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The present article consists mainly of papers reviewed in Referativnyi Zhurual ."qVlatematika ~ (Soviet 
Mathematical Abstracts Journal) during 1960-1971 and is concentrated around questions connected with ab- 
stract algebraic geometry. By the latter we mean first of all the foundations as well as those sections 
which arose in the mid-Fifties under the influence of Serre and Grothendieck. The ideas and methods of the 
latter turned out to have an immense influence on almost all sections of algebraic geometry (and on many 
other branches of mathematics) and gave a start to "Modern Algebraic Geometry. ~ A fundamental role in 
the latter is played by precisely those sections to which the present  art icle is devoted. The year 1958, when 
Grothendieck announced at the Edinburgh congress his program of investigations in algebraic geometry, 
serves as the starting date for this art icle.  In it we have not included those papers on commutative algebra 
and analytical geometry which were written under the direct influence of Grothendieck's paper. We have 
also left aside such important sections of algebraic geometry as K-theory, the theory of algebraic cycles,  
the resolution of singuLarities, the theory of modules, and theory of intersections; the theory of group 
schemata* and of formal groups has been touched on only incidentally, and they deserve a separate survey. 

w  F o u n d a t i o n s  of A l g e b r a i c  Geometry 

The establishment of the fundaments of classical algebraic geometry began comparatively long ago. 
Beginning with Hilbert and his successors (Noether, Krull, van der Waerden) algebraic geometry was based 
on the theory of polynomial ideals. The results in the papers from this school were summarized in Brog- 
~er's book [216]. After the appearance in 1946 of Well's book [507] valuation theory and field theory (the 
language of Weil's "generic points ~) became the commonly-accepted fundaments of algebraic geometry. 
Weft also introduced new objects of study in algebraic geometry, namely, abstract algebraic varieties. The 
powerful methods of commutative and, in particular, local algebra were introduced into abstract algebraic 
geometry (signifying at that time the study, of abstract algebraic varieties over an arbitrary field of con- 
stants) by Zariski and his school (Samuel, Cohen, etc.). An account of these methods can be found in Sam- 
uel [459]. 

Serre ' s  paper [468] on coherent algebraic sheaves served as the source of a subsequent process of 
reorganization of the fundaments of algebraic geometry ("Serre 's  language"). In it for the f i rs t  time there 
was introduced into algebraic geometry the ideas and methods of homological algebra and also was ex- 
tended the notion of algebraic variety (Serre 's  ~algebraic space~). Another point of view on algebraic varie-  
ties ("Chevalley's schemata ~) was developed by Chevalley [154] and Nagam [392, 297]. 

Finally, in 1958 Grothendieck, by developing and generalizing Ser re ' s  ideas, introduced into algebraic 
geometry the language of functors and of the theory of categories and also essentially extended the notion 
of an algebraic variety by laying the beginnings of the theory of schemata. Starting with the publication of 
the first  chapters of Grothendieck and Dieudonne's treatise [240-248], the language of the theory of schemata 
solidly became the custom of algebraic geometers and is now most widespread and commonly accepted. 
The orderl iness,  completeness, and geometricity of this theory permitted algebraic geometers not to dwell 
any longer on the foundations and to re turn to solving the concrete problems of algebraic geometry, be- 
queathed by previous generations, as well as to develop the connection of this science with other areas of 
mathematics. 

*Translator;s  note: I have prefer red  to use "schema ~ (plural ' schemata ~) even though there is a tendency 
nowadays to use "scheme ~ (plural "schemes ' ) .  

TransLated from Itogi Nauki i Tekhniki, Seriy~ Matamatika (Algebra, Topologiya, Geometriya), Vol. 
!0, pp. 47-112, 1972. 
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I.  Development  of the Notion of Algebra ic  Var ie t  7.  As we see f rom the preceding,  the development  
of the foundations of  a lgebra ic  g e o m e t r y  pa ra l l e l ed  the development  of the notion of an a lgebra ic  variety.. 
Beginning with the notion of Wel l ' s  a b s t r a c t  va r i e t y  and ending with the notion of Ar t i n ' s  and Moishezon ' s  
notion of an a lgebra ic  space,  this development  was s t imula ted  chiefly by var ious  const ruct ions  in a lgebra ic  
g e o m e t r y  (the Jacobi  variety., the Po inca re  schema ,  the space  of modules ,  min imal  modules ,  etc.:  see  w 
The c l a s s i ca l  definition of an a lgebra ic  va r i e ty  was r e s t r i c t e d  to affine or  projec t ive  k - s e t s  over  an a l -  
gebra ica l ly  c losed field k, i .e. ,  c losed in the Za r i sk i  topolog'y by subse ts  of an affine or  projec t ive  space  
over  k. The idea of c a r r y i n g  ove r  the cons t ruc t ion  of different iable  va r i e t i e s  (with the aid of pasting to- 
gether) onto a lgebra ic  va r i e t i e s  was due to Well. In [507] he defined a b s t r a c t  a lgebra ic  va r i e t i e s  as  a s y s -  
tem of affine a lgebra ic  va r i e t i e s  (Vot) in each of which there  a r e  picked out open subse t s  ~X/~V~ cons i s -  
tently i somorphic  with the open subse t s  W~cV~. Well succeeded in extending onto these va r i e t i e s  a l l  the 
fundamental  concepts  of c l a s s i ca l  a lgebra ic  geomet ry .  In 1950 L e r a y  [336] introduced the notion of a sheaf  
on a topological  space.  Carman's 1950/51 s e m i n a r  in P a r i s  was devoted to the development  of the theory  of 
sheaves .  This  notion pe rmi t t ed  the definition of different iable  and analyt ic  va r i e t i e s  f rom one point of 
view, including them within the gene ra l  notion of a r inged topological  space .  In 1955 Se r re  [468] d i scovered  
that a s i m i l a r  definition was appl icable  a lso  in a lgebra ic  geomet ry .  A r inged space  local ly i somorphic  to 
an affine va r i e ty  with a sheaf  of g e r m s  of r e gu l a r  functions on it came to be ca l led  an a lgebra ic  va r i e ty  (an 
a lgeb ra i c  space  in S e r r e ' s  terminology) .  The addit ional s t ruc tu re  of a r inged space on an a lgebra ic  v a r i e -  
ty p e r m i t s  not only the s impl i f ica t ion  of var ious  cons t ruc t ions  with a b s t r a c t  va r i e t i e s  but a lso  introducing 
in the i r  study the powerful  methods of homologica l  a lgeb ra ,  connected with the theory  of sheaves .  At the 
Edinburgh cong r e s s  in 1988 Grothendieck sketched the pe r spec t ive  for  the fur ther  genera l iza t ion  of the 
notion of a lgebra ic  va r i e ty  connected with the theory  of s chemata  [14]. The f i r s t  definitions of s chemata  
were  p re sen ted  in his r e p o r t  a t the  Bourbaki  s e m i n a r  in 1959 [219]. The idea of affine s chema ta  was s ta ted  
independently a lso  by C a r t i e r  (unpublished) and by IC/hler [299]. 

Le t  X be an affine va r i e ty  over  a field k with a coordinate  r ing k [X]. Its points {in the c l a s s i ca l  sense)  
a r e  found in one- to -one  co r r e spondence  with the h o m o m o r p h i s m s  f :  k [X] -"  [~, where [c is the a lgebra ic  
c losure  of field k. The ke rne l  of such a h o m o m o r p h i s m  is a m a x i m a l  ideal j /  of r ing k [3[]. The c o r r e -  
spondence f - -  j f  defines a bi ject ion of the se t  of points X (~':) of va r i e ty  X w~th coordina tes  in k (with iden- 
t if ication of points conjugate over  k) and with the se t  Spec m (k iX]) of max ima l  ideals  of r ing  k [X]. F u r t h e r -  
m o r e ,  the Za r i sk i  topology on X (k) co r r e sponds  to the spec t r a l  topology on Spec m (k [X]) in which c losed 
se ts  a r e  se t s  of m a x i m a l  ideals  containing a fixed ideal I c ~  [X]. The lat t ice of a r inged space  on X ([~) c o r -  
r e sponds  to an analogous la t t ice  on Spec m (k iX]} in which the f iber  at the point m~S0ec rn (~ [X]) of the la t -  
t ice sheaf  is a local izat ion of r ing  k [X] re la t ive  to a mul t ip l ica t ive  c losed  se t  S----~[X]\m. Converse ly ,  
each k - a l g e b r a  of finite type without nilpotent e l emen t s  is i somorph ic  to the coordinate  r ing of some affine 
va r i e ty  in the sense  of Ser re ,  and the co r re spondence  A - -  Spectra  (A) is a b i iect ive  co r respondence  between 
a k - a l g e b r a  of the type being cons ide red  and affine a lgebra ic  va r i e t i e s  (to within i somorphism},  Grothen-  
dieck genera l i zed  this co r r e spondence  in two e s sen t i a l  r e s p e c t s .  F i r s t  of al l  he noted that it should define 
a functor with values  in the ca t ego ry  o f r inged  spaces .  Fo r  e v e r y  homomorph i sm o f k - a l g e b r a s  ~: A --- B, 
the only r easonab le  method of defining the m o r p h i s m  $pec m (B) - -  Spec m (A) is that  to a max ima l  ideal 
mcB there  m u s t  c o r r e s p o n d  its p r e image  =-L (m) in A. However ,  this ideal no longer  has  to be ma x ima l ,  
although it a lways r e m a i n s  p r ime .  Grothendieck sugges ted  that  space Spec m ~A) be rep laced  by the space 
Spec (A) of al l  p r ime  ideals  with analogous spec t r a l  topology and with the latt ice of a r inged space .  This  
genera l iza t ion  yields  the functor ia l i ty  of the co r re spondence  A - -  Spec (A) and is analogous to Wel l ' s  idea 
of cons ider ing  the points of va r i e ty  X with coord ina tes  in an a r b i t r a r y  extension K/k  of the ~round field k. 
The nex-t r e m a r k  of Grothendieck was that we need to d i sca rd  e v e r y  condition on k-a lgebra  A and to cons ider  
that A is an a r b i t r a r y  commuta t ive  r ing  with unit ( some t imes  Noetherian}. Here  field k is r ep l aced  by an 
a r b i t r a r y  subr ing  B cA. This  genera l iza t ion  is of a meaningful  nature since it al lows us to explain ce r t a in  
c l a s s i ca l  phenomena in I ta l ian a lgebra ic  g e o m e t r y  "by the p re sence  of nilpotent e l ements  in r ing A." A 
r inged space  Spec (A) is cal led the affine schema  cor respond ing  to r ing  A and is a natural  genera l iza t ion  of 
an affine a lgebra ic  var ie ty .  The s tandard  cons t ruc t ion  of past ing together  r inged spaces  now p e r m i t s  us to 
~ v e  the definition of a schema  as a r inged space local ly  i somorph ic  to an affirm schema.  F r o m  a new point 
of view a lgebra ic  va r i e t i e s  a r e  reduced  schemata  of finite-type over  a field. 

The c h a r a c t e r i s t i c  f ea tu res  of this new theory  in a lgebra ic  geome t ry  a re  the following: 

I.  A commuta t ive  a lgebra  becomes  a pa r t  of a lgebra ic  geometTy. Namely,  this is a theory, of local 
obiects  of a lgebra ic  geomet ry ,  i .e. ,  of affine schemata .  The advantage of ~ such a viewpoint is mvo-fold. 
F i r s t ly ,  it p e r m i t s  us to c a r r y  over  all  the concepts  of commuta t ive  a lgebra  into ~eomet r ic  language and by 
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the same token puts a powerful tool in the hands of the a lgebrais t ,  namely,  geomet r ic  intuition. Secondly, 
by examining affine schemata  within the f ramework  of the genera l  theory  of schemata,  it a t t rac t s  to thair  
study the powerful methods of a lgebraic  geometry .  

2. The ~ o u n d  field k is rep laced  by an a r b i t r a r y  ~oTound schema S, i .e. ,  to examine schemata  X for 
which there is given a rnorphism f :  X - -  S (lattice morphism of an S-schema X). A r b i t r a r y  S -morph i sms ,  
namely, the mappings ~: X 1 - -  X 2 for whichf2o~ = f~,  where f i :  Xi -"  S (i = 1, 2) are  latt ice morphisms ,  
become morph i sms  of S-schemata .  Each schema X is a Z-schema ,  i .e. ,  a schema over  the affine schema 
S = Spec (Z). The c lass ica l  notion of the extension of the field of constants,  due to Zar iski  and Weil, is 
rep laced  by notion of a change of base.  For  any S-schema S' and S-schema X we can consider  the "change 
of base ,"  namely,  the S ' - schema  X(s.)=XXS'~$', where XXS" denotes a d i rec t  product  in the ca tegory  

S S 

of S-schemata .  Special cases  of this operat ion a re  such concepts  as  the reduct ion of a va r ie ty  by a pr ime 
module, the f iber  of a morphism,  etc.  Class ica l  vers ions  of the definitions of these notions were  only s l igh t -  
ly geometr ic  and r a the r  awkward. 

3. The introduction of nilpotent e lements .  The p resence  of nilpoteat e lements  in coordinate  r ings of 
a r b i t r a r y  schemata  proved to be natural  enough and of f requent  occu r r ence  in a lgebra ic  geometry .  For  
example,  the f ibers  of a morphism of the usual nonsingular a lgebra ic  var ie t i es  a re  schemata with nilpotent 
e lements  (for example,  Kodai ra ' s  "multiple f ibe r s"  in the theory  of a lgebra ic  sur faces) .  The p resence  of 
nilpotent e lements  in a "schema of modules"  or  in " P o i n c a r e ' s  schema"  allowed us to explain the previous-  
ly not well unders tood phenomena of c lass ica l  Italian a lgebra ic  geomet ry  as well as ce r t a in  pathologies of 
a lgebraic  var ie t ies  over  a field of posit ive cha rac t e r i s t i c  (see Mumford [376, 378, 382]). The theory of 
schemata with nilpotent e lements  plays an impor tant  ro le  in the study of the "~nfinitesimal" p roper t i e s  of 
a lgebraic  var ie t i es  and se rved  as the foundation of Grothendieck 's  fo rmal  geomet ry  (see w 

We r e m a r k  that o ther  a t tempts ,  which did not become prevalent ,  were  made to genera l ize  the notion 
of an a lgebra ic  var ie ty ,  in which a cent ra l  ro le  was played by the concept  of a local r ing of the field of al-  
gebraic  functions (Chevalley 's  schema [154, 392, 397, 266, 159, 509]). The idea of cons ider ing  a lgebra ic  
var ie t ies  over  a r b i t r a r y  Dedekind r ings  is due also to Nab'am [392]. 

A number of general iza t ions  of the concept  of a schema a rose  in ce r t a in  concre te  problems of a l -  
gebraic  geometry .  A natural  genera l iza t ion  of schemata  consis ts  in the immers ion  of the ca tegory  (Sch/S) 
of S-schemata  into some l a rge r  category.  F o r  example ,  the examinat ion of the ca tegory  of pro jec t ive  ob- 
jec ts  of the ca tegory  (Sch/S) leads to the notion of a formal  schema (Grothendieck [219, 240]) and to S e r r e ' s  
p ro -a lgebra ic  groups.  The dual concept of an inductive sys tem turned out to be useful in the a lgebra ic  
theory  of uniformizat ion of Pyate tsk i i -Shapi ro  and Shafarevich [45]. An analysis  of the ca tegory  (Sch/S) 
of cont ravar ian t  functors on (Sch/S) (or i ts subcategory  consist ing of sheaves on a ce r t a in  Grothendieck 
topology on S; see w further)  permi t ted  us to identify S--schemata with r ep resen tab le  functors .  This  point 
of view proved to be par t icu la r ly  useful for  the theory  of group S-schemata  [169-171]. Grothendieck [236] 
also suggested that a r b i t r a r y  r inged spaces  (or even the Grothendieck topology) be cons idered  as  ground 
schemata.  The theory  of such schemata ("re la t ive  schemata ' )  was developed in Hakim's  d i sser ta t ion  [255]. 
This notion proved useful in analyt ical  geometry .  

An essent ia l  genera l iza t ion of the concept  of a schema a re  a lgebra ic  spaces  introduced independently 
by Art in  [84] and by Moishezon (he cal led them "min ischemata"  [38-401). In Well 's  language an analog of 
such a c o n c e ~  was introduced in 1965 by Matsusaka (Q-var ie t ies ;  see [360]) in connection with the theory  
of modules of polar ized a lgebra ic  var ie t i es .  The major i ty  of definitions and resu l t s  of the theory of 
schemata was c a r r i e d  over  to a lgebra ic  spaces  by Knutson [314]. See w for details  on this theory.  

