< U be a flat equivalence relation and X be the factor U/R in the category
of sheaves Sgppf. Then X represents an algebraic space. Note, however, that the class of algebraic spaces
over C is already a class of Q-varieties since the latter, in general, is not representable by an analytic
space (Holmann [276]).

By virtue of Artin's result in [84] the glving of a descent for algebraic spaces relative to an absolute-
ly flat morphism is always effective. In the category of algebraic S-spaces there always exist factors of
group spaces by an arbitrary flat S-subgroup.

Papers [5, 84, 454] are devoted to a survey of Artin's results. We leave aside the questions con-
nected with the birational geometry of algebraic spaces and with the theory of singularities (39, 40, 87].

2, Picard Schema. One of the first problems to which Grothendieck applied the techniques presented
above was the problem of constructing the Picard schema. The latter was introduced by Grothendieck in
[224] as a natural generalization within the framework of schema theory of the Picard variety ®(X) of a
nonsingular algebraic variety X. The first algebraic construction of B (X)as an Abelian variety parame-
trizing the factor group X of divisors algebraically equivalent to zero by the principal divisor was given in
1951 by Matsusaka {359] and was next generalized to the case of a normal variety by Chow and Lang.

In Chevalley's 1958 seminar [466] the Picard variety B.(X) corresponding to Cartier divisors was
studied. It was shown that for singular varieties %, (X) possesses (in contrast to B(X)) good functorial
properties [483]. Chevalley [155] constructed the Picard variety B,(X) for complete normal varieties X.
This construction was generalized to arbitrary projective varieties by Seshadri [481, 482].

To determine the Picard schema for an arbitrary S-schema X Grothendieck suggested the examina-
tion of the relative Picard functor Picy/g on the category ( (Sch/S). The value of this functor on the S-
schema S is the group H'(S", R qucﬂ,( ,Xv)). where f:X' =X >S<S’->S’ is the change-of-base morphism

while R? fpac % (G X' is the sheaf on the Grothendieck topology S}pqc associated with the presheaf T — H!
(T foqe® Gm) = ut (Tg¢» Gpy). Let Pic(T) be the group of classes of invertible sheaves on schema T. When

functor Picy /S is representable on (Sch/S), the S~schema representing it is called the relative Picard
schema of the S-schema X and is denotad by Picx/s. For example, if X is an algebraic k-scheme having
a rational k-point, then Grothendieck shows that Picx/(S")="Pic(X >§S’}/Pic (5" for any k-schema S* and, in

particular, Piex /. (k) = Pic (X) is identified with the group of k-rational points Picx/k (k) of the schema

PicX/k.

The first theorem on the representability of the functor Picx/s is due to Grothendieckandrelatestothe
case when f: X — S is a projective morphism with geometrically integral fibers. In this case the schema
Piex /g is locally finitely present«oed separable group S-schema. If S = Spec (k), where k is a field, then the
connected component of unity Pieg /g of the schema Pley /x is an algebraic k-schema,and the corresponding
reduced k-schema (Picx /k)req 18 Precisely the Picard varaety B, (X) in Chevalley's definition. The pres-
ence of nilpotent elements in the local rings of schema Picx  Yields much additional information on the
Picard variety and permits us to explain various pathologies of algebraic varieties over a field of charac—
teristic p > 0. We remark that by virtue of Cartier's theorem (cf. [169, 381, 422]) the schema PicX /x is
always reduced if p = 0. Igusa has cited an example of a nonsingular algebraic surface F with a one-dimen-
sional Picard variety and with dime/?(F, 8% =2 [286] Noting that the space A1 (F, ;) is identified with a
tangent space to the unity of the Picard schema PicX [k Grothendieck explains this fact in (225] by the ir-
reducibility of the corresponding schema. An analogous explanation can be given for the old Igusa result
dime /(X @x) > ¢, where q is the irregularity of variety X, coinciding with the dimension of its Picard
variety $(X). Mumford [381], using Serre's techniques from [479] of Bockstein operations on cohomologies
of sheaves of Witt rings, investigated the reducibility of the Picard schema of a smooth algebraic surface
F. In particular, he proved Grothendieck's theorem [225] that if H#?(F,@7)=0, then the schema Picp /k 18
reduced. If base Sisa nonsmgular curve while the fibers of the morphism f: X — § are curves, the con~
nected component of the unity Pic«{ /g of schema Picy /g is an analog of Igusa's "family of Jacobian varie-
ties™ [228] (cf. [4471).

