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The proposed survey is the third in a series of surveys on algebraic geometry [31, 88]. 
It is made up mainly from the material in Referativnyi Zhurnal "Matematika" during 1965-1973 
and is devoted to the geometric aspects of the theory of algebraic varieties. After the 
fundamental papers of Grothendieck, effecting the harmonic connection of the purely geome- 
tric ideas of Italian algebraic geometry with the methods of commutative and homologica! al- 
gebra, it is difficult to draw a clear boundary between the algebraic and the geometric as- 
pects of algebraic geometry. Our selection, to be sure, is purely conventional: On the one 
hand we do not include in the survey that material which could serve as a natural continua- 
tion of the previous surveys, and on the other hand, space limitations compel us to exclude 
such important sections of algebraic geometry as the theory of group schemes, algebraic trans 
formation groups, Abelian varieties, the analytic theory of complex algebraic varieties (we 
touch upon it only incidently), the theory of automorphic functions, singularities of al- 
gebraic varieties, topology of real algebraic varieties. 

Clearly, we express the general opinion if we remark that the area of algebraic geome- 
try, relating to the theme of the present survey, is going through a period of violent growth 
at present, prepared to a great extent by the preceding stage of reorganization of the fun- 
damentals of algebraic geometry. This is emphasized by the success, achieved in recent 
times, in solving a number of classical problems, which seemed to be unachievable earlier 
(irrationality of the cubic and Lurotte's problem, example of noncoincidence of homological 
and algebraic equivalence of cycles, Deligne's proof of Weil's conjecture on the 5-functions 
of algebraic varieties). 

New textbooks and surveys on algebraic geometry are [60, 123, 152, 465, 669, 733]~ 
Conference proceedings are [134, 135, 138, 200, 722]. Memoirs and historical essays are 
[47, 123, 230, 258, 270, 271, 531, 532, 694, 749]. 

El. Birational Geometry 

This area of algebraic geometry, taking its start in the works of the German mathema- 
ticians Riemann, Clebsch, Max Noether (see the "Historical sketch" in [122]), studies the 
properties of algebraic varieties, which are invariant relative to birational maps. Highly 
effective and fruitful investigative methods were worked out during its development and an 
immense amount of facts was obtained, mainly for curves and surfaces. Particularly pro- 
found results were obtained for surfaces by the Italian school of algebraic geometry. 

Birational geometry of varieties of dimension n ~3 upto roughly the middle of our cen- 
tury existed only in the form of problems and unrealized ideas, as well as of individual 
disconnected results not always satisfactory in the sense of rigor of proofs (see [672] and 
also the survey of classical results in [8]). 

In recent years -- in the period of the new intense flourishing of algebraic geometry -- 
solutions have been obtained to several most important problems in birational geometry, as 
for example, the resolution of singularities, the generalization of the Castelnuove--Enriques 
contractibility criterion, the solution of Lurotte's problem, etc. 

I. Models. An algebraic variety X over a field k can be examined in birational geome- 
try in two aspects: as a support of the field of rational functions k(X) on it or as a to- 
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pological space with specific properties. The birational classification of varieties coin- 
cides with the classification to within k-isomorphism of the fields of functions on them 
(i.e., of the arbitrary finitely generated fields over k). In the purely algebraic problem 
of the classification of fields the geometry emerges with the selection of a definite model, 
i.e., any representative from the birational class of varieties. Besides the classical 
models -- affine and projective varieties -- new ones have arisen and become widely used: ab- 
stract varieties, schemes, and algebraic spaces (see survey [31], as well as [79, 80, 81]). 
In addition to the fundamental papers of M. Artin, Moishezon, Knutson, the small notes [178, 
252] also have been devoted to the study of algebraic spaces (or minischemes in Moishezon's 
definition). 

The famous classical problem on the existence of a nonsingular projective model was solved 
in 1962 by Kironaka [116-118, 419, 420] for all dimensions in characterisitc 0 by means of 
the process of resolution of singularities of an arbitrary variety. Upto the time of Hiro- 
naka's work a theorem on the resolution of singularities