2. Theory  of Schemata ~ F rom !960 on, Grothendieck (in col laborat ion with Dieudonne) s t a r t ed  to 
pablish the monumental  t r ea t i se  on a lgebra ic  geomet ry  in which it was proposed to es tabl ish  the founda- 
tions of a lgebraic  geomet ry  within the f ramework  of schemata  theory.  Although no fur ther  chapters  of this 
t rea t i se  have been published, the major i ty  of the c lass ica l  r e su l t s  on the foundations have found in it their  
nanlral  genera l iza t ion and c lar i f ica t ion  in the theory of schemata .  We r e m a r k  that the degree of genera l i ty  
in this theory  has proved to be so grea t  that the publications of Grothendieck and Dieudonne r ema in  a lmost  
unique in schemata  theory  proper .  P a p e r s  E98-!00, 107, 143, 146, 180, 205, 251-254, 274, 275, 320, 328, 
329, 333, 335, 386, 428, -~84, 509, 5101 were  devoted to ce r ta in  unessent ia l  general iza t ions  of Grothendieck 's  
resu l t s .  A detailed analysis  of Grothendieck 's  resu l t s  in the theory  of schemata  would take up too much 
space.  We r e s t r i c t  ourse lves  only to a su rvey  of the individual highlights of this theory.  
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Chapter I of the treatise [240, 248] was devoted to the language of schemata; Chapters II and IV [241, 
244-247] were devoted to the study and definition of various classes of morphisms of schemata. The coho- 
mology theory of coherent sheaves on schemata (see w was developed in Chapter HI [242, 243]. The ter -  
minology introduced by Grothendieck in relation with the propert ies of morphisms of schemata includes 
more than a hundred terms.  All properties of Grothendieck morphisms separam into local and global ones, 
and in their own turn, those are subdivided into three categories:  finiteness conditions (morphism of local 
finite type, locally finitely presented morphism of finite type, finite morphism, quasifinite morphism, etc.), 
topological conditions (Noetherianness, quasicompactness, open and universally submersive morphisms, 
etc.), and properties which can be called good (smoothness, flatness, formal nonramifiability, etc.). Among 
the most importan~ results  in the theory of morphisms of schemata are theorems of the following types: 
cr i ter ia  of fulfillment of a given property,  construction conditions (the set of points at which a given proper-  
ty is fulfilled, constructively}, preservat ion properties af ter  a change of base, descent of a given property, 
etc. As a rule the proofs of these theorems reduce to the affine case, where they represent  sometimes pro- 
found results  from commutative algebra. Here the technique of passing to the projective limit, developed 
by Grothendieck, permits us to pass from arb i t ra ry  rings to Noether rings and even to algebras of finite 
type over Z. To the global propert ies  of morphisms re fe r  the propert ies of projectivity, of the properness 
of a morphism, investigated in detail in Chapter II. 

Grothendieck's results  gave a powerful impetus to the development of commutative algebra, by in- 
troducing new methods, ideas, and problems. We list some of them: 

1. The concept of flatness of a module (introduced by Serre  in 1955 [478]) received further develop- 
ment, was given a geometric interpretation, and its role in algebraic geometry and in commutative algebra 
was stressed.  

2. The creation of the technique of passing to the projective limit, mentioned above. 

3. The connection of the notion of the depth (or homologic dimension} of a module, introduced and 
developed by Serre [49], with cohomology theory and, in particular,  with local cohomology theory [227,234]. 

4. The creation of the theory of excellent rings, generalizing and systematizing the resul ts  of Zariski 
and Nagata on local Noetherian rings [401]. 

5. The theory of Hensetian rings, f i rs t  established by Nagata, was essentially developed and was 
made the foundation of the theory of gtale cohomologies, of smooth morphisms, etc. [247, 453, 467]. 

6. The theory of descent (see w further on) provided an influx of new ideas and problems into com- 
mutative algebra (for example, see [455]). 

7. The application of global methods of algebraic geometry and of cohomology theory permitted the 
solving of certain problems of factorial rings [15-17, 227, 344]. 

Concrete problems of algebraic geometry made it necessary to study schemata of a more special 
type. For example, the theory of singularities of algebraic varieties was connected with the study of local 
schemata, i.e., of open sets of schemata of the form Spec (A), where A is a local ring. A natural generali-  
zation of the concept of an algebraic group into the language of schemata (group schema, see [169-171]) 
proved to be suitable for the study of the reduction of an Abetian variety. ~n this language Raymaud [444] 
gave a very simple and natural definition of the Neron model of an Abelian variety. This concept, introduced 
in Well's language by Neron [414], plays an important role in the arithmetic of Abelian varieties.  Lichten- 
baum [340] and Shafarevich [463] developed the theory of two-dimensional regular schemata over a Dede- 
kind ring and, in particular,  the theory of "arithmetic surfaces �9 (also see [112, 128]). Other aspects of the 
application of schemata theory in the arithmetic of algebraic varieties are the theory of finite ~oToup 
schemata [421, 424, 425, 497], the theory of p-divisible ~oups  [51], the theory of Abelian schemata (Mum- 
ford [380, 385]), Greenberg schemata [209, 210]. 

The technique of blowing down sheaves of ideals to schemata, due to Gro~hendieck [241] (also see 
[321]), proved to be a powerful ~echnical tool in the resolution of the singularities of algebraic varieties 
over a field of zero character is t ic  (Hironaka [269]). The concept of an ample sheaf, introduced by Grothen- 
dieck in [241], played an important role in the theory of projective immersions of abstract  algebraic varie- 
ties (see w See [20, 32, 173, 174, 194, 348, 476] for surveys and textbooks on schemata theory. 

3. General Facts on Algebraic Varieties. Paral lel  with the development of schemata theory inves- 
tigations were continued on the general properties of algebraic varieties in the spirit  of classical algebraic 
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geomet ry .  Kuan 's  r e s u l t s  [317-319] re la te  to t h e o r e m s  of Ber t in i  type: if a va r i e t y  p o s s e s s e s  a ce r t a in  
p roper ty ,  then its common  hyper f la t  sect ion a lso  p o s s e s s e s  this p roper ty .  An analog of B e r t i n i ' s  theorem 
for local domains was obtained by Chow [157]. C a r t i e r  [148] in t roduced the notion of a local  pr inc ipa l  
d iv isor  ( C a r t i e r ' s  divisor)  and ~tve  a c r i t e r i on  for  the ra t iona l i ty  of a d iv isor .  Cheva l l ey ' s  1958/59 s e m i -  
car [466] was devoted to the theory of divisors. The last section of Chapter 4 of Grothendieck's "Elements" 
[447] was devoted to the general properties of Cartier's divisors and their connection with V~Teil's divisors. 
Papers [134, 178, 267, 305, 408, 420, 461, 462, 466] also are devoted to the theory of divisors. Interesting 
results have been obtained on endomorphisms of algebraic varieties. Ax [96, 97] proved that any injective 
endomorphism is surjective. Another proof of this fact was given by Borel [133]. The lattice of an al- 
gebraic group was introduced in Ramanugam's paper [437] on the automorphism group of a complete alge- 
braic variety. Later Matsumura and Oort [358] reproved this result in a stronger form (see w Many 
papers have been devoted to the differential properties of algebraic varieties. Each variety X over a field 

O" ~ " ~ k defines a sheaf ~X/k of ~,erms of one-dlmenslonal regular differential forms on X. The fiber of this 
sheaf at a point x 6 X is the 8x = -module O~x j~ of the IC~hler differentials of the ring 8x..~ over field k. 

The general properties of the sheaves n /k <and, more generally, even of sheaves n /S for an arbitr=y 
S-schema X) were studied by Grothendieck in [247] (also see [467]). Many properties of algebraic varieties 

I were expressed in terms of the properties of sheaf f~X/k. Thus, for example, the smoothness of X over a 
perfect field k is equivalent to the local freedom of she'af ~X/k (Grothendieck [247, 467], Nakai [405], Kunz 
[322]). The case of an imperfect field k was investigated by Asaeda [90]. Grothendieck [247] obtained anal- 
ogous criteria for the smoothness of a morphism within the framework of schemata theory. Other proper- 
ties of varieties (for example, normality), expressed in terms of the properties of ~X/k, were investigated 
in [185, 304, 325, 342, 498, 503]. The book [111] is devoted to the analogs of these results in analytical 
geometry. In [342] Lipman conjectured that if char (k) = 0, then variety X is nonsingular if and only if the 
dual sheaf e~----Horn~x (o~i~, ~x) of tangent vectors is locally free. Papers [316, 342, 343] are devoted to 
this conjecture. Arima [75, 76], Kodama [315], and Kunz [323] addressed themselves to differential forms 
of the second kind on an algebraic variety over a field of positive characteristic. The general properties 
of finite coverings of algebraic varieties are taken up by Abhyankar [69] and Popp [435], One of the central 
results of this theory is the Zariski-Nagata purity theorem for the ramification set. This theorem states 
that the set of ramification points of a finite covering/: V -- W is a divisor if V is normal and W is non- 
singular. In the case when the ground field k has a zero characteristic, this result was proved by Zariski 
in 1958 [514]. Nagata [396] proved it simultaneously (for arbitrary k). Later on, this theorem (in a differ- 
ent version) was proved over again by various authors [18, 93, 139, 195, 227, 325, 326]. Various analogs 
and generalizations of the Zariski-Nagata purity theorem were obtained by Grothendieck (for the Brauer 
group [231] and for a biratlonal morphism [247]), Dolgachev [18, 179] (for the property of smoothness of a 
family of curves), and Artin (SGA4). For textbooks on algebraic geometry (without schemata theory) see 
[55, 101, 154, 195, 297, 331, 459, 460]. 

w Cohomologies of Algebraic Varieties and of Schemata 

As is well known, the foundation for the topological and transcendental methods of studying complex 
algebraic varieties is the presence, on the one hand, of the theory of cohomologies with complex coefficients 
and, on the other hand, of the theory of cohomologies with coefficients in a coherent analytic sheaf. The 
profoundness of the results, generalizing the classical results of Picard, Poincare, Lefschetz, obtained by 
thesemethods at the beginning of the Fifties (Hodge, Hirzebruch, Kodaira, Chern), raised the natural ques- 
tion of the presence of analogs of cohomology theories for abstract algebraic varieties. The necessity for 
such a theory was stressed, on the other hand, by Well in connection with his significant conjectures in 
diophantine geometry. In 1955 Serre constructed a theory of coherent algebraic sheaves. In 1962 there 
appeared the theory of ~tale (or covering) cohomologies of Grothendieck - the first of the theories of the 
Well cohomologies destined to replace cohomologies with complex coefficients. Later on, other theories of 
Well cohomologies were proposed by a number of authors (Lubkin, Monsky, Washnitzer, Grothendieck, 
Verthelot). 

1. Cohomologies of Coherent Algebraic Sheaves. In the fundamental paper [46, 468] Serre included 
algebra{c va r ie t i e s  in the genera l  ca tegory  of local ly  r inged spaces  and for  the la t te r  defined the concept  
of a coherent  sheaf  of modules  over  a lattice sheaf  of r ings .  He a lso  developed the cohomology theory of 
such sheaves. In the case when X [s an algebraic variety over the complex number field C, any coherent 
algebraic sheaf F on X induces on the corresponding analytic space X an a coherent analytic sheaf F an. 
Serre's classical results [478] (well known under the designation "GAGA") show that for projective varieties 
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there holds the canonic isomorphism of cohomology spaces H i (X, F) - H i (X an, Fan). Moreover, Serre has 
proved that for any coherent algebraic sheaf 5- on X an there holds the isomorphism F an ~-- ~ where F is 
some coherent algebraic sheaf on X. Later on, these results were generalized by Grothendieck [217, 442] 
to the case of complete varieties (not necessarily projective) and by Hartshorne [261, 264] to the case of 
quasiprojective varieties. Grothendieck transferred Serre's theorems to a formal geometry (see w An 
essential development of Serre's work were Grothendieck's results on the cohomologies of coherent sheaves 
on arbitrary schemata [242, 243]. The following finiteness theorem is a central result. For any proper 
morphism /: X -- S and coherent sheaf F on X, the sheaves iRq):, (F) associated with the presheaf U -- H q 
(F i I~U), F//-ICU)) are coherent. 

In the case when S is the spectrum of field k and X is a projective varie~ over k, this result (estab- 
lishing in this case the finite dimensionality of the k-spaces H q (X, F))was proved by Serre. Serre's af- 
fineness criterion [469], contained in the characterization of affine varieties by the property of H i (X, D = 0 
for any sheaf of ideals I, was carried over to the case of affine schemata by Grothendieck [242] and by 
Nastold [412] (also see [194]). The techniques of Grothendieck's formal geometry allowed us to give a coho- 
mological generalization of the connection theorem and of Zariski's theory of holomorphic functions (see 
~6). The general theory of duality for coherent algebraic sheaves is another direction in the generalization 
of Serre's results. Grothendieck =~ave an outline of this theory at the Edinburgh congress [14] and in a re- 
port at the Bourbaki seminar [218]. Serre's theorem [513] states that for any nonsingular projective varie- 
ty over a field k of dimension n and for a locally free sheaf L on X the spaces H I (X, L) and H n-~ (X, L@~x) 
are dual to each other. Here o~ X is the sheaf of germs of regular n-forms on X, and L is a sheaf dual to L. 

In report [218] Grothendieck =~ave certain generalizations of this theorem and then at the Edinburgh 
congress [14] formulated and discussed the general duality theorem for arbitrary complete varieties. 
Hartshorne's seminar [259] was devoted to this theorem (and its generalizatior/for an arbitrary proper S- 
schema). The general formalism of duality, established in the language of arbitrary Weil categories, 
developed in [259, 501], was then used in other duality theories [118, 417, 499]. Another approach to the 
proof of the general duality theorem is due to Deligne (see [259], Appendix). The connection between these 
approaches was shown by Verdier [502]. The Altman-Kleiman seminar [71] was devoted to the specializa- 
tion of Grothendieck's results for the case of projective varieties. A very beautiful approach to the theory 
of duality on a curve was indicated by Tare [52]. Also see Nastold [411, 413]. The language of sheaf theory 
proved to be very convenient for the formulations and proofs of many results of classical algebraic geome- 
try, namely, the questions connected, first of all, with the Riemann-Roch theory and the theory of linear 
systems (see [31, 513]). 

Sampson and Washnitzer [457, 458] obtained important results on the behavior ofH i CK, F) relative to 
monoidal transforms and the BYdnneth formula. The la~er was significantly generalized by Grothendieck 
[242]. The behavior of cohomologies relative to proper mappings and algebraic correspondences was 
studied by Snapper [492, 495] and Matsumura [357]. The first of them proved a very important theorem 
stating that for any coherent sheaf F on a nonsingular variety X and Euler divisors D I ..... D k the charac- 
teristic 7. (X, F ~ ~ (~D~ +... + =~D~)) is a polynomial in n I ..... n k [493]. This result was used by him to 
define the intersection number for divisors [494] and was then generalized to quasiprojective varieties by 
Cartier [149]. Borelli [134] introduced the concept of a divisoral variety a special case of which is a non- 
singular or quadiprojective variety and extended Snapper's theorem to this variety. A generalization of 
Snapper's theorem is due also to ~oishezon [37]. 

While the cohomologies of projective and affine varieties have been studied in sufficient detail, there 
have remained many questions on the cohomologies of arbitrary quasiprojective varieties. The first re- 
sult in this direction was Grothendieck's theorem [234] stating that l-/n(X, F) = 0 for any coherent sheaf F 
on an n-dimensional variety X all of whose irreducible components are improper. An elementary proof of 
this theorem (not using local cohomology theory) was given by Kleiman [310]. Fundamental results on the 
cohomologieal dimension of quasiprojective varieties were obtained by F/artshorne [260, 261]. In particular, 
he has  proved  that  cd (P~ \ ,C)=  l if C is a curve,  and this put an end to the a t t empts  to give a cohomological  
p roof  to K n e s e r ' s  old prob lem [318]. Together  with Goodman he g'ave a cha rac t e r i za t i on  of va r i e t i e s  the 
cohomolo~y g'roupe on which a r e  f in i te -d imensional .  

The main  technical  tool in ~he preced ing  theory  is +.he theory of local cohomologies  of coherent  sheaves ,  
due to Grothendieck [227, 234]. By genera l iz ing  the c l a s s i ca l  definition of cohomologies  with compact  sup-  
p o r t s , h e  defined groups r respec t ive ty ,  s h e a v e s ) o f  local  cohomologies  H~ (X, F) ( respec t ive ly ,  J{w (F)) of 
sheaf  : re la t ive  to a c losed subschema  Zc_X. Here  a r e  the mos t  impor tant  r e su l t s  of this theory:  
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a) A. cohomological  cha rac te r i za t ion  is given of the impor tant  concept  of the depth, depth Z (F), of a 
sheaf F re la t ive  to subschema Z. This concept is the global var iant  of the notion of the depth (or homologi-  
cal dimension) of an A-module M, due to Se r r e  [49]. The re  holds the theorem depthz(F) ~ k ~,~r  
i < k .  

b) The exact  sequence 

. . . .  n z '  ( X , F ) - , . . . .  

allows the connection of groups Hi(X, F) and H i ( X \ Z , F ) .  

on local  duality is proved permit t ing the computation of the group Extk  (M, A) for an C) A theorem 
i A-module M in terms of the local cohomologies ,h~ (A4)----H{m ~ (Spec(A), ~W) (under certain restrictions on 

ring A). 

d) The theorems on the finiteness of sheaves ' ~z iF), due to Grothendieck [227] and then generalized 
by Hartshorne [262] and Peskins [430]. 