In [389] Murre proved the representability of the Picard functor for an arbitrary proper k-schema X.
In [418, 419] Oort investigates the connection between the schemata Picx /k and Picxre d/k' This connec-
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tion was investigated in particular detail for multiple algebraic curves [417]. Murre's theorem was gen-
eralized in [491)] to the case of a proper schema over a local Artin ring.

At the Stockholm congress in 1962 Mumford announced 2 theorem on the representability of the Pi-
card functor, generalizing somewhat the theorem of Grothendieck (the fibers of f are not necessarily ir-
reducible; however, all irreducible components are geometrically irreducible). The proof of this theorem
was based on the methods developed in [380]. A specialization of this theorem for the case of 2 nonsingular
algebraic projective surface was presented in {381]. Already in the case treated by Mumford the schema
Piex/s is not necessarily separable over S.

An essential improvement in the question of the representability of the Picard functor was Artin's
theorem in {86] stating that for any proper flat morphism f: X — S (finitely presented if § is non-Noetherian)
for which f,(@y)=@s for any change of base /1 X' =X >S<S’->S’, the functor Picx/g is an algebraic space

over S. Note that the condition f; (@)=, (cohomological flatness) is always fulfilled if the fibers of mor-
phism f are reduced {242], Artin's theorem reduces the question of the representability of the Picard fune-
tor by a schema to the question of the representability of a group algebraic space by a schema. Artin him-
self answered this question affirmatively for the case when the base schema is the spectrum of a local
Artin ring, by the same token obtaining anew the result of Murre [389] and of Sivaramakhrishna [491]. Ray-
naud [447] generalized this result to the case when S is a normal locally Noetherian schema of dimension 1
and the group algebraic space G is smooth over S (the latter condition canbe excluded by virtue of Avantara-
man's result). Furthermore, Raynaudobtained nontrivial sufficient conditions for the cohomological flatness of
the morphism f: X~ S, A detailed investigation was carried out in [447] for the case when the fibers of f
are algebraic curves; in particular, the connection between the schema Picgi g and the Neron model [414,
444] of the Jacobian variety of the common fiber of f was investigated. Raynaud's results were announced
in [445, 446].

In [295] Iversen, using Raynaud's results on the descent of group schemata [449], generalized the clas-
sical Weil construction of the Jacobian variety of a curve and constructed the Picard schema for a proper
flat morphism with geometrically integral one-dimensional fibers.

Important theorems on the finiteness of the Picard schema, due to Grothendieck, are discussed in
[225]. Murre's report [390] gives an account of Grothendieck's results on local representability.

In 1961 Mumford [377] defined the Picard group of a normal singular point on a complex algebraic
surface and posed the question of introducing the structure of an algebraic group on it. In [227] Grothen-
dieck sharpened this definition (by examining arbitrary local Hensel rings) and gave an affirmative answer
to Mumford’s question.

3. Hilbert Schema and Other Constructions. The Hilbert schema was introduced by Grothendieck in
{223] as a natural generalization within the framework of schemata theory of the classical Chow variety of
algebraic cycles. For any coherent sheaf ¥ on an S-schema X, Grothendieck defined the functor Quotgixs:
{Sch/S)—(Ens). The value of this functor on an arbitrary S-schema Z is the set Quotgixs(Z) of classes by
isomorphism of the factor sheaves of the sheaf Kzs.?g@z on X>S<Z which are flat on Z, finitely presented,

and have a support which is proper over Z. For the cases F =&, the functor Quot@x:x:s is denoted by
Hilby /s and is called the Hilbert functor associated with the S-schema X. For any polynomial P €Q [x]
there is defined a subfunctor Hﬂbx whose value on an S-schema Z is a set of closed subschemata

ToX ><Z flat and proper over Z, such that for any point z € Z the fiber T, T®lz (z) has P as the Hilbert

polynormal The functor Hlle /s 1s representable if and only if the functors Hxlb </g are representable,
and in this case, for the representmg object (the Hilbert schema) we have Hilbx,s... d Hilbf s, where Hilbf

iz the representing schema for Hllbx /s

Grothendieck proved_in [223} that when f: X = S is a quasiprojective morphism with a Noetherian
schema S, the functor Hxlbx is representable by schema Hxle of finite type and quasiprojective over
3. More generally, in this case the functor Quotgixis is representable by a quasiprojective schema of local-
ly finite type over S. When the morphism f: X —~ S is not quasiprojective, the schema Hilby /s does not
exist, in general. However, by virtue of Artin’s result {86] the functor Quotzixs is representable by an
algebraic space lccally finitely-presented over S for any schema X locally finitely presented over S. By
the same token the question of the representability of the functor Quotsixs is fully answered in the category
of algebraic spaces.
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The construction of the schema Hilb§ / for the case when X is a smooth algebraic surface over field
kand P is a polynomial of degree 1 is contained in Mumford's book [381]. In this case the functor Hilbi /s
coincides with the functor Di"i/k' also studied by Grothendieck {223] for an arbitrary S-schema X. Fur-
thermore, Mumford showed the connection between the Hilbert schema and the classical constructions of

Chow and van der Waerden of the Chow variety (also see [187, 380]).

Fogarty [188] investigated the connection between the Hilbert schema of an algebraic surface and its
symmetric product.

In [257] Hartshorne proved the connectedness (and even the linear connectedness) of the Hilbert schema

Hilb:’,,/k, generalizing the classical assertion on the connectedness of "the variety of modules of space
R

curves.” An algebraic proof of this result (in the language of ideals) is due to Cartier [150]. The Hilbert
schemata H!lbpg ,» Play an important role in Mumford's construction of the variety of modules of space

curves [380]. Mumford [378] showed that the Hilbert schema of nonsingular curves of degree 14 and genus
24 in a three-dimensional projective space over the complex number field has nilpotent elements in local
rings. The presence of the latter explains certain pathologies in classical algebraic geometry.

In {221] Grothendieck investigated the representability of other important functors in algebraic geom-
etry. His approach to the study of the automorphism group of an algebraic variety proved to be particular-
ly interesting. Grothendieck defined the automorphism schema Auty /S of an S~schema X as the represent-
ing object for the functor Autyx;s:8” —Auts (X X S’) from the category (Sch/S) into the category of groups.

In particular, if S = Spec (k) is the spectrum of a field, then the group of rational k-points of the group
schema Auty /& coincides with the k-automorphism group of the k-schema X. Grothendieck proved the
existence of the schema Auty/g for any projecrive S-schema X. The structure of an algebraic group on the
automorphism set of a projective algebraic variety had been introduced earlier by Matsusaka and Matsu-
mura (unpublished). In (358] Matsumura and Oort generalized Grothendieck's result to an arbitrary proper
S-schema X, The structure of an algebraic group on the automorphism set of a complete variety was in-
troduced earlier by Ramanujam [437]. The schema Auty/s is a group S-schema locally finitely presented
and, in general, unreduced [358].

We remark that even in the classical case when X = Spec (K), S = Spec (k), where K/k is the finite ex-
tension of a field, the schema Autg/y yields a new point of view on Galois theory. Namely, the algebraic
group Autg /) plays the role of the "present-day” Galois group, while its group of k-rational points is pre-
cisely the classical Galois group. For example, if K/k is purely inseparable, Autg /i (k) = {e}, and
dim Autg/) > 0(!). This classical case was examined in detail in [110]. See [505], for example, for the ap-
plications of this point of view to the theory of automorphisms of Lie algebras.

Analogously to the functor Autyx/s, Grothendieck defined and investigated the functors Homg (X, X'),
Isomg (X, X", and others.

In [368, 369] Miyanishi investigated the representability of the functor PH (G; X/S) associating with
each S-schema S' the set of classes by isomorphism of principal homogeneous spaces on Xs-=X 3( S’ rel-

ative to the group S-schema G. This functor was introduced by Grothendieck in [14] as a natural generali-
zation of the Picard functor (the localization of the functor PH (Gy; X/S) relative to the fpgc-topology is
the Picard functor Picx/g). When S = Spec (k) and G is a linear commutative algebraic group, this functor
is representable,and the k-schema representing it has a close relation with the Picard variety of divisors
of type G, constructed and studied by Bertin [124-127]. Miyanishi proved the representability of the func-
tor PH (G; X/S) for the case when the morphism is cohomologically flat, the Picard functor Picy /S is rep-
resentable by a sum of quasiprojective S-schemata, and G is a finite locally free group S-schema,

In the present survey we do not touch upon the very interesting questions connected with the repre-
sentability of "global schemata of modules™ [166, 192, 285, 379, 380].