We mention the most important applications of this theory. The concept depth Z (F) is closely con- 
nected with the question of the coherent extension of a sheaf FIX- Z. In particular, results in item a) per- 
mit us to prove again a part of the assertions of M. Baldassarri and his students [101'-106, 351-355] on the 
characterization of torsion-free sheaves as well as one of Hartshorne's results [256]. The results in item 
d) were applied to the theorems on the finiteness of cohomologies for quasiprojective varieties [261, 428]. 
Sheaves of local cohomologies play an important role in duality theory [259]. With their aid we can con- 
struct the canonic injective resolvent of a sheaf (the Cousin complex), which plays one of the central roles 
in this theory. Sharp [485] has studied this complex in the case of affine schemata. The theorems of finite- 
ness of local cohomologies were applied for the generalization of the comparison and existence theorems 
(see w to the case of not necessarily proper morphisms [227]. In [262] Hartshorne proved the affine dual- 
ity theorem stated as a conjecture by Grothendieck in [227]. 

Important applications of local cohomology theory relative to "Lefschetz-type" theorems on the com- 
parison of the Picard group (or the fundamental group) of schema X and of its subschema Y of codimension 
I were obtained in [227]. This comparison is carried out in three stages. At first Pic C~) and Pic (U) are 
compared, where U is an open set containing Y while X is the formal completion of X along Y (see w 
Next, Pic (U) and Pic (X) are compared, and finally Pic (X) and Pic (Y). Local cohomology theory has a 
bearing only on the first two stages, the last stage being studied by the methods of formal geometry. The 
investigation of the second stage is connected with the condition of factoriality of the rings of points x 6 
X/U. Here Grothendieck obtained important results, one of which is the affirmative answer to the following 
conjecture of Samuel: a local Noetherian ring A, being a complete intersection and factorial in codimen- 
sion m 3, is a factorial ring (see Giraud's report [199] for a survey of these results). In the investigation of 
the analogous stage for a fundamental group Grothendieck generalized the Zariski-Nagata purity theorem 
(see w I) to the case of local Noetherian rings of dimension z 3, being complete intersections. 

Grothendieck obtained both local as well as global versions of Lefschetz's theorems on hyperflat 
sections. A special case of these results is, for example, the following theorem. For any complete inter- 
section X in P~ of dimension >- 3 (respectively, ~- 2), Pic (X) ~ Z and is induced by a hyperflat section (re- 
s cUvel �9 The r pe " Y, I (X) = 0). se esults generalize the classical facts true for the case when X is nonsingular 
and complex (cf. [41, 197, 198]). A generalization of Grothendieck's theorem was given by Rayuaud [438]; 
also see Hartshorne [261]. 

2. Well Cohomolo~es of Schemata ~ In 1949 Weil pointed out the need for some theory of the coho- 
mologies of abstract algebraic varieties, analogous to the theory of complex cohomologies, which would 
possess all the formal properties (Poincare duality, IGinneth formula) for the derivation of an analog of 
Lefschetz's formula on fixed points. More precisely, such a theory should be described by the following 
assignments and axioms: 

There exists a contravariant functor X -- H* (X) from the camgory of smooth projective k-varieties 
into the category of finite-dimensional anticommutative graded algebras over a field K of zero character- 
isric. Here the following properties should be fulfilled: 

A. Poincare dually. Namely: a) groups H i (X). = 0 for [ > 2n (n = dimX), b) the or~ntation isomor- 
phism H m ~) -~ K exists, c) the canonical coupling H ~ iX) x H 2n-i (X) --- H m ~X) ~ K is nondegenerate. 
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B. K'dnneth formula .  Let  Pl: Xi x X 2 - -  Xi (i = 1, 2) be projec t ions .  The canonic mapping a $ b ~  
p~ [a).p~.~b) defines the h o m o m o r p h i s m  H* (Xt)~H '~ (X~.) --~ H ~ (X, X X~). 

C. Gysin hom om orph i s m .  There  ex i s t s  the h o m o m o r p h i s m  of ~oToups 7X: C p (X) - -  H 2p (X), where  
cP (X) is the ~oT0up of a lgebra ic  cyc les  of codimension p of va r i e t y  X. Such a h o m o m o r p h i s m  should be 
functor ia l  with r e s p e c t  to X, mul t ip l ica t ive  (Txxr (Z X ~ ' ) = T x  (Z)| (V/)), and centTal (if P is a point, then 
C* (P) ~- Z - -  H* (P) - K is a canonic imbedding). 

The p re sence  of such a theory  p e r m i t s  us in a fo rma l  manne r  to der ive  L e f s c h e t z ' s  formula  for the 
fLxed points of the co r re spondence  and, in pa r t i cu la r ,  if k is the a lgebra ic  c losure  of a finite field, to ob- 
rain proofs  of the f i r s t  two conjec tures  of Well on the i - func t ion  ( ra t ional i ty  and functional equation) (see 
[311]). tn case  k = C the funcmr  X - -  H* (X an, C) yie lds  the theory of Well cohomologies .  

S e r r e ' s  a t t empt s  to cons t ruc t  such a theory,  s t a r t ing  f rom the theory  of coheren t  sheaves ,  was not 
crowned with success .  To be p r ec i s e ,  in [471] Serve  p roposed  to examine the cohomology H~(X, V/(#x)) 
with coeff ic ients  in the sheaf  of  r ings  of Witt vec to r s  ove r  local  r ings  X. Although these cohomologies  
p roved  useful  for  many  quest ions connected with al~oebraic va r i e t i e s  over  a field of posit ive c h a r a c t e r i s t i c s  
(for example ,  see [381]), they turned out to be unfit for  Wei l ' s  theory.  Even for  Abetian va r i e t i e s  the coho- 
mologies  N ~ (X, ~ (#x)), cons ide red  as  modules  over  the Witt r ing  W (k), a re  not finitely genera ted  (Serve 
[479]). We have not succeeded even in obtaining the "true ~ Betti  numbers  of va r i e ty  X with the aid of co-  
he ren t  sheaves  [286, 471]. 

A comple te ly  di f ferent  approach  to the definition of Weil c o h o m o l o ~ e s  was f i r s t  sugges ted  by Gro-  
thendieck [141]. The f i r s t  publicat ion on this theory. (Grothendieck 's  cover ing  or  ~tale cohomologies)  ap-  
pea red  only in 1962 in the fo rm of r e p o r t s  a t  A r t i n ' s  s e m i n a r  at H a r v a r d  [78]. Surveys  [1, 30, 79, 83, 200] 
a r e  devoted to sketching the mi le s tones  in this theory.  The Ar t in -Gro thendieck  s e m i n a r  in 1963/64 (SGA 4) 
as  well  as  V e r d i e r ' s  pape r  [499] ~vas devoted to the proofs  of the fundamental  t heo rems  on ~tale coho- 
mologies  (with the aid of these t h e o r e m s  it was es tab l i shed  that  a var ian t  of the theory  of ~tale cohomolo-  
gies ,  i .e, ,  of l -ad ic  cohomologies ,  is the theory  of Weil cohomologies) .  These  r e su l t s  as well as  the ap-  
pl icat ions to $- func t ions  on a lgeb ra i c  va r i e t i e s  were  the subject  of Grothendieck ' s  s e m i n a r  of 1965 (SGA 5). 
Tate  [50], Kleiman [311], Grothendieck [228], and Deligne [164] (cf. the su rvey  [44]) have d i scussed  the ap-  
pl icat ions  of this theory to the a r i thmet ic  quest ions of a lgebra ic  va r i e t i e s .  Other methods  of de te rmin ing  
Well cohomologies  were  sugges ted  by Lubkin in 1967 [345] and by Grothendieck [237] (see l a te r  on about 
them). 

3. Grothendieck Cohomologtes  of Schemata .  The cons t ruc t ion  of these cohomologies  is based  on the 
genera l  notion of Grothendieck ' s  topology. The l a t t e r  s ignif ies  the ~ v i n g  of a ce r t a in  ca tegory  T with f iber  
bundles and of a col lect ion Coy (T) of fami l ies  of m o r p h i s m s  {U~U}0.Er ' ,6r cal led the cover ings  of object  
U. Here  ce r t a in  natura l  ax ioms  should be fulfilled, turning into the usual ax ioms  for  a topological  space if 
as T we take the ca t egory  of open se ts  of some topological  space  (morph i sms  turn into embeddings) .  The 
genera l  f o r m a l i s m  of Gro thendieck ' s  topology and of its var ian t ,  leading to the notion of a topotogized 
ca t egory  (site), v,'as developed in (SGA Q (also see Giraud [200] and [468, 469]). At the p resen t  t ime this 
theory  plays an independent ro le  in homological  a lgebra ,  ca tegory  theory,  and l o ~ c .  I f X  is a schema ,  i fT  is 

some subca tegory  of the ca t egory  of X - s c h e m a t a  (Sch/X), and if the fami l ies  {U~ ~U}~ E~ of X - m o r p h i s m s  

into T such that U=[J/,(U~) are  cover ings ,  then we obtain the notion of Grothendieck 's  topology of s chema  

X, a s soc i a t ed  with the ca tegory  T. F o r  example ,  if as  T we take the ca tegory  of ~tale m o r p h i s m s ,  we then 
obtain the ~tale topology for s chema  X,which we denote Xet. The idea for  such a mpotogy was suggested 
by Grothendieck in Serve [470]. If T is the ca t egory  of s t r i c t ly  flat quas icompact  m o r p h i s m s ,  then we ob- 
tain the fpqc- topo logy  of schema  X, denoted Xfpqc.  Other Grothendieck topologies of schemata  - the quas i -  
finite Xqf ,  the s t r i c t ly  flat  f initely p re sen ted  X /pp f ,  e tc .  - a r e  obtained analogously.  In pa r t i cu la r ,  if T is 
the ca t egory  of Z a r i s k i l o p e n  subse ts  of X, then we obtain the usual Za r i sk i  topology XZa r of schema X, 
La te r  on, Grothendieck genera l i zed  the notion of a sheaf  with values in a ca tegory  C to a topological  space 
by defining a sheaf  on the Grothendteck topology T as a ce r t a in  con t rava r i an t  functor F: T - -  C sa t is fying 
a ce r t a in  axiom (the sheaf  axiom).  For  any Abelian sheaf  (C is the ca tegory  of Abellan ~oToups) the coho- 
rnotogy ~voups H i (T, F) a re  defined by the usual methods. (in the non-Abelian case,  cohomology theory was 
developed by Giraud [202, 204]). In pa r t i cu la r ,  for schema  X there have been defined var ious  Grothendieck 
cohomo[ogies:  the ~tale cohomolo~o~/H i fXet , F), the fpqc -cohomology  H [ (Xf~qc, F), etc.  All of the usual 
f o r m a l i s m  of sheaf  theory  takes place within ~ e  f r a m e w o r k  of the theory of sl ieaves on Grothendieck 
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topologies [78, 169] (SGA 4). When X = Spec (k), where  k is a field (i.e., X is a "point"), the ~v ing  of a 
sheaf  F on Xet is equivalent to the ~v ing  of the GaI (k/k)-module F(,%)= IimF(K), where K/k a re  all possible 

z 
extensions of the Galois field k. The groups of cohomologies  H i(Xet,  F) a re  p rec i se ly  the Galois cohomolo-  
gies H i (Gal (k/k), F ([Q). F rom this point of view the theory  of Galois cohomologies,  set  forth,  for  example,  
in S e r r e ' s  book [48], can be cons idered  as  a point cohomolo~o'y theory.  Commutat ive group X-schemata  [421] 
furnish examples  of Abelian sheaves on Xet and X / p q c .  For  example,  the mult ipl icat ive group schema G m 
defines the sheaf  O~,x (U-~Q~,.x(U)=.F ~U, 9~)); the constant group A defines the constant  sheaf  A X CU-" 
A~0(U)). A genera l iza t ion of "I-Iilbert's theorem 90," proved by Grothendieck,  s ta tes  that H' (Xet, Gm~x) = 
Pic (X). The group H 2 (Xet, GIn,X) turned out to be c lose ly  re la ted  to the B r a u e r  group Br  (X) of schemaX.  
The la t te r  concept,  general iz ing the c lass ica l  concept  of the B r a u e r  group of a field, was introduced by 
Auslander  and Goldman [95] for  the case of commutat ive  r ings and was extended to the case  of a r b i t r a r y  
schemata  by Grothendieck. The foundations of this theory and cer ta in  impor tant  computat ions a re  contained 
in three  fundamental papers  [299-301] of Grothendieck. Other computations of the Brau e r  group a r e  to be 
found in [23, 366, 464]. The f i r s t  computat ions.of  ~tale cohomologies  for  a lgebra ic  curves  and sur faces  
were  made by Artin.  In this case  the groups H I (Xet ,(Z/n)x)  ((n, char  (kn)) = I) a re  comple te ly  analogous to 
the c lass ica l  groups H i (X an, Z/n) if X is a complex curve or  sur face .  La te r  on Art in  proved a compar i son  

i theorem H (Xet, (Z/u)X)=~ I-I i CX an, Z/n) for  a lgebra ic  va r ie t i e s  over  field C (SGA 4) (also see [200]). The 
computation in [443] of cohomologtes  Hi(X,t, ~), where ~ is the sheaf  assoc ia ted  with the Neron model  of an 
Abelian va r ie ty  A over  the field of ra t ional  functions of curve  X, allowed us to in te rpre t  and genera l ize  the 
resu l t s  of Ogg [416] and of Shafarevich [53] on pr incipal  homogeneous spaces  over  A. When X is a two- 
dimensional r egu la r  schema over  a homogeneous r egu la r  schema B, group Br  CO proves  to be c lose ly  r e -  
lated with the Shafarevich group H'(B,,, ~9, where  ~ is the Neron model  of the Jacobi va r ie ty  of the com-  
mon f iber  X. In the geomet r ic  case when X is an ell iptic surface ,  this connection was d i scpvered  by Shafa- 
revich  [54]. tn the case of a lgebraic  sur faces  X the Betel numbers ,  calculated as dimFz(H 1, }let, (z/~)~) 
(5 is a p r ime  not equal to char  k), coincide with those de te rmined  previous ly  by Igusa [287]. Fur thermo' re ,  
in this case the group Br  (X) (its divisible part) can be in te rpre ted  as an analog of the group of t ranscenden-  
tal cycles  on X. We also note the decisive ro te  of the B r a u e r  group in the Art in  and Mumford resolu t ion  of 
L u r o t ~ ' s  conjecture  [165]. The fundamental p roper t i e s  of 4tale cohomologies  were  proved by Art in  and 
Grothendieck (SGA 4). Art in  proved a theorem on homological  dimension (cdX -~ dim X for  a lgebra ic  va r ie -  
ties) and a f ini teness theorem: the group H i (X, F) is finite for  any per iodic  sheaf  F e i the r  on a p rope r  
schema X or  on an exce l len t  schema X of cha rac t e r i s t i c  zero .  To Grothendieck a re  due a " theorem on change 
of base ,"  a Klinneth formula,  and a theory  of cohomologies  with compact  supports .  Verd ie r  [499, 500] an- 
nounced general  duality theorems  and Lefschetz  formulas  analogous to the Atiyah-Singer-Bot~ formulas  for  
el l iptic complexes .  Lefschetz  formulas  for  ~tale cohomologies  were  cons idered  by Raynaud [439, 441]. For  
any algebraic  var ie ty  X over  k and for  a pr ime Z ,' char  k the 6taie cohomologies  define t - ad i c  cohomologies  
of X. By definition, H'(X, Z,) = H_m H'(X,t,(Z/I~)). The Q ! -  spaces  kl' (X, Q,) = H  ~ (X. Zz)~Q z play the ro le  of 

Weft cokomologies for  X. The in teres t ing  quest ion of the independence of the Betti  numbers  b i (X; Z) = 
dimQ~ H 1 (X, QZ) f rom Z has been answered only in special  cases  (for example,  d imX <- 2). See [50, 228] 

as well as  the survey  [44] for  the applicat ion of Z-adic cohomologies to a r i thmet ic .  