§6. Formal Geometry

1. Formal Schemata. The definition and the foundations of the theory of such schemata are contained
in [219, 240, 248}, Formal schemata play an important role in the infinitesimal study of schemata and also
yield a convenient context for the theory of formal groups (cf. [169]). In the affine case they correspond to
the formal spectra of topological algebras, i.e., to the set of closed prime ideals equipped with the Zariski

284



topology and with a sheaf of local rings, Generally formal schemata are obtained by pasting together affine
formal schemata., The most important special case (and, it seems, as yet the only one usable in applica-
tions) consists in the examination of 2 commutative ring A with identity and of an I-adic topology on A. In
this case the formal spectrum Sp f(A) is a ringed space whose support | is a closed subset Spec (A) defined
by the ideal I, while the structure sheaf is the restriction of the sheaf (A), where A is the completion of A
in the I-adic topology. The most important construction leading to a formal schema is the construction of
the formal completion of the schema X along a closed subschema Y. The latter is a formal schema with a
topological space Y and a structure sheal @;=Iim &y//+!, where I is the sheaf of ideals of subschema Y.

n ~
The schema Y,=(Y, @x//"*) is called the n-th infinitesimal neighborhood of subschema Y,and X =1£_I§1Y s

The canonical morphism of ringed spaces i: X ~ X defines, for any coherent sheaf ¥ on X, its forn;al com~
pletion & = limF[[mHiF = j* (F),

In Chap. III of his monumental treatise [242] Grothendieck developed the cohomology theory of formal
schemata. The fundamental results of this theory are the theorems of comparison and of existence for
proper morphisms, Letf: X— 8§ be a proper morphism of Noetherian schemata, S,CS be a closed sub-
schema of schema S, ‘{0 = f (Se)» X (repsecnvely, S) be the formal completion of X (respecnvely, S) along
Xy (respectively, Sy), i X — X and js §—She corresponding canonic morphisms, f R — § be the restric-
tion of f on X. Grothendieck's comparison theorem asserts that for any coherent sheaf F on X the canonic

N - ~
homomorphism of sheaves RYf, (F)— R'f,(F) is an isomorphism. In particular, if s €S, then the m-adic
completion of the fiber (I?f:lf:«(l’))S at point s is isomorphic with lim A7(f7'(s), F®Fs /m7). For q = 0 this

theory should be considered as a natural generalization of Zariski”'s ftheory of holomorphic functors® {513].
In particular, Zariski's connectedness theorem follows easily from it. Grothendieck also investigated in
which case is the limit group isomorphic with the group H7(f7'(s), F®Fr(y). The results obtained by him
are very profound and are connected with the question of the cohomological flatness of morphism f. Gro-
thendieck's existence theorem asserts, under the same assumptions as in the comparison thecrem, that for
any coherent sheaf # on schema X there exists a coherent sheaf F on X for which F=~%. The theorems ob-
tained are formal analogs of Serre'’s comparison and algebraization theories from {478]. A survey of Gro-
thendieck's results are contained in his report at the Bourbaki seminar {219].

Grothendieck [227] gave a generalization of the comparison and existence theory to the case of not
necessarily proper morphisms.

Theorems, important for applications, on the algebraizability of a formal schema X over a complete
local ring A, whose support is projective over the residue field of A, are contained in [242].

. In {261] Hartshorne proved a formal duality theorem H!(X, Fy=Hom, (H¥ (X, Hom@ (F, ox)), &), where
X is the completxon of a smooth proper schema X relative to a closed subschema Y,wyx 1s a canonic sheaf
on X, and HX are local cohomologies relative to Y.

Hartshorne {260, 261], Matsumura [273], and Hironaka [270, 273] studied the formal completion of a
subschema Y in a smooth proper k-schema X. In particular, they investigated the question as to when the
field of "meromorphic” functions K(X) (i.e., global sections of the sheaf of complete rings of partial loeal
rings of schema X) coincides with the field of rational functions K(X). This coincidence holds when Y is a
complete intersection {260, 261] or an effective Cartier divisor with an ample normal sheaf {270] or,
finally, a subschema of a projective space [261, 273].

In [261] Hartshorne discovered an interesting relation of these questions with those on the cohomo-
logical dimension of the complement X\Y and on the Lefschetz-Grothendieck theory. To him also are due
the important theorems on the finite dimensionality of the cohomologies H!(X, F) [258, 260, 261, 264].
Hircnaka investigated the imbeddings of a formal schema Z in a smooth k-schema T so that T = Z and that
T would possess the properties of universality relative to rational mappings [270]. Here too an example
was presented of a nonalgebraizable formal schema; another such example was given by Hartshorne {261].