Using the concept of the Grothendieck topology, we can give a cons t ruc t ion  of the c lass i fying space 
for an algebraic  or a d i sc re te  group G [236]. A detai led exposi t ion of the cor responding  theory  is contained 
in Giraud's  book [204]. Grothendieck also gave an a lgebra ic  definition of Chern c lasses  of the r e p r e s e u t a -  
tion of a d i sc re te  group G over  an a r b i t r a r y  field k [236]. The ~ n e r a l i z a t i o n  of these ideas to a r b i t r a r y  
Lie groups and thei r  r epresen ta t ions  was ~ v e u  by Geronimus [9-11]. 

Shatz [486-490] and Mazur [363, 364] devote themselves  to the study of the general  p rope r t i e s  of o ther  
Grothendieck cohomologies as well as to ce r ta in  computations.  Mumford [379] applied the Grothendieck 
topology to module problems.  Mazur ' s  papers  (cf. [27]) contain a computation of flat cohomologies (/pqc or  
/pp/~ for number schemata  as well as applications to the a r i thmet ic  of a lgebraic  var ie t ies .  The topologies 
X/pqc and X f p p / h a v e  proved to be par t icu la r ly  useful in the theory  of group schemata  [168-171]. F o r  ex-  

ample,  we mention the in terpre ta t ion  of =~'oups of principal  homogeneous spaces of a group S-schema G as 
the group H i ( S ~ p / ,  G) [34, 369, 490]. We r e m a r k  that by vir tue of Grothendieck 's  theorem [231], if G is a 

"~ i S  i S  G % smooth schema,  then H ( f p p f ,  G) = H ( e t '  ) . .  par t  of paral le l  resu l t s  on Grothendieck cohomologies  in 
another language was obtairied in [151-153, 177]. 
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4 :  Other Cohomology Tll.eories of Schemata.  a) De Rham cohomologies  of a lgebra ic  var ie t ies .  The 
beginnings of this theory were  set  forth in Groth.endieck's fundamental paper  [232]. For  any S-schema X 
Grothendieck defines the de Rham cohomology H~R (X/S) as the hypercohomology H n (X, 0~"/S) of a complex 
of sheaves of re la t ive  different ia ls  of schema X. When S = Spec (C) and X is a smooth a lgebraic  var ie ty  
over  S, Grothendieck, developing the ideas of Atiyah and Hodge [91], proved the compar i son  theorem 
H~R (X/C) = H n (X an, C). This theorem pe rmi t s  us to compute the cohomologies of a complement  to a hy-  
pe r su r face  in a pro jec t ive  space with the aid of the cohomology c lasses  induced by ra t ional  different ial  fo rms  
with poles on this hypersur face .  This r e su l t  was used by Atiyah, Bott, and G;Irding in [6]. 

More  general ly ,  Grothendieck defined the sheaves of re la t ive  de Rham cohomologies as ~{~R ( X / S ) =  
Rl / ,  (~2}/s), where on the r ight  stand the values of the i- th hyperder iva t ive  functor of the d i rec t  image func- 
tor  of sheaf/~,  on the de Rham complex i]~L/S. I f / :  X - -  S is a p rope r  smooth morphism of complex al-  
gebraic var ie t ies ,  then from Grothendieck 's  compar i son  theorem follows the exis tence of a canonic i somor -  
phism of analytic coheren t  sheaves  ~ R  (X/S) ~' ~- iPl/a, n (C)~c~san" Katz andOda [25] gave ana lgebra ic  definition 

of a canonic integrable connection (the C-auss-Manin connection) on the sheaves 3g~  (X/S). In the preceding 
situation this definition reduces  to the connection on a vec tor  bundle definable by a local ly f ree  sheaf 
3g~R (X/S) an whose sheaf  of hor izontal  sect ions coincides with /~/~n (C). When X/S is an algebraic  curve 
over  a functional field, the Katz-Oda const ruct ion  reduces  to the one proposed ea r l i e r  by Manin in [28]. In 
a slightly less genera l  case  an a lgebra ic  definition of the Gauss-Manin connection was ~ v e n  by Grothendieck 
[237], Katz gave an a lgebra ic  proof  of the r egu la r i ty  theorem for the Gauss-Manin connection [302]. Ana- 
Iytical proofs  were  given by Griffith [215] and Deligne [163]. The concept of a regu la r  connection genera l izes  
the c lass ica l  notion of a different ial  equation with a r egu la r  s ingular  point and is the subject  of Deligne's  
book [163] (also see [302, 350]). A genera l iza t ion  of Grothendieck 's  compar i son  theorem also is given in it. 

Katz [300, 301] ~ v e  an in terpre ta t ion  of Dwork~s resu l t s  [182] with the aid of de Rham cohomologies 
and of the Gauss-Manin connection on them. Oda [415] studied the connections between H~) R (X/k), where 
X is a complete var ie ty  over  a per fec t  field k of cha rac te r i s t i c  p > 0, and the Dieudonne modules c o r r e -  
sponding to the P i c a r d  schema P tCx/k .  

Since the spaces  H~) R (X/k) hard  been defined, genera l ly  speaking, over  a field of zero  cha rac te r i s t i c ,  
the de Rham cohomologies a re  not the Well cohomology theory.  Never the less ,  Har tshorne  [261] has proved 
Po inca re  duality for  H~R (X/k), while in the case of a zero  cha rac te r i s t i c  he has given an a lgebraic  defini- 
tion of the Gysin homomorphism and of the tCdnneth formula.  H e r r e r a  and Liebermann [265] proved that 
for  a smooth subschema Y c X  of an a lgebra ic  var ie ty  over  field C there  holds the i somorphism /-f* (Y, C) 
"~I!m_H~u(Y~)/C ), where y(k) is the k- th  inf ini tesimal  neighborhood of subschema Y. This r e su l t  was ob- 

tained independently a lso by Deligne. The la t ter  has also investigated in detail  the connection between de 
Rham cohomologies and Hodge cohomologies for va r ie t i e s  over  a field of zero  cha rac te r i s t i c  [162]. 

b) Crys ta l  cohomologies.  The de Rham cohomologies found their  natural  general izat ion in the f r ame-  
work of c rys t a l  cohomologies.  The basic construct ions  of this theory and also the program for fuatre  in- 
vest igat ions in this a rea  formed the subject  of Grothendieck 's  1966 lec tu res  [237]. The fundamental r e -  
sults of this theory,  establ ishing that c rys t a l  cohomologies a re  Well cohomologies,  were announced la te r  
on by Berthelot [!13-121]~ 

For any S-schema X Grothendieck proposed to examine topologized category (X/S)cry s whose objects 
are all nilpotent S-imbeddings UC-.T, where U is a Zariski-open subset of X, while the ideal of U in T is 
provided with a lattice of separated degrees. Morphisms of the pair (U, T) are defined in the natural way, 
and the Grothendieck topology on (X/S)CrFs is induced by the Zariski topology on X. The sheaf on (X/S)CrFs 
is given by the system of sheaves F(U ' T) on T. The lattice sheaf ~x/s is defined by the system F(u,r ) =~r. 

If X is smooth over S, then each coherent sheaf ~ on schema X, provided with an integrable connection, 
defines a sheaf of modules on (X/S)CrFs. Berthelot [115] proved the isomorphism H* ((X/S)crF s, ~'Crys)~ 

H* (Xz~, J r |  where on the r ight  stand the hypercohomologies  of the complex ~r@o~/s of coherent  sheaves 

on X, defined by the connection on ~'. When the S-schema is of zero  cha rac te r i s t i c ,  this r esu l t  was proved 
by Grothendieck [237]. in par t icu lar ,  if J r = ~ x ,  this r e su l t  shows that ?/~R (X/S)~/-I*  ((X/S)crys,~vx/~) and, in 

par t icular ,  the de Rham cohomotogies can be computed without differential  forms (!). In o rde r  to obtain 

the V~eil cohomoiogies from c rys t a l  cohomologies,  for any schema X 0 over  a per fec t  field k we need to set 
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H~rys(Xo/k) = li, m H* ((Xo/S=)crys,#x~,s~), where S n = Spec (w/pn+iw) is the spect rum of the quotient r ing of 

the Witt r ing W (k). If X 0 is proper ,  smooth on k, and is l ifted up to the v e ry  same schema X over  S = 
Spec (W (k)), then there  holds the i somorphism HCry s (X0,/k) HDR (X/S). This r e su l t  shows the invariance 
of the de Rham cohomologies I-I~R (X/S) re la t ive  to the different  tiftings of schema X 0 up to schema X. This 
r e su l t  was obtained by other  methods by Lubkin [345] and Monsky-Washni tzer  (cf. [237]). The cohomology 
groups H~vis (Xo/lr) ~ K (K is the field of par t icu la r  r ings W (k)) sa t i s fy  the conditions of Well cohomologies W/'t/t) 

[121]. In [116] Ber the lo t  cons t ruc ted  a theory of local c rys t a l  cohomolo~es  and in [122, 123], together  
with !l lusie,  defined the Chern c lasses  of a sheaf  with value in c rys t a l  cohomologies.  A compar i son  theorem 
of c rys t a l  cohomotogies with c lass ica l  ones over  field C is due to Deligne (unpublished). Grothendieck 's  
work on represen ta t ions  of profinite groups [239] has applicat ion also to c rys t a l  cohomologies.  The appli-  
cation of c rys t a l  cohomologies to Dieudonne modules and to p-divis ible  groups is contained in Grothendieck 's  
r epo r t  at  the Nice congress  and also in Mess ing ' s  d i sser ta t ion  [365]. 

We r e m a r k  that a theory  of c rys t a l  cohomologies  is a p-adic theory  of cohomologies in the sense of 
Grothendieck [237]. That  is, in con t ras t  to the theory  of Z-adic cohomologies,  it gives information on the 
p - to r s ion  in the cohomologies (p = char  k). Other Grothendieck cohomologies (the fpqc-  or  the f p p f - c o h o -  
mologies) ~ v e  good p-adic cohomologies only in smal l  dimensions (since by virtue of Ar t in ' s  theorem,  
~Ii(Xfpp/,  Z /p  k) = 0, i > d imX + 1). 

c) The p-adic cohomologies of Monsky-Washni tzer  and of Lubkin. Other possible approaches  to the 
theory  of p-adic cohomotogies were suggested by Monsk'y-Washnitzer [372-375] and by Lubkin [346, 347]. 
In a b r i e f  note [374] in 1964 the f i r s t  authors  proposed to define cohomologies  in the following way. F i r s t  
of all they defined a ce r ta in  c lass  of smooth a lgebras  over  a Witt r ing  W(k) (the Monsky-Washni tzer  
~w.c.f .g.~-algebras) and proved that for  any smooth k -a lgebra  A 0 there  exis ts  a functorial  lifting up to an 

, 
algebra  A with A | ~-----A o. The ass ignment  A 0 - -  HDR (A/W(k)) defines a cohomological  functor f rom the IV(~) 

ca tegory  of smooth k-a lgebras  into the ca tegory  of W (k)-modules.  By localizing this funetor re la t ive  to the 
Zar iski  topology, Monsk T and Washni tzer  obtain the cohomology sheaves  ~ z  (X) for any smooth schema 
X ove r  a perfec t  field k. Global sect ions of these sheaves  furnish ~good ~ invariants  in smal l  dimensions.  
For  example,  for  a curve X of genus g, Ho(X, g ~ v  (X)) is a f ree  W(k)-module of rank 2g. Working only 
with k -a lgebras  of finite type, Monsky succeeded in using his own theory  to prove a f ixed-point  formula  
(using complete ly  continuous opera tors )  and the ra t ional i ty  of the ~-function of smooth schema [372, 373]. 
The question of the gtobalization of the MonskT-Washnitzer  idea for obtaining a theory  of Weil cohomologies 
remains  open until now (see [237] for  a discussion of this). 

In [346] Lubkin, on the basis  of the Monsk-'y-Washnitzer ideas, gave a definition of p-adic  Welt coho- 
mologies for  the subcategory  of var ie t ies  liftable to cha rac t e r i s t i c  zero .  We r e m a r k  that by vir tue of 
S e r r e ' s  example [475], such var ie t ies  do not exhaust  the c lass  of all  smooth project ive  var ie t ies .  Also, as 
Grothendieck 's  c rys t a l  cohomologies,  these cohomologies  can be computed on the basic only of the usual 
Zar iski  topology of schema X. If X is a lifting of a nousingular project ive  var ie ty  X over  a field k up to a 
flat p roper  ~ - s c h e m a ,  where the res idue field of r ing  # is k, while the f rac t ion  field K has zero  c h a r a c t e r -  
istic,  then Lubkin assumed  H* (X)==H'oa(X~K/A') and proved that this is not dependent on the lifting of X to 

X. In this paper  the author developed a genera l  technique of hypercohomologies  I-I t (X, U, F* ) of finite com- 
plexes of sheaves on a topological space X with r e s p e c t  to a module of an open set  U. 

d) Combinatorial  Lubkin cohomologies.  In [345] Lubkin, using an Stale topology of a schema X, as -  
sociated with each such schema a ce r t a in  pros impl ic ia l  complex S(X)=limS(X, U) and, a f te r  this,  defined 

5" 
H*(X, M)=lirnH* (S (X, U), :14) for any Abelian group M. The author ' s  main theorem a s s e r ~  that these -y 

cohomologies coincide with the Grothendieck ~tale cohomologies  t-I* (Xet, (M)x). The author announced 
theorems  analogous to the fundamental Ar t in-Grothendieck theorems  and, f rom these theorems ,  der ived in 
a s tandard manner  the f i r s t  two Well conjec tures  as well  as proved that the c lasses  of a lgebra ic  cycles  a re  
finitely genera ted  with r e spec t  to numer ica l  equivalence.  The la t te r  fact  follows formal ly  f rom any theory 
of Well cohomotogies [311]. 

e) Grothendieck 's  theory of motifs .  The presence  of so many different  cohomology theor ies  of 
schemata posed the quest ion of the crea t ion  of some ~universal  cohomology theory.  ~ 
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The idea of such a theory was suggested by Grothendieck in 1967 (unpublished). The first publication 
on this theory, in which the main constructions of Grothendieck were set forth, belongs to Manin [33]. Later 
on, this theory as well as Manin's results,which we take up below, was the subject of Demazure's report 
[IS7]. Grothendieck's construction is extremely sharp and, roughly speaking, consists of the following. 
The category V/k of algebraic varieties over a field k is immersed at first into an additive category CV/k 
(by an introduction of supplementary morphisms, i.e., of all possible correspondences relative to some 
theory of intersection C) and next into a pseudo-Abelian category CV/k (by an association formally of the 
kernels and images of all possible projectors into CV/k). Every object (motif) of category CV/k is re.m- 
resented as a direct sum of "n-dimensional pieces of varieties," i.e., of objects of the form (X, p), where 
X is an n-dimensional variety and p is a projector from C n (X x X). The motif h (X) = (X, id) is called the 

2a 
motif of variety X, and its expansion into the direct sum h(X) = ~-0 h~(X) yields the definition of the "groups 

of motif cohomologies h i (X)" of variety X. Any functor of cohomologies X --- H* (X) passes through functor 
h. Grothendieck called H* (X) a realization of motif h (XS. Unfortunately, the proof that the functor X -- 
h (~  itself is a theory of Well cohomologies is based on the as yet unproved assumptions on algebraic cy- 
cles (the standard conjectures; see [238, 311]). 

Nevertheless, Manin succeeded in showing in [33] that, without using the hypothetical part of theory of 
motifs, we can progress rather far in their computations and obtain important applications. This paper 
clarifies the behavior of motifs under monoidal transformations and finite coverings and also defines the 
"motif intermediate Jacobian" of a three-dimensional unirational variety. Using the functoriality of the lat- 
ter, Manin proved the Well conjectures for such varieties. The articles [56, 57] of Shermenev serve as con- 
tinuations of Manin's work, in which Shermenev computes in explicit form the motif of a cubic hypersur- 
face, of an Abelian variety, and of a Weft hypersurface (the latter has not been published). 

In conclusion we remark that a cohomology theory of schemata, established chiefly in Grothendieck's 
fundamental papers, has turned into a fascinating area of algebraic geometry with a lot of unsolved prob- 
lems and with r i ch  applications. 

w  Fundamental Group and Homotopic I n v a r i a n t s  

o f  S c h e m a t a  

As the foundation of the a lgebra ic  definit ion of the fundamental  group of a s chema  we take the c l a s -  
s ica l  fact  that this group should c l a s s i fy  nonrarnif ied cover ings .  By the l a t t e r  in s chema ta  theory  we mean  
an a r b i t r a r y  finite ~tale m o r p h i s m .  When X is a no rma l  i r reduc ib le  a lgebra ic  va r ie ty ,  the group ~r 1 (X) was 
defined by Abhyankar  [63] as  a Galois group (a profini te  group) of a max ima l  non.ramified extension of the 
ra t iona l  function field k (X) of va r i e t y  X. By vir tue  of R i e m a n n ' s  c l a s s i ca l  ex is tence  theo rem,  when the 
ground field k is the complex number field, ~'i (X) is a profinite completion of the usual fundamental group 
(for example, see [442]). 

In 1960 Grothendieck [467] gave a definition of ?r i (X) for any schema X, which reduces to the above 
definition if X is normal and irreducible. For this he defined the concept of a Galois covering of schema X, 
proved the prorepresentability of the functor X' -- Horn X (~, X') from the category of such coverings into the 
category of sets (~ Ks a geometric point of schema X), and then set ~:, (X, i) = lira Aut (P~/, where (P~)~61 is the 

"r 

prorepresentative object of the functor being considered. For a connected schema X the group ~I (X, ~) 
does not depend (to within isomorphism) on ~. Later Grothendieck [170] modified the definition of a funda- 
mental group (groupe fondamental ~lar~) so as to take into cohsideration.the infinite coverings of schema 
X. When schema X is one-branched (for example, is normal), these groups coincide. In the general case 
the extended group '~! CK) is not profinite (for example, for a rational curve X with a regular double point, 
"~i CK) = Z). Murre's lectures [391] were devoted :o Grothendieck's definition. 

Another definition of the fundamental group (coinciding with Grothendieck's extended fundamental 
group) was ~ven by Lubkin [345]. 

The series of papers [63-68] by Abhyankar was devoted to the first algebraic computations of the 
fundamental group. In the main they were devoted to the computation of the group ~, (V\R7), where i~TcV 
is a divisor on a nonsingular algebraic variety V of dimension -~ 2. In case char k > 0 there has actually 
been computed the subgroup ~ (V\ V/)c~., (V\LV) classifying the coverings which are prolonged upto tamely 
r ami f i ed  cover ings  of V. Abhyandar ' s  r e su l t s  genera l i ze  the c l a s s i ca l  computat ions  of the Za r i sk i  gToup 
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~.1 (P~\C), where  C is a curve .  S e r v e ' s  a r t i c l e  [473] and P o p p ' s  book [435] su rvey  Abhyauka r ' s  work.  Ed-  
rounds [182] also concerns  h i m s e l f  with this s ame  group of quest ions .  In his fundamental  pape r  [219] 
Grothendieck computed the group =~ ( X \  (P~ . . . . .  P,}) for a nonsingular  point curve  X. This  r e s u l t  p layed a 
cen t ra l  ro le  in the pape r s  of Shafarevich  [53] and Ogg [416]. Gro thendieck ' s  computat ions  were  based  on 
the lifting of the curve  to c h a r a c t e r i s t i c  zero  and on the appl ica t ion of the topological  r e s u l t s  in [440]. An 
analogous computat ion for  a comple te  curve  X (the f i r s t  of which computa t ion  was proved  without the use of 
the methods  of fo rma l  geometry)  was c a r r i e d  out a l so  by Popp [431, 432]. The a s sumpt ion  of t ame  r a m i f i -  
cat ion was r e m o v e d  by Fulton [191]. A pure ly  a lgebra ic  computat ion of =~ ( X \ { P 1  . . . . .  P=}) is as  ye t  not 
known, tn [435] Popp showed that every th ing  r educes  to the three-poin t  p rob lem,  i .e. ,  to the case  when n= 3 
(also c o m p a r e  with [176]). 

The method for  comput ing the fundamental  group with the aid of l ift ing to c h a r a c t e r i s t i c  ze ro  is based  
on the following theo rem of Grothendieck.  If f :  X - -  Spec (A) is a p r o p e r  m o r p h i s m  with a c losed  connected 
f iber  X0, where  A is a full Noether ian  local  r ing ,  then vl CA') - v i (X0). This  s ame  theo rem,  with A r ep l aced  
by an arbitraz-y I-Ienseltan Noether ian  local  r ing,  was p roved  by Art in  [85]. F r o m  it follows the t heo rem on 
the change of base  in Gro thendieck ' s  ~tale cohomologies .  Ar t in  a lso  c o m p a r e d  the groups  r: t CC) and ~l (U), 
where  U is an open se t  in Spec (A) and U is its p r e image  in Spec (A) [81, 85]. 

See w on the Lefschetz  theorem for  the fundamental  group. A var ian t  of the Lefsohetz  t heo rem for  
the case  of a quas ipro jec t ive  v a r i e t y  V was proved  by Popp [434]. In the c l a s s i c a l  case ,  when V is an open 
set  in a p ro jec t ive  space,  this r e s u l t  was proved (with gaps) by Z a r i s k i  in 1937. De Bru in ' s  pape r  [144] 
a lso  was devoted to Z a r i s k i ' s  theorem.  In [433] (also see  [435]) Popp studied the behav ior  of  the fundamen-  
tal  group of the complemen t  of a curve  on a smooth  su r face  as the cu rve  v a r i e s  within a family .  

Quest ions  connected with the local fundamental  ~roup, i .e. ,  with the ca lcula t ions  of ~t (U), where  U is 
an open se t  of the spec t rum of a local  Hense l ian  r ing,  turned out to be v e r y  in te res t ing .  An impetus  t o th e se  
quest ions was provided by Mumford  [26], who computed  the fundamental  group of the boundary 8V of some  
"c-ne ighborhood"  of a no rma l  s ingular  point P on a complex  a lgebra ic  su r face .  In pa r t i cu la r ,  Mumford 
proved  a c r i t e r i o n  for  s impl ic i ty  (conjectured by Abhyankar) :  point P is nonsingular  if and only if ~r 1 (SV) = 
0. An a lgebra ic  analog of se t  8V (as was noted apparen t ly  for  the f i r s t  t ime by Grothendieck;  cf.  [227], 
exp.XID is the schema  X ' = S p e c A \ { m } ~  where  A is the Hense t iza t ion  (or completion) of  the local  r ing  of a 
point P of an a r b i t r a r y  normal  a lgeb ra i c  su r face  and m is a m a x i m a l  ideal of r ing A. Using A r t i n ' s  theo-  
r e m  [82] on the lifting of a two-d imens iona l  s ingular i ty  to c h a r a c t e r i s t i c  ze ro  and his r e s u l t s  f rom [81], we 
can apply Mumford ' s  topological  computat ions  to compute  the group $1(X')(P ), namely ,  the fac tor  group of 
$1 (X') by the normal  d iv i sor  genera ted  by a Sylow p - subgroup  (p = cha rk ) .  Grothendieck and Mur re  [249] 
p roved  the topological  f in i t e -generab i l i ty  of  the group ~t (X')(P). We note that Mumford ' s  c r i t e r i o n  of s i m -  
pl ici ty does not c a r r y  ove r  d i rec t ly  to the case  of a posi t ive  c h a r a c t e r i s t i c  p. Indeed, by v i r tue  of Naguta ' s  
example  [398] (also see [82]) there  ex i s t  an i r r e g u l a r  r ing  R and a r ad ica l  m o r p h i s m  f :  Spec (R') - -  
Spec (R), where t%' is a r egu l a r  r ing.  Hence it follows that =~ (Spec (_R)\ {m})---=l {Spec(R')k (m})-~ 0 (the spaces  
Spec (R) and Spec (R') a r e  homeomorphic ) .  It  is as  ye t  not known whether  the condition that X '  be homeo-  
morphic  to the point s pec t rum  of a r egu l a r  r ing  is a n e c e s s a r y  one for  the vanishing of ~r 1 (X'). 

We note S e r r e ' s  r e s u l t  [472] on the s impte--connectedness  of a unira t ional  va r i e ty  and Gro thendieck ' s  
t heorem on the b i ra t ional  invar iance  of ":l (X) [467]. Using the theory  of descent ,  Grothendieck es tab l i shed  
many  impor tan t  p rope r t i e s  of vl~ in pa r t i cu la r ,  he cons t ruc ted  the s t a r t  of the exac t  sequence of homotopy 
groups (the f i r s t  six t e rms)  for  a f lat  p rope r  m o r p h i s m .  

The computat ion of the fundamental  gToup of an Abel tan v a r i e t y  (actually,  contained in Lung and Serve 
[332]) can be found also  in [467]. Se r re  [474] computed 7r I for  an a r b i t r a r y  a lgebra ic  group. 

We r e m a r k  that  the Galois theory  of r ings  (for example ,  see  [151]) in commuta t ive  a lgebra  was de- 
veloped in pa ra l l e l  with the "geomet r i c "  study of the fundamental  group of schemata .  Many r e s u l t s  of this 
theory  a re  ea s i ly  in t e rp re t ed  and reduced  to the co r respond ing  r e s u l t s  on the a lgebra ic  fundamental  group 
or  on the gtale cohomologies  of affine schemata .  Takeuchi  devoted his pape r  [496] to the connect ion of 
these  theor ies .  

The definition of higher  homotopic invar ian ts  of schemata  was p roposed  independently by Lubkin [345] 
and by Ar t i n -Mazur  [83, 88]. A detai led account  of the l a t t e r  theory  is contained in [89]. Both these theo- 
r i e s  a re  v e r y  close to each other  and a r e  based  on the Verd i e r -Lubk in  cons t ruc t ion  of a functor  f rom the 
ca tegory  of local ly  Noether ian  schemata  into the ca t egory  of p ro -ob j ec t s  of the homotopy ca t egory  of s i m -  
pliclal se t s .  Taking the composi t ion  of this functor  with the functor of "geometTiC rea l i za t ion , "  Ar~in and 
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Mazur obtained a certain pro-CW-complex Xet canonically comparable to schema X and called the homo- 
topy type of schema X. The Verdier-Cartier construction of hypercoverings (SGA4, exp.V, Appendix) per- 
mits us to generalize the preceding construction and to determine the homotopy type of an arbitrary Grothen- 
dieck topology. The generalization of homotopy theory to pro-objects allows us to determine the homotopy 
groups ~i(Xet). For example, ~r i (Xet) is an "extended" Grothendieck fundamental g-roup. Artin and Mazur 
introduced important notions of a profiuite completion K of a cell complex K and, by generalizing Riemann's 
existence theorem, proved that C/Xet = Xcl for a normal schema X over a field. Here Xcl is the usual CW- 
complex defined by the complex space X an. From this theorem it follows, in particular, that ~ (X,t) 

/\ /\ 
~-- -~(X~z), and for  s imply  connected X, ~.~ (X:t) "" ~(Xct),  i > 1, where  a profini te  comple t ion  of the group oc-  
cu r s  eve rywhe re  on the r ight .  Among the other  r e s u l t s  ~n [89] we note, for  example ,  the following fact.  If 
.::, z :  ~ ~, C a re  dis t inct  i m m e r s i o n s  of an a lgebra ica l ly  c losed k into a field C, then Xcl = X~cl holds for  
the co r respond ing  complex  va r i e t i e s  X t, X 2 obtained f rom the k - v a r i e t y  X by a change of base .  By vir tue  
of the wel l -known example  of Se r r e  [477], he re  it is imposs ib le ,  in genera l ,  to r e m o v e  the A. 

w  A m p l e  S h e a v e s .  P r o j e c t i v e  I m b e d d i n g s  

o f  A b s t r a c t  V a r i e t i e s  

E v e r  since Well int roduced the notion of an a b s t r a c t  a lgebra ic  var ie ty ,  the natura l  quest ion was posed 
of the i r  p ro jec t ive  immers tb i l i t y .  As Well h imse l f  proved,  the Jacoblan  va r i e t y  of a curve  (its cons t ruc t ion  
was the or ig ina l  purpose  for  the introduction of an a b s t r a c t  var ie ty)  is a lways pro jec t ive .  L a t e r  on,Chow 
proved  that  any homogeneous  space  is p ro jec t ive  [156]. The f i r s t  example  of an incomplete  a b s t r a c t  v a r i e -  
ty not i m m e r s i b l e  into a p ro jec t ive  space  was p resen ted  by Nagata in 1956 [393], Next he cons t ruc ted  an 
example  of a comple te  nonproject ive  a lgebra ic  su r face  (with s ingular  points) [394]. Final ly,  in 1958 he 
cons t ruc ted  and example  of a nonsingular  nonquasiproject ive  su r face  (which, m o r e o v e r ,  is even rat ional)  
[395]. La t e r  on, examples  of nonproject ive va r i e t i e s  were  cons t ruc ted  by Hironaka  [268]. 

In 1961 Moishezon [35] announced a c r i t e r i on  of p ro jec t iv i ty  of nonsingular  a b s t r a c t  va r i e t i e s .  This  
c r i t e r i o n  was next genera l ized  to s ingular  va r i e t i e s  [36], and a detai led account  of p rev ious ly  obtained r e -  
sul ts  appea red  in 1964 [37]. 

As is well  known, each b i ra t iona l  mapping ~: X --- p n  is ~ v e n  by some l inear  sys t em,  i .e . ,  by an in- 
ver t ib le  sheaf  ~ on X and by a se t  of i ts  sec t ions  s 1 . . . . .  s k. The sheaf  ~ is sa id  to be v e r y  ample  if the 
comple te  l inear  s y s t em  l-~l defines the c losed imbedding ? : X c . . P "  ( n = d i m  ~H0(X, ~ ) - -  1). The sheaf  
is said to be ample  if some  t en s o r  power  ~|  of it is ve ry  ample .  The p ro jec t ive  c r i t e r i on  is in fact  an 
a m p l e n e s s  c r i t e r i o n  for  the sheaf.  The f i r s t  such c r i t e r ion ,  coinciding with the co r respond ing  Moishezon 
c r i t e r ion ,  was ~ v e n  for  nonsingular  pro jec t ive  su r f aces  by Nakai in 1960 [404]. In 1963 he succeeded  in ex-  
tending his  own r e s u l t  to a r b i t r a r y  p ro jec t ive  s chema ta  [406]. At the p r e sen t  t ime this c r i t e r i o n  (genera l -  
ized to comple te  s chem a t a  by Kleiman [307]) is cal led the Nakai -Moishezon c r i t e r i o n  and is s ta ted as  fol-  
lows. A sheaf  ~ o n  a comple te  k - s c h e m a  X of d imension  n > 1 is ample  if and only if (D, . . . . .  D~.~, ~ ) > 0 .  
for  any effect ive d iv i so r s  D l . . . . .  Dn_ t on X. He re  the in te r sec t ion  number  is de te rmined  with the aid of 
Snappe r ' s  theorem (see w 

A beautiful  amp lenes s  c r i t e r i o n  is due to Seshardi  (cf. [261]). 

A n u m e r i c a l  c r i t e r i on  for  a v e r y  ample  sheaf  on a nonsingular  su r face  is due to Mumford [381]. 
Beautiful  cha r ac t e r i z a t i ons  of ve ry  ample  sheaves  in the language of the g e o m e t r y  of cones  of amp le  sheaves  
a re  contained in K l e i m a n ' s p a p e r  [309] and in M u m f o r d ' s  book [381]. 

The following Kle iman ' s  theorem (expressed  as  a consequence of ChevaUey"s conjecture)  s e r v e s  as 
an example  of a "nonnumer ica l"  p ro jec t iv i ty  c r i t e r i on  [309]. A nonsingular  va r i e t y  X is p ro jec t ive  if and 
only if each finite se t  of  c losed points of X is contained in an open affine set .  An example  of a "nonnumer i ca l  
a m p l e n e s s  c r i t e r i on"  is G r a u e r t ' s  c r i t e r i o n  [341]. 

t f  an effect ive d iv i sor  D on schema  X is ample  (i.e., the sheaf  ~ = ~ x  (D) is ample) ,  then the comple -  
ment  X \ D  is affine. Gizatull in [12] and Goodman [206] independently proved that the conver se  a lso  is t rue 
in the case  of su r faces  all  of whose s ingular  points lie on D. Hence we obtain a new proof  (also see  [309]) 
of the old Za r i sk i  theorem stat ing that  an a lgebra ic  sur face  X is pro jec t ive  if all  its s ingular  points lie in 
an affine piece (Zar i sk i  had fur ther  a s s u m e d  the normal i ty  of X). By vir tue of Ar t i n ' s  r e su l t  K771 each  
normal  sur face  over  a finite field is p ro jec t ive .  The Gizatul l in-Goodman theorem does not c a r r y  over  
d i rec t ly  to the case  of va r i e t i e s  of dimension g r e a t e r  than two (for example ,  the Za r i sk i  variet3r; of. [206]). 
A genera l iza t ion  of this ",heorem is due to Goodman and Har t sho rne  [206, 261]. 
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Har t sho rne  [258] defined an  ample  vec to r  bundle (or local ly  f ree  sheaf) .  One of the equivalent  defini-  
t ions of an ample  sheaf  ~ cons i s t s  of the r e q u i r e m e n t  that the tautological  inver t ible  sheaf  ~p(]) on P = P x ( ~ )  
be ample .  Var ious  c h a r a c t e r i z a t i o n s  and p r o p e r t i e s  of an ample  sheaf  a r e  proved in [258]. Fo r  example ,  
if c h a r k  --- 0, then the t ensor  power  of an ample  sheaf  is ample .  Bar ton  [109] succeeded  in proving this r e -  
sult  in the case  of a posi t ive  c h a r a c t e r i s t i c .  

tn [261] H a r t s h o r n e  d i s cus sed  var ious  poss ib le  genera l i za t ions  of the notion of an ample  d iv isor  on a 
subvar ie ty  W'c.X of l a r g e r  codimension.  These  definit ions a r e  c lose ly  r e l a t ed  to the quest ion of the coho- 
mologica l  d imension of the c o m p l e m e n t  X \ W "  and a l so  to the a m p l e n e s s  of the no rma l  bundle to W. Gr i f -  
fiths [215] sugges ted  that analogous and o ther  poss ib le  p r o p e r t i e s  of a m p l e n e s s  of a subvar i e ty  be taken as  
a definition in the analyt ic  case .  