2, Formal Deformations., The techniques of formal geometry proved to be particularly useful in the
theory of deformation of schemata, designed to generalize to the case of schemata the fundamental resuits
of the Kodaira-Spencer theory of deformations of complex varieties. The basic questions of this theory
are the following: a) (The lifting problem.) We are given a k-schema X, of finite type and a certain mor-
phism u: Spec (k) — S whose image is a point sy €S. Does there exist a flat S-schema X of finite type for
which X, = XSQ? b) (The module problem.) Does there exist a universal family 22— .M for all liftings of
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schemata X4? As a matter of fact the answers to the questions posed are in the negative in the general case.
Let us assume that the answer to question a) is in the affirmative for some schema X,. In this case the
formal completion X along fiber X, is a formal schema over Spec(és, ) whose topological space is isomor-
phic with schema X,, while for any integer n = 0 the schema Xcsg@ s, s/m” is the n-th infinitesimal neighbor-

hood of schema X,. Thus, we arrive at a "formal lifting" of schema X;. Weakened forms of questions a)
and b) are the following formal analogs of them: a') We are given a complete local ring A with a residue
field k. Does there exist a formal schema X over A whose topological space is isomorphic with X,? b")
Does there exist a universal family, i.e., 2 complete local ring ¢ with residue field k and a formal schema
Z —Spec{6) such that for any formal deformation X — Spec (A) there exists the homomorphism -~ A of
rings for which X = ;Z‘%A? We remark that question b') is a formal analog of Kuranishi's construction

[327] of a local variety of modules in analytic geometry.

Grothendieck reformulated question b’) as a question on the prorepresentability of the following func-
tor on the category of Artinian k-algebras with residue field k, F: A - {set of A-schemata X of finite type
with X@k = X,}. The prorepresenting object for this functor is the formal module schema 2°— Spec(g). Ap-

plying Schlessinger’s [58] and Grothendieck's [219] criteria (see §5), we obtain an affirmative answer to
question b") in the following case: dimkH1 Xo» @% ) =m < = and H(X,, @Xo) = 0 (here @% is the sheaf of
germs of sections of the tangent bundle to Xy). Moreover, if H? (X,, ®§{0) = 0 (for example, X, is a curve),
then the ring ¢ = &[4, ...,¢,]]. This result is precisely analogous to Kuranishi's result cited above. In the
case when, in addition, schema X, is projective, Grothendieck's algebraization theorem mentioned in Para.
1 allows us to prove the effective prorepresentability of functor F, while Artin's theorem yields the alge-
braization of the formal module schema for X, (see §5, Para. 1).

Grothendieck [467] investigated question a') for a smooth schema X,. The formal lifting of schema
Xy to a formal A-schema X is effected in the form of a sequential construction of infinitesimal neighborhoods
Xpover S,=Spec(A/m?) such that X,,szgS,,_x = X,..- In view of the smoothness of X; such a construction can
n

always be made locally. Grothendieck showed that an obstacle to the pasting together of such infinitesimal
neighborhoods lies in the group H? (X,, ®§< 0). Moreover, the continuation of schema Xy upto a formal schema
X — Spec (A) is unique if H! X, @}1( ) = 0. We remark that complex~analytic analogs of this theorem were
considered by Grauert [13]. In particular, an affirmative answer to question a') follows from Grothendieck’s
theory if H? (X,, ®§( ) = 0 (for example, X, is an affine or smooth curve). If, furthermore, the schema is
projective over k, tgen by virtue of Grothendieck's algebraization theorem we obtain an affirmative an-
swer also to question a) for the schema S = Spec (A).

Particularly important applications of the preceding theory are the questions connected with the lift-
ing of k-schema X, to characteristic zero. In this we are interested in question a), where schema S is a
schema of characteristic zero (for example, S = Spec (W (k)) is the spectrum of the Witt vector ring over k).
By virtue of Serre's example [475] the answer to this question is not always in the affirmative evenfor smooth
projective surfaces. From Grothendieck's theory immediately follows an affirmative answer to this ques-
tion for smooth projective curves. When X, is an Abelian polarized variety, this question was examined by
Grothendieck and Mumford (cf. [383, 424]). For finite group schemata it was considered by Mumford and
Qort [424, 425].

In 1968, with the aid of the concept of a cotangent complex of a morphism of schemata, Grothendieck
succeeded in making a significant generalization of deformation theory of smooth curves to arbitrary rela-
tive schemata [235]. The theory of a cotangent complex and its application to deformation theory was con-
siderably developed by Illusie {290, 292], which in its own turn globalized the local theory of Andree [72}
and Quillen [436] (also see [341]).
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