Block and Gie seke r  [130] proved  H a r t s h o r n e ' s  con jec tu res  in the z e r o - c h a r a c t e r i s t i c  case :  if a sheaf  
is ample ,  then its Chern c l a s s e s  c~ (~) a r e  numer i ca l l y  posi t ive.  The la t t e r  s ignif ies  that (ct (W).I~ > 0 for  

any effect ive cycle  Y of c o d l m e n s i o n n - i .  Kleiman [312] (and Barenbaum [7], independently) has  p roved  this 
r e s u l t  e a r l i e r  for  the case  of su r f aces  ove r  an a r b i t r a r y  field. 

Chow's  r e s u l t s  on the p ro jec t iv i ty  of homogeneous  spaces  were  genera l i zed  to a cons iderab le  degree  
by Raynaud to the case  of a r b i t r a r y  group schema ta  [449]. We note, for example ,  that  even an Abel ian S- 
s chema  for  an a r b i t r a r y  s chem a  S p roves  to be not n e c e s s a r i l y  p ro jec t ive  (we need to r equ i r e  the n o rma l i -  
ty of S). 

By genera l iz ing  his own re su l t  of [399], Nagata  p roved  a theorem which is ve ry  useful  for  appl ica t ions :  
each  S - s c h e m a  of finite type can be imbedded as  an open subvar i e ty  into a p rope r  S - schema .  

w C o n s t r u c t i o n  T e c h n i q u e s  in  A l g e b r a i c  G e o m e t r y  

1. Genera l  Resu l t s  and Technica l  Tools .  a) Represen tab le  functors .  In a s e r i e s  of r e p o r t s  [220-226] 
at  the Bourbaki  s e m i n a r  in 1959/62 Grothendieck subjected to detai led ana lys i s ,  s ignif icant ly  c la r i f ied ,  and 
genera l i zed  ce r t a in  c l a s s i ca l  cons t ruc t ions  in a lgeb ra i c  g e o m e t r y  (the Po inca re  var ie ty ,  the Chow var ie ty ,  
etc.) .  The fundamental  concept  in t roduced for  this purpose  by Grothendieck was the concept  of a r e p r e s e n t -  
able functor .  We cons ider  a c e r t a i n  ca t egory  % and we let  @ be the ca tegory  of con t r ava r i an t  functors  on 

with value in the ca t egory  of se t s .  Gro thend ieck ' s  fundamental  idea cons i s t s  in that the functor  h: ~- ,@,  
defined as  h(X): Y-~Hom~(Y, X) = X ( l  0 for  any X ~ ,  e f fec ts  the imbedding of ca t ego ry  ~ onto the comple te  
subca tegory  @. Objects  f rom ~ of the fo rm h (X) a r e  cal led r e p r e s e n t a b l e  functors .  F o r  example ,  in appl i -  
cation to s chema  theory ,  when ~=(Sch/S) ,  this r e m a r k  of Grothendieck p e r m i t s  us to identify the S - s c h e m a  
X with the functor "of a point with value in an S - s c h e m a "  h (X): Y - -  Horn s (Y, X) = X (Y). In this context  
Grothendieck succeeded  in showing that a l l  the known cons t ruc t ions  in a lgebra ic  g e o m e t r y  a r e  examples  of 
r e p r e s e n t a b l e  con t r ava r i an t  functors  on the subca tegory  (Sch/k) cons is t ing  of k - v a r i e t i e s .  Fo r  example ,  
the c l a s s i ca l  Po inca re  cons t ruc t ion  cons is t s  of a s soc ia t ing  with each  nonsingular  va r i e ty  X over  an a l -  
geb ra i ca l ly  c losed field k the fac tor  group Pic  ~ (X) of d iv i so r s  a lgebra ica l ly  equivalent  to zero  by the sub- 
group of pr incipal  d iv isors .  The p rob lem of the exis tence  of the Po inca re  va r i e ty  is the following. Does 
there  ex i s t  for a given va r i e ty  X a un ive r sa l  va r i e t y  ~(X) p a r a m e t r i z i n g  the group P ic  ~ (X)? The l a t t e r  
s ignif ies  that there  ex is t s  a ~universal  c l ass  of d iv i sors  R @ on X •  such that for any D E Pic~ (X) we 
can find a unique point z~(X), for  which D = np 1 (X • {z} .@). In the case  of an a f f i rma t ive  answer  to this 
quest ion the group Pic  ~ (X) is in an e s sen t i a l  way provided with the s t ruc tu re  of an a lgeb ra i c  va r i e ty  (the 
e l emen t s  of Pic  ~ (X) a r e  found in bi ject ive co r respondence  with the points of  va r i e ty  ~(X)). Grothendieck 
r e m a r k e d  that under  the exis tence  condition the va r i e ty  ~ (X) r e p r e s e n t s  the following functor on the ca t s -  
go ry  of k -var ie t i es :  Y ~  Pic ~ (XX Y) (here the d iv isor  @ c o r r e s p o n d s  to the identity m o r p h i s m  ~(X)-~(X)~.  

The exis tence  prob lem in a lgebra ic  g e o m e t r y  now becomes  the problem of the r ep re sen t ab i i i t y  of a 
con t rava r t an t  functor on the ca tegory  of schemata .  

The Language of r e p r e s e n t a b l e  functors  turned out to be ve ry  convenient  for  defining many  c l a s s i ca l  
objects  in a lgebra ic  g e o m e t r y  within the f r amework  of s chemata  theory  (the G r a s s m a n n  schema ,  vec tor  
bundles,  the flag schema,  etc.  [248]). 

The f i r s t  profound theo rems  on r ep resen tab i l i t y  belong to Grothendieck.  In 1964 Murre  gave a c r i -  
ter ion for  the r ep re sen tab i l i t y  of an Abelian functor (i .e. ,  with value in Abel ian groups) and appl ied it to the 
cons t ruc t ion  of the Po inca re  schema [389]. The c r i t e r i on  was genera l ized  by Mat sumura  and Oort  [3B8] to 
a r b i t r a r y  group functors  (not n e c e s s a r i l y  Abetian). M u r r e ' s  r e p o r t  [390] was devoted to one c r i t e r ion  of 
Grothendieck.  P a p e r  [491] a lso  r e l a t e s  to genera l  r ep re sen tab i l i t y  c r i t e r i a .  
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b) P r o r e p r e s e n t a b l e  functors .  An impor tan t  n e c e s s a r y  condition for the r ep re sen t ab i l i t y  of a functor 
is i ts  p ro rep re sen t ab i l i t y .  The la t te r  concept  was introduced by Grothendieck in [221]. We consider  the 
ca t egory  of p ro -  ~ - p r o - o b j e c t s  o f a c a t e g o r y  ~, i .e. ,  a r b i t r a r y  p ro jec t ive  s y s t e m s  (X~)~EI of objects  of ca te -  
gory  ~ (the m o r p h i s m s  of p ro jec t ive  s y s t e m s  a re  defined in the natural  way). Each func~or P :~-~(Ens)  is 
continued by a natural  method up to  the functor /~: pro-~-~(Ens). To do this we need to se t  /~[(X~)~EI)=IimP'(X~). 

A functor  F is said to be p r o r e p r e s e n t a b t e  if F is r ep r e sen t ab l e ,  in other  words ,  if there ex i s t s  a p r o - o b j e c t  
(Pi)~s such that F (X) = tim Horn (X, P;) for  any X6"~. 

Grothendieck fo rmula ted  impor tan t  c r i t e r i a  for  the p r o r e p r e s e n t a b i l i t y  of a functor F on ca tegory  
with f iber  bundles and with a final object  @. The following conditions a r e  n e c e s s a r y  conditions for  p r o r e p -  
resentability: 1) F (~)) = {one point}, 2) (left-exactness) P(XX V)=F(PO X F(Y) for any objects X, Y, Z of 

Z Z~F) 

category ~. Grothendieck showed that in many important cases these conditions are also sufficient. Groth- 
endieck's program of research in this area was carried out by Levelt [339]. 

Particularly simple is the situation when category ~ is Noetherian or Artinian (i.e., the set of pro- 
objects of each object of category ~ possesses the ascending or descending chain condition) while functor F 
is Abelian. In this case Gabriel [193] proved that a contravariant functor on an Abelian Noetherian category 
defines a prorepresentable functor on the corresponding dual Artinian category. The application of this 
fact to the theory of local duality is contained in Grothendieck's seminar (227] (also compare [48, 234]). 

The most important application of the theory of prorepresentable functors relates to the case when 
category ~ is the category C A of Artinian A-algebras, where A is a Noetherian local algebra over its own 
residue field k. 

Schlessinger [SS] proved that the functor F: C A -- (Eus) is prorepresentable if and only if it is left- 
exact and dimkF (k is]) < ~, where k is] is the algebra of dual numbers. Besides this, he ==ave a method for 
verifying the left-exactness of functor F. In this case the prorepresenting object is identified with some 
complete A-algebra @; by the same token, F(A)=Hom~(A,d~) for any A E C A. If, furthermore, the 
functor F is formally smooth, i.e., the map F (A') -- F (A) is surjective for each surjection A'- A in CA, 
then algebra @ is isomorphic with A[[tl ..... tn]], n = dimkF (k [~]). 

The application of the preceding situation to contravariant functors on the category of schemata is 
based on the following reasoning. Let G be a contravariant functor of the category of preschemata over 
Spec (A) and let e E G (Spec (k)). For any ring A E C A we denote by F (A)cO (Spec (A)) the set of ~ EG(Spec(A)) 
such that G(i)~ = e, where i is an imbedding of 5pec (k). Artin [86] calls functor G prorepresentable in e if 
the corresponding functor F is prorepresentable by some A-algebra W. If G is a representable functor and 
X is the schema representing it, then e defines a rational point x E X and functor F is prorepresentable by 
the ring ~x. =W. 

Functor G is said to be effectively prorepresentable in e if there exists an element z E G (Spec (W)) 
which induces a compatible system of elements z~6g (Spec (W/m~)) with z 0 = e. Artin's theorem on the al- 
gebraization of formal moduli [86] asserts that in this case there exist a k-schema X of finite type, a closed 
point x EX, a k-isomorphism k(x) =~ k, and an element z E G(X) inducing e E G(Spec (k)) and such that the 
ring ~x.~.prorepresents the corresponding functor F (it is assumed, furthermore, that k-algebra A has a 
finite type). In many cases effective prorepresentability follows from prorepresentability and Grothendieck's 
existence theorem. {The application of this theory to formal moduli is given in the next section.) 

Levelt~s papers [337, 338] are devoted to the connection between the prorepresentability criteria of 
Schlessinger and of Grothendieck and also to their generalization. 

e) Grothendieck~s theory of descenz [201, 220, 467]. One of the first problems of the theory of descent 
was the following one, stated clearly by Well in [506]. We are given an algebraic variety V over a finite 
normal extension k' of field k. Can we ~lower n V to k (i.e., do there exist a k-variety W and a k'-isomor- 
phism W| ~ = V)~ Weil gave an affirmative answer to this question for the case when V is quasiprojective 

and satisfies natural necessary conditions for such a descent: there exist canonical k'-isomorphisms her: 
V- V ~ satisfying the ~pasting-together condition ~ h<r ~. = ~) -h~.. Here ~, r ~ Gal (k'/k), while V ~ is the 
image of V re la t ive  to the act ion of o- on the coeff ic ients  of the equations defining V. Ca r t i e r  [148] examined 
~ e  analogous p rob lem for  an inseparab le  extension.  Grothendieck noted that one and the same  common-  
ca tegory  s i tuat ion l ies  at  the base  of the Weil and ~ e  Ca r r i e r  p rob lems .  
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Let  J~be a f iber  category, ove r  category. ~, i .e. ,  a ca te~ory  K s is a s soc i a t ed  with each  object  SEc~ 
and a functor  ~*:~'s-->,.~'s, is a s soc ia t ed  with each m o r p h i s m  ~: S' - -  S into c~. Fo r  any such morph i sm  and 
for  an object  Xff~" s. the "giving of a descent"  onto X cons i s t s  in the exis tence  of an i s o m o r p h i s m  u: p~ (X) "~ 

Wt P~ 
p: (X) (where S '  x S '  ~ S '  a r e  m o r p h i s m s  of a project ion) sa t i s fy ing the pas t ing-  together  condition p~2(u) �9 

S Ps 

P i J  

p~ (u) = Pl3* (u) (where S" x s S '  x s S'p,~S' • S '  a re  m o r p h i s m s  of project ions) ,  The giving of a descen t  is said to 
Pt* 

be effect ive  if there ex i s t s  an object  YEars such that  ~* (Y) ~- X. Here  the functor ~*:..~s~:~s, r e a l i z e s  the 
equivalence of ca tegory  S s  and subca tegory  ~'-s, cons i s t ing  of objects  with the effect ive  ~ v i n g  of a descent .  
The p rob lem of the theory  of descen t  cons i s t s  in finding the conditions on m o r p h i s m  f in o r d e r  that a n y e o n -  
dition of descent  on the object  X62r s, be effect ive .  

The appl icat ion of this c o m m o n - c a t e g o r y  p rob lem to a lgebra ic  g e o m e t r y  r e f e r s  to the ease  when ce 
is the ca tegory  of schemata .  The m o r p h i s m  f :  S' - -  S of s chemata  is cal led a m o r p h i s m  of effect ive descen t  
re la t ive  to the f iber  ca t egory  J if  any ~ v i n g  of a descent  on object  XF.~ s, is ef fect ive .  ]By genera l iz ing  the 
r e su l t s  of Weft and C a r t i e r ,  Grothendieck proved  that an absolu te ly  flat  quas icompac t  m o r p h i s m  is a m o r -  
phism of effect ive descen t  for  the ca t ego r i e s  of quas icoheren t  sheafs ,  of affine or  quasiaff ine S - schema ta ,  
of fitale S - s c h e m a t a  of finite type, and of some o the r s .  The s ame  is t rue  for  a finite su r j ec t ive  m o r p h i s m  
and for  the ca t egor i e s  of unrami f i ed  cover ings ,  of quas ip ro jec t ive  s chema ta  (if, m o r e o v e r ,  the m o r p h i s m  
is local ly  free) ,  or  of all  s chema ta  (if the m o r p h i s m  is radica l )  [467]. 

Impor tan t  c r i t e r i a  for  the descent  of group schema ta  were  obtained by Rayuaud [449]. In the p r e sen ce  
of an effect ive descent  we can cons ider  the addit ional p rob lem:  it is r equ i r ed  to p r e s e r v e  the p r o p e r t i e s  
of the lowered object  (for example ,  the local f reedom of a lowered  sheaf,  the f l a m e s s  of a lowered  schema ,  
etc.) .  These  p rob l em s  were  solved by Grothendieck in [467]. 

The ideas of the theory  of descen t  (pa r t i cu la r ly  the l a s t  problem) proved  to have a g r e a t  influence on 
commuta t ive  a lgebra .  Among the m a s s  of paper s  devoted to these p r o b l e m s  we note [455]. Among the ap-  
pl icat ions  of the theory  of descen t  in a lgeb ra i c  g e o m e t r y  we note the following: 

1) The r e p re s en t ab i l i t y  of functors  was proved f i r s t  fo r  the ca t egory  (Sch/S), and next, by applying 
the theory of descent ,  the r ep r e s en t ab i l i t y  of a functor  on the ca t egory  (Sch/S) was obtained. Here  S t - -  S 
is the m o r p h i s m  of effect ive  descent  (see [223-225, 295]). 

2) Cr i t e r i a  for  the ra t iona l i ty  of d iv i sors  (Ca, r t i e r  [148], Oort  [420]) and their  genera l i za t ions ,  namely ,  
~-I i lber t ' s  theorem 90" in ~tale cohomologies  (SGA4). 

3) P r o o f  of the topological  invar iance  of the fitale topology (i.e., the ca t egor i e s  Xet  and (Xred)et  a re  
equivalent).  

4) Descent  p r o p e r t i e s  for  var ious  c l a s s e s  of s chema  m o r p h i s m  [247, 467]. 

d) Equivalence re la t ions  on schemata .  The p rob lem of the theory  of descent  is a spec ia l  ease  of the 
genera l  p rob lem of exis tence  of a f ac to r  of a schema  by some equivalence re la t ion.  The la t te r  p rob lem is 
one of the m o s t  impor tan t  technical  tools  for  proving the r ep r e sen t ab i l i t y  of var ious  functors .  

In [222] Grothendieck defined an equivalence re la t ion  on an object  X of an a r b i t r a r y  ca tegory  * with 
f iber  bundles as  a ce r t a in  subfunctor R c A ( X ) x h ( X )  such that R ( T ) c X ( T ) X X ( T )  is the graph of the equiv- 

Pt 
alence re la t ion  on the se t  X (T). If R ~  X is the r e s t r i c t i o n  of p ro jec t ion  m o r p h i s m s  to R, then the fac tor  

X/R by the equivalence re la t ion  R is cal led the eokernel  (Pl, P2), i .e. ,  the object  r e p r e s e n t i n g  the covar ian t  
functor Z - -  {~ 6 X(Z)I r  = *P2}. The factor  X/R = Y is said to be effect ive if the canonic m o n o m o r p h i s m  
/~ ~ X )< X is an i somorph i sm.  

Y 

A typical  example  of an equivalence re la t ion  is the case  when there  ac ts  on object  X a group object  
G of category ~ (i.e., h (G) is a presheaf of groups on ~). By definition, the action of G on X is given by the 
morphism G x X -- X, and the image of the morphism G x X -" X x X ((g, x) -* (gx, x)) defines an equiv- 
alence relation on object X, the factor by which is denoted by X/G. 

As is well known (for example, see [268]), the factor X/G does not always exist for the category, of 
schemata. Grothendieck proved the existence of factors X/R in ~e following cases: !) the projection 
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pl: 1% - -  X is a finite morph i sm,  and each  equivalence c l a s s  re la t ive  to R is contained in an open affine set;  
2) X is quas ipro jec t ive  over  S, and Pl is a p rope r  m o r p h i s m ;  3) X is quas ipro jec t ive  over  S, and R is c losed  
in XXX [169, 222]. 

S 

Raynaud [451] proved the existence of an open dense set UcX for which U/R exists. Furthermore, 
if R is closed in XX2, then U contains points of codimension<-l. Some other criteria for the represent- 

s 
ability of factor X/R by a flat equivalence relation (i.e., the projections Pl, P2: R --- X are flat) also were 
obtained by Raynaud [450, 452]. He has also obtained important applications of these results to the repre- 
sentability of the Neron-Severi schema, of the Poincare schema, and of the Neron model [451]. 

Corollaries of Grothendieck's results in the existence problem of the factor of a group schema by 
some subgroup are discussed in [168, 169]. See further on for applications to the Poincare schema. In 
[380] Mumford obtained profound theorems on the existence of the factor X/G of schema X by a reductive 
~oup G. 

A more general situation (equivalence prerelations) was studied with the aid of the formalism of 
groupoids in [168, 169, 450]. 

e) Artin-Moishezon algebraic spaces. The absence in the general case of a factor of a schema by an 
equivalence relation forces us to seek a natural extension of the category of S-schemata (Sch/S) in which 
this factor always exists. The obvious solution is to immerse (Sch/S) into the category of locally ringed 
spaces. However, this category is too broad to obtain any "reasonable" results in it. If S = Spec (C), then 
it is natural to seek the factor X/R in the category of complex spaces. Hironaka's example in [268] showed 
that such a factor can exist in this category but does not possess an algebraic structure (or even a Klihler- 
ian one). In 1965 Matsusaka developed the general theory of Q-varieties in Well's language [360]. In this 
category the factors of algebraic varieties by an algebraic equivalence exist ~cry definition." Another ap- 
proach is due to Grothendieck and has been applied particularly successfully in the theory of group schemata. 
Here the category (Sch/S) is identified with the category of representable sheaves on the topology S f~l c. 
Fundamental to such an identification is the theory of descent for absolutely flat quasicompact morphisms. 

The concept of an algebraic space, proposed by Artin in 1968 ("~tale schemata" or "varieties" in the 
original terminology) and, from other considerations, independently by Moishezon ("minischemata" in his 
terminology), connected up in a natural way the points of view of Matsusaka and Grothendieck. By definition, 
an algebraic space over a schema S is the name given to a sheaf on Set, being a factor of some S-schema U 
of locally finite type by an equivalence relation R whose projections R-~U are ~tale morphisms. We note 
that the factor is considered in the category of sheaves on Set. 

When S = Spec (C), the algebraic space over S possesses in natural fashion the stracture of Moishe- 
zon's analytic space, and conversely, each such space is an algebraic space [40, 87]. 

The i m m e r s i o n  of the ca t egory  of S - s c h e m a t a  into the ca t egory  of a lgebra ic  S - s p a c e s  p e r m i t s  us to 
examine  the quest ion on the r ep r e s en t ab i l i t y  of a functor  in two s tages :  f i r s t ,  to invest igate  the question of 
i ts  r ep r e sen t ab i l i t y  by an a lgebra ic  space,  and next, to prove the r ep re sen t ab i l i t y  of the l a t t e r  by some 
schema .  We r e m a r k  that a s a t i s f a c t o r y  answer  to the f i r s t  quest ion a l r eady  yie lds  a quite good solution to 
the p rob lem being cons idered ,  siz/ce the var ious  a spec t s  and the na tu ra lness  of the concept  of an a lgebra ic  
space,  invest igated by Art in ,  Moishezon,  Kautson [38-40, 86, 87, 314], allow us to cons ider  the la t ter  as  a 
comple te ly  reasonab le  genera l i za t ion  of an a lgebra ic  var ie ty .  The genera l  p rope r t i e s  and techniques of the 
theory  of s chemata  were  t r a n s f e r r e d  to a lgebra ic  spaces  by Knutson [314]. 

In [86] Ar t in  proved a r ep r e s en t ab i l i t y  c r i t e r i o n  for  a con t r ava r i an t  functor by an a lgebra ic  space.  
One of them is its effect ive p ro rep re sen tab i l i t y .  The proof  of the r ep re sen tab i l i t y  c r i t e r i on  is based  on the 
following ubiquitous Ar t in  theorem on approx imat ions  [85]. Le t  R be a field o r  an excel lent  d i sc re te  valua-  
t ion r ing,  A be the Hensel iza t ion  of some E - a l g e b r a  of finite type with r e s p e c t  to a p r ime  ideal,  and m be a 
max ima l  ideal of A. Let  y = (Yl . . . . .  YN) be a solut ion of the sy s t em of a lgebra ic  equations f i  (Y) = 0 with 
coeff ic ients  in A, whose coordi lmtes  belong to the n~-adic complet ion of A. Then for  any in teger  c > 0 a 
solution y = (Yi . . . . .  YN) E A N ex is t s  such that y~ - -  ~ (r~odr~). 

A spec ia l  case  of A r t i n ' s  theorem (dimA = 1) was obtained e a r l i e r  by Greenbe rg  [213, 214] and 
E r s h o v  [21]. 

281 



The close connection between Matsusaka's Q-varieties and algebraic spaces is reflected in the follow- 
ing result  of Artin [84]. Let R-~U X U be a fiat equivalence relation and X be the factor U/R in the category 
of sheaves Sfppf, Then X represenSts an algebraic space. Note, however, that the class of algebraic spaces 
over C is already a class of Q-varieties since the latter, in general, is not representable by an analytic 
space (Holmann [276]). 

By virtue of Artints result  in [84] the giving of a descent for algebraic spaces relative to an absolute- 
ly flat morphism is always effective. In the category of algebraic S-spaces there always exist factors of 
group spaces by an arbi t rary  flat S-subgroup. 

Papers [5, 84, 454] are devoted to a survey of Artints results.  We leave aside the questions con- 
nected with the birational geometry of algebraic spaces and with the theory of singularities [39, 40, 87]. 

2. Ptcard Schema. One of the f irst  problems to which Grothendieck applied the techniques presented 
above was the problem of constructing the Picard schema. The latter was introduced by Grothendieck in 
[224] as a natural generalization within the framework of schema theory of the Picard variety ~(X) of a 
nonsingnlar algebraic variety X. The f irst  algebraic construction of $ (X) as an Abelian variety parame- 
trizing the factor group X of divisors algebraically equivalent to zero by the principal divisor was given in 
1951 by Matsusaka [359] and was next generalized to the case of a normal variety by Chow and Lang. 

In Chevalley's 1958 seminar [466] the Picard variety ~c(X) corresponding to Cart ier  divisors was 
studied. It was shown that for singular varieties ~r (X) possesses (in contrast to ~ (JO) good functorial 
properties [483]. Chevalley [155] constructed the Picard variety Co(X) for complete normal varieties X. 
This construction was generalized to arbi t rary projective varieties by Seslmdri [481, 482]. 

To determine the Picard schema for an arbi t rary  S-schema X Grothendieck suggested the examina- 
tion of the relative Picard functor P icx/$  on the category (Sch/S). The value of this functor on the S- 
schema S is the group I-I 0 (S', R~pqcJ~. (GIn,X,)), where f':X' ~X>(S'~S' is the change-of-base morphism 

S 
r 

while R~pqc~ , (Gm~,) is the sheaf on the Grothendieck topology Sflxl c associated with the presheaf T --  FI t 

(Tflxl c, Gin) = H t (Tet, Gin). Let Pic (T) be the group of classes of invertible sheaves on schema T. When 

functor Picx/S is representable on (Sch/S), the S-schema representing it is called the relative Picard 
schema of the S-schema X and is denoted by Picx/S. For example, ff X is an algebraic k-scheme having 
a rational k-point, then Grothendieck shows that Picx/~ (S')~ Pic (X ~< S')/Pic (S') for any k-schema S' and, in 

particular, PIeX/k (k) = Pic (X) is identified with the group of k-rational points Picx/, k (k) of the schema 
Ptcx/k .  

The f irst  theorem on the representabtlity of the functor PiCx/S is due to Grothendieckandrelates tothe 
case when f :  X -- S is a projective morphism with geometrically integral fibers. In this case the schema 
Picx/S is locally finitely presented separable group S-schema. If S = Spec (k), where k is a field, then the 
connected component of unity Pic~/S of the schema PlCX[ k is an algebraic k-schema,and the corresponding 
reduced k-schema (Pic~/k)re d is precisely the Picard variety ~c (JO in Chevalley's definition. The pres-  
ence of nilpotsnt elements in the local rings of schema Pio2x/k yields much additional information on the 
Picard variety and permits us to explain various pathologdesof algebraic varieties over a field of charac- 
teristic p > 0. We remark that by virtue of Cart ier 's  theorem (cf. [169, 381, 422]) the schema Ptc~/k  is 
always reduced if p = 0, Igusa has cited an example of a nonsingular algebraic surface F with a one-dimen- 
siotml Picard variety and with dimtH ~ (F, a~)-----2 [286]. Noting that the space H ~ (F, ~p) is identified with a 
tangent space to the unity of the Picard schema Pic~/k,  Grothendieck explains this fact in [225] by the ir- 
reducibility of the corresponding schema. An analogous explanation can be ~ven for the old Igusa result  
dirn~H Z (X, a z ) >  q, where q is the irregularity of variety X, coinciding with the dimension of its Picard 
variety ~(X). Mumford [381], using Setters  techniques from [479] of Bockstein operations on cohomotogies 
of sheaves of Witt rings, investigated the reducibility of the Picard schema of a smooth algebraic surface 
F. In particular, he proved Grothendieek*s theorem [225] that if H~(F, #z)-----0, then the schema PicF/k  is 
reduced. If base S is a nonsingular curve while the fibers of the morphism f :  X -- S are curves, the con- 
nected component of the unity Pic~~ of schema PICK/S is an analog of Igusa's "family of Jacobian varie- 
ties ~ [228] (cf. [447]). 

In [389] Murre proved the representability of the Plcard functor for an arbitrary proper k-schema X. 
In [418, 419] Oort investigatss the connection between ~e schemata PiCx/k and PlCXred/k. This connec- 
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tiou was investigated in particular detail for multiple algebraic curves [417]. Murre's theorem was gen- 
eralized in [491] to the case of a proper schema over a local Artin ring. 

At the Stockholm congTess in 1962 Mumford announced a theorem on the representabilit y of the Pi- 
card functor, generalizing somewhat the theorem of Grothendieck (the fibers of )e are not necessarily ir- 
reducible; however, all irreducible components are geometrically irreducible). The proof of this theorem 
was based on the methods developed in [380]. A specialization of this theorem for the case of a nonsingular 
algebraic projective surface was presented in [381]. Already in the case treated by Mumford the schema 
PicX/S is not necessarily separable over S. 

An essential improvement in the question of the representability of the Picard functor was Artin's 
theorem in [86] stating that for any proper flat morphism/: X -- S (finitely presented if S is non-Noetherian) 
for which/~ (@x') =@s" for any change of base /' : X" = X X S' ~ S', the functor Plcx/S is an algebraic space 

S 

over S. Note that the condition /: (&x,) == #s. (cohomological flatness) is ahvays fulfilled if the fibers of mor- 
phism f are reduced [242]. Artin's theorem reduces the question of the representability of the Picard func- 
for by a schema to the question of the representability of a group algebraic space by a schema. Artin him- 
self answered this question affirmatively for the case when the base schema is the spectrum of a local 
Artin ring, by the same token obtaining anew the result of ~[urre [3891 and of Sivaramakhrishna [491]. Ray- 
naud [447] generalized this result to the case when S is a normal locally Noetherian schema of dimension 1 
and the group algebraic space G is smooth over S (the latter condition canbe excludedbyvirtue of Avantara- 
man's result). Furthermore, Rayrmud obtained nontrivial sufficient conditions for the cohomological flatness of 
the morphism/: X -'- S. A detailed investigation was carried out in [447] for the case when the fibers of f 

0 
are algebraic curves; in particular, the connection between the schema Picx/S and the Neron model [414, 
444] of the Jacobian variety of the common fiber of f was investigated. Rayrmud's results were announced 
in [445, 446]. 

In [295] Iversen, using Raynaud's results on the descent of group schemata [449], generalized the clas- 
sical Well construction of the Jacobian variety of a curve and constructed the Picard schema for a proper 
flat morphism with geometrically integral one-dimensional fibers. 

Important theorems on the finiteness of the Picard schema, due to Grothendieck, are discussed in 
[225]. Nfurre's report [390] gives an account of Grothendieck's results on local representability. 

In 1961 Mumford [377] defined the P i c a r d  group of a normal  singular  point on a complex a lgebraic  
surface  and posed the quest ion of introducing the s t ruc tu re  of an a lgebraic  group on it. In [227] Grothen- 
dieck sharpened this definition (by examining a r b i t r a r y  local Hensel  rings) and gave an af f i rmat ive  answer  
to Murnford's  question. 

3. Hi lber t  Schema and Other Construct ions.  The Hi lber t  schema was introduced by Grothendieck in 
[223] as a natural  general izat ion within the f ramework  of schemata  theory  of the c lass ica l  Chow var ie ty  of 
a lgebraic  cycles .  F o r  any coheren t  sheaf  ; on an S-schema X, Grothendieck defined the functor  Quot~r~x,s: 
(Sch/S)~(Ens#. The value of this functor on an a r b i t r a r y  S-schema Z is the set  Quot~-lxls(Z) of c lasses  by 
i somorphism of the fac tor  sheaves of the sheaf  S'z=;| z on XXsZ which a re  flat on Z, finitely presented ,  

@s 
and have a support  which is p roper  over  Z. For  the case  ~ '=@x the functor Quot@x:ms is denoted by 
H i lbx / s  and is called the Hilbertufunctor assoc ia ted  with the S-schema X. For  any polynomial P 6Q ix] 
there  is defined a subfunctor  Hilb~r/S.~. whose value on an S-schema Z is a set  of closed subschemata 
TcXXsZ, flat  and p roper  over  Z, such that for  any point z 6 Z the f iber  T2=T~z/~(z ) has P as the Hi lber t  

polynomial.  The functor Hi lbx /S  is r ep resen tab le  if and only if the functors HilbP/s.. a r e  represen tab le ,  
and in this case,  for the represen t ing  object  (the Hi lber t  schema) we have Hllbx/s= 11 HllbxP/s, where HtlbxP/s 

P 

is the r ep resen t ing  schema for Hi lh~/S.  

Grothendieck proved~n [2231 that w h e n / :  X - -  S is a quas_.iprojective morphism with a Noetherian 
schema S, the functor Hilb~/S is r epresen tab le  by schema H i l t ~ / S  of finite type and quasiproject ive  o v e r  

S. More  g, enera l ly ,  in this case  the functor Quot~r~x~a is r epreseh tab le  by a quasiproject ive schema of local-  
ly finite type over  S. When the m o r p h i s m / :  X - -  S is not quasiproject ive,  the schema Hi lbx /S  does not 
exisz, in general .  However,  by vir tue of Ar t in ' s  r e su l t  [86] the funetor Quot~-~x,s is r epresen tab le  by an 
algebraic space locally finitely presented over S for any schema X locally finitely presenmd over S. By 
the same token the question of the representability of the functor Quot~ixls is fully answered in the category 
of algebraic spaces. 
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Y )  
The construction of the schema H i l l ~  S ~ , ~  for the case when X is a s m o o t h  algebraic s u r f a c e  over field 

k and P is a polynomial of degree 1 is contained in Mumford's book [381]. In this case the functor Hilb~/S~ 
coincides with the functor Div~x/k, also studied by Grothendieck [223] for an a rb i t ra ry  S-schema X. Fur-  
thermore,  Mumford showed the connection between the Hilbert schema and the classical  constructions of 
Chow and van der Waerden of the Chow variety (also see [187, 380]). 

Fogarty [188] investigated the connection between the Hilbert  schema of an algebraic surface and its 
symmetric product. 

In [257] tIartshorne proved the connectedness (and even the linear connectedness)of the Hilbert schema 
Hilb~/ , generalizing the classical asser t ion on the connectedness of "the variety of modules of space 

curves."  An algebraic proof of this resul t  (in the language of ideals) is due to Car t ier  [150]. The I-Iilbert 
schemata Hllbp~j~ play an important role in Mumford's construction of the variety of modules of space 

curves [380]. Mumford [378] showed that the tIilbert schema of nonsingular curves of degree 14 and genus 
24 in a three-dimensional projective space over the complex number field has nilpotent elements in local 
rings. The presence of the latter explains certain pathologies in classical  algebraic geometry. 

In [221] Grothendieck investigated the representabil i ty of other important functors in algebraic geom- 
etry. His approach to the study of the automorphism group of an algebraic variety proved to be part icular-  
ly interesting. Grothendieck defined the automorphism schema Autx/S of an S-schema X as the represent -  
ing object for the functor Autx/s:S'-+ Auts, (XX S') from the category (Sch/S) into the category of groups. 

s 
in particular,  if S = Spec (k) is the spectrum of a field, then the group of rational k-points of the group 
schema Autx/k coincides with the k-automorphism group of the k-schema X. Grothendieck proved the 
existence of the schema Autx/S for any projective S-schema X. The structure of an algebraic group on the 
automorphism set of a projective algebraic variety had been introduced earI ier  by Matsusaka and Matsu- 
mura (unpublished). In [358] Matsumura and Oort generalized Grothendieck's resul t  to an a rb i t ra ry  proper 
S-schema X. The structure of an algebraic group on the automorphism set of a complete variety was in- 
troduced ear l i e r  by Ramanujam [437]. The schema Autx/S is a group S-schema locally finitely presented 
and, in general, unreduced [358]. 

We remark that even in the classical  case when X =Spec (K), S = Spec (k), where K/'k is the finite ex- 
tension of a field, the schema AutK/k yields a new point of view on Galois theory. Namely, the algebraic 
group AutK/k plays the role of the "present-day s Galois group, while its group of k-rat ional  points is pre-  
cisely the classical  Galois group. For  example, if tC/k is purely inseparable, AUtK/k (k) = {e}, and 
dimAutK/k > 0 (!). This classical case was examined in detail in [110]. See [505], for example, for the ap- 
plications of this point of view to the theory of automorphisms of Lie algebras.  

Analogously to the functor Autx/S, Grothendieck defined and investigated the functors Horn S (X, X'), 
Isoms (X, X'), and others.  

In [368, 369] Miyanishi investigated the representabfl i ty of the functor PH (G; X/S) associating with 
each S-schema S' the set of classes by isomorphism of principal homogeneous spaces on Xs. = X  >< S" re l -  

s 
ative to the group S-schema G. This functor was introduced by Grothendieck in [14] as a natural generali- 
zation of the Picard functor (the localization of the functor Pl{ (Gin; X/S) relative to the flxlC-topology is 
the Picard functor P icx / s ) .  When S = Spec (k) and G is a linear commutative algebraic group, this functor 
is representable, and the k-schema representing it has a close relation with the Picard  variety of divisors 
of type G, constructed and studied by Bertin [124-127]. Miyanishi proved the representabil i ty of the func- 
tor PH (G; X/S) for the case when the morphism is cohomologically fiat, the Picard ~nc tor  P icx /S  is rep- 
resentable by a sum of quasiprojective S-schemata, and G is a finite locally free group S-schema. 

In the present  survey we do not touch upon the very interesting questions connected with the r ep re -  
sentability of "global schemata of modules ~ [166, 192, 285, 379, 380]. 

w F o r m a l  G e o m e t r  7 

1. Formal Schemata. The definition and the foundations of the theory of such schemata are contained 
in [219, 240, 248]. Formal schemata play an important role in the infinitesimal study of schemata and also 
yield a convenient context for the theory of formal groups (cL [169]). in the affine case they correspond to 
the formal spectra of topological algebras, i.e., ~o the set of closed prime ideals equipped with the Zariskt 
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topology and with a sheaf  of local  r ings .  Genera l ly  f o r m a l  schemata  a r e  obtained by pas t ing  together  affine 
f o r m a l  schemata .  The m o s t  impor tan t  spec ia l  case  (and, it s e e m s ,  as yet  the only one usable  in app l i ca -  
tions) cons is t s  in the examinat ion  of a commuta t ive  r ing  A with identity and of an I-adic topology on A. In 
this case  the fo rm a l  spec t rum S p / ( A )  is a r inged space whose suppor t  is a c losed subse t  Spec (A) defined 
by the ideal I, while the s t ruc tu re  sheaf  is the r e s t r i c t i o n  of the sheaf  (A), where  ~ is the comple t ion  of A 
in the i -ad ic  topology. The m o s t  impor tan t  cons t ruc t ion  leading to a f o r m a l  s chema  is the cons t ruc t ion  of 
_the fo rma l  comple t ion  of the s c h e m a  X along a c losed subschema  Y. The la t te r  is a f o rma l  schema  with a 
topological  space  Y and a s t ruc tu re  sheaf  e }  = tim @x/I~, where  I is the sheaf  of ideals of subschema  Y. 

The schema  V~=,(Y, ~x//"+9 is ca l led  the n- th  inf in i tes imal  neighborhood of subschema  Y, and X=l imF=.  

The canonical  m o r p h i s m  of r inged spaces  i: ~ - -  X defines,  for  any coheren t  sheaf  ~ on X, i ts  f o r m a l  c o m -  
pletio n ~ = l i_m,~/I"§ = i* (5). 

In Chap. IF/of his monumental treatise [242] Grothendieck developed the cohomology theory of formal 
schemaza. The fundamental results of this theory are the theorems of comparison and of existence for 
p r o p e r m o r p h i s m s .  Let)::  X - -  S be a p rope r  m o r p h i s m  of Noether ian  schemata ,  SocS be a c losed  sub- 
s chema  of schema  S, X o ~ / - 1  (So) , ~ ( repsec t ive ly ,  S) be the fo rma l  comple t ion  o f X  ~ e s l ~ c t i v e l y ,  S) along 
X 0 ( respec t ive ly ,  So), i: X -  X and j: S - -  S be cor responding  canonic morph i sms , ) : :  X - -  S be the r e s t r i c -  
tion of f on X. Gro thendieck ' s  c o m p a r i s o n  theorem a s s e r t s  that for  any coheren t  sheaf  F on X the canonic 

homomorphism of sheaves W A  is an isomorphism. In particul=,  if s S, then the 
comple t ion  of the f iber  (Rq):.(F)) s a t  point s is i somorphic  with lim/-/r F| For  q = 0 this 

7 
theory  should be cons ide red  as  a na tura l  genera l iza t ion  of Z a r i s k i ' s  " theory  of holomorphic  func to rs"  [513]. 
In pa r t i cu la r ,  Z a r i s k i ' s  connectedness  theorem follows eas i ly  f rom it. Grothendieck a lso  inves t iga ted  in 
which case  is the l imi t  group i somorph ic  with the group ~/q ( / - '  (s), ~'| The r e s u l t s  obtained by h im 
a re  v e r y  profound and a r e  connected with the quest ion of the cohomological  f la tness  of m o r p h i s m f .  Gro-  
thendieck ' s  ex is tence  theo rem a s s e r t s ,  under  the s a m e  assumpt ions  as  in the c o m p a r i s o n  t heo rem,  that  for  
any coheren t  sheaf  ; on schema  X there  ex i s t s  a coheren t  sheaf  F on X for  which p_--~r. The t h e o r e m s  ob- 
mined a r e  fo rma l  ana logs  of S e r r e ' s  c o m p a r i s o n  and a lgebra iza t ion  theor ies  f rom [478]. A su rvey  of Gro-  
thendieck ' s  r e su l t s  a r e  contained in his r e p o r t  a t  the Bourbaki  s e m i n a r  [219]. 

Grothendieck [227] gave a genera l i za t ion  of the compar i son  and exis tence  theory  to the case  of not 
n e c e s s a r i l y  p ro pe r  m o r p h i s m s .  

T h e o r e m s ,  impor tan t  for  appl icat ions ,  on the a lgebra izab i l i ty  of a f o r m a l  s chema  X over  a comple te  
local  r ing  A, whose suppor t  is p ro jec t ive  ove r  the res idue  field of A, a r e  contained in [242]. 

In [261] H a r m h o r n e  proved  a f o rm a l  duality theorem H ~ (X, ~ =  Hom~ (H~ -~ (X, Hom~x (F, ~,x)), k), where  
is the cornpl.etion of a smooth p rope r  schema  X re la t ive  to a c losed subschema  Y, ~X is a canonic sheaf  

on X, and H ~  -~ a r e  local  cohomologies  r e l a t i ve  to Y. 

Har t sho rue  [260, 261], Ma t sumura  [273], and Hironaka [270, 273] studied the fo rma l  complet ion of a 
subschema  Y in a smooth p rope r  k - s c h e m a  X. In pa r t i cu la r ,  they invest igated the quest ion as  to when the 
f ield of " m e r o m o r p h i c "  functions KCXD (i.e. ,  global sec t ions  of the sheaf  of comple te  r ings  of  pa r t i a l  loca l  
r ings  of schema  X) coincides with the field of ra t ional  functions K (X). This  coincidence holds when Y is a 
comple te  in te rsec t ion  [260, 261] o r  an effect ive C a r t i e r  d iv isor  with an ample  no rma l  sheaf  [270] or ,  
f inally,  a subschema of a pro jec t ive  space [261, 273]. 

In [261] Ha r t sho rne  d i scovered  an in te res t ing  re la t ion  of these quest ions with those on the cohomo-  
l o ~ c a l  d imension of the complemen t  X\Y  and on the Lefsche tz -Gro thendieek  theory.  To him a lso  a r e  due 
the impor tan t  t h e o r e m s  on the finite d imensional i ty  of the cohomotogies  H i (X, F) [258, 260, 261, 264]. 
Hi ronaka  invest igated the imbeddings of a f o rma l  schema  Z in a smooth k - s c h e m a  T so that T ~" Z and that  
T would p o s s e s s  the p r o p e r t i e s  of un iversa l i ty  re la t ive  to ra t iona l  mappings  [270]. Here  too an example  
was p resen ted  of a nonalgebra izable  fo rma l  schema;  another  such example  was given by Ha r t sho rne  [261]. 

2. F o r m a l  Deformat ions .  The techniques of f o rma l  geome t ry  proved to be pa r t i cu la r ly  useful  in the 
theory  of deformat ion  of schemata ,  designed to genera l ize  to the case  of s chema ta  the fundamental  r e su l t s  
of the Koda i r a -Spence r  theory  of de format ions  of complex va r i e t i e s .  The bas ic  quest ions of this theory  
a r e  the following: a) (The lifting problem.)  We a re  given a k - s c h e m a  X 0 of finite type and a ce r t a in  m o r -  
phism u: Spec (k) ~ S whose image is a point so E S. Does there ex i s t  a f lat  S - s c h e m a  X of finite type for  
which X 0 = Xs0? b) (The module problem.)  Does there ex i s t  a un iversa l  fami ly  ~Z'-~.W for al l  t ift ings of  
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schemata X0? As a matter of fact the answers to the questions posed are in the negative in the general case. 
Let us assume tha~ the answer to question a) is in the affirmative for some schema X 0. In this case the 
formal completion X along fiber X 0 is a formal schema over Sper ~#s. ~,) whose topological space is isomor- 
phic with schema X0, while for any integer n >- 0 the schema X| s/m" is the n-th infinitesimal neighbor- 

s 
hood of schema X 0. Thus, we arrive at a "formal lifting" of schema X 0. Weakened forms of questions a) 
and b) are the following formal analogs of them: a') We are given a complete local ring A with a residue 
field k. Does there exist a formal schema X over A whose topological space is isomorphic with X0? b') 
Does there exist a universal family, i.e., a complete local ring # with residue field k and a formal schema 
~r-- Spec t@) such that for any formal deformation X -- Spec (A) there exists the homomorphism #-- A of 
rings for which X = ~| A? We remark that question b') is a formal analog of Kuranishi's construction 

[327] of a local variety of modules in analytic geometry. 

Grothendieck reformulated question b') as a question on the prorepresentability of the following func- 
tor on the category of Artinian k-algebras with residue field k, F: A -- {set of A-schemata X of finite type 
with X| = Xo}. The prorepresenting object for this functor is the formal module schema ~Spec(~). Ap- 

A 

plying Schlessinger's [58] and Grothendieck's [219] criteria (see w we obtain an affirmative answer to 
question b') in the following case: dimkHt (X0, | ) = m < ~ and H ~ (X0, @~ ) = 0 (here @~ is the sheaf of 

�9 0 2 z~0 ' z~ 0 
germs of sections of the tangent bundle to X0). Moreover, if I-I CX0, ~0 ) -- 0 (for example, X 0 is a curve), 
then the ring r ~/~ [it, ..... t~]l. This result is precisely analogous to Kuranishi's result cited above. In the 
case when, in addition, schema X 0 is projective, Grothendieckts algebraization theorem mentioned in Para. 
1 allows us to prove the effective prorepresentability of functor F, while Artinrs theorem yields the alge- 
braization of the formal module schema for X 0 (see w Para. 1). 

Grothendieck [467] investigated question a9 for a smooth schema X0. The formal lifting of schema 
X 0 to a formal A-schema X is effected in the form of a sequential construction of infinitesimal neighborhoods 
X n over S, = Spec (A/m ~) such that X~| ~ X~_~. In view of the smoothness of X 0 such a construction can 

always be made locally. Grothendieck showed that an obstacle to the pasting together of such infinitesimal 
"or �9 , 2 i ne1~,hborhoods hes m the group H (X0, @X0). Moreover, the continuation of schema X0 uptoa formal schema 

�9 �9 . ~__ �9 -- �9 o 

XonsS2rCe (dAb);%r:2e~ l[f13H I. (Xn0,p@ laX0i)cul0r, We rff~araktivflveataC:mePle ~ qu~It~io c ~,~Ifogl;oOwfs ~S2G:e~e~d~::k,s 

theory if H 2 (X0, | ) = 0 (for example, X 0 is an affine or smooth curve). If, furthermore, the schema is 
projective over k, ~en by virtue of Grothendieck's algebraization theorem we obtain an affirmative an- 
swer also to question a) for the schema S = Spec (A). 

Particularly important applications of the preceding theory are the questions connected with the lift- 
ing of k-schema X 0 to characteristic zero. In this we are interested in question a),where schema S is a 
schema of characteristic zero (for example, S = Spec (W (k)) is the spectrum of the Witt vector ring over k). 
By virtue of Serre's example [475] the answer to this question is not always in the affirmative eve n for smooth 
projective surfaces. From Grothendieck's theory immediately follows an affirmative answer to this ques- 
tion for smooth projective curves. When X 0 is an Abelian polarized variety, this question was examined by 
Grothendieck and Mumford (cf. [383, 424]). For finite group schemata it was considered by Mumford and 
Oort [424, 425]. 

In 1968, with the aid of the concept of a cotangent complex of a morphism of schemata, Grothendieck 
succeeded in making a significant generalization of deformation theory of smooth curves to arbitrary rela- 
tive schemata [235]. The theory of a cotangent complex and its application to deformation theory was con- 
siderably developed by Illusie [290, 292], which in its own turn gtobalized the local theory of Andree [72] 
and Quillen [436] (also see [341]). 
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2. 

3. 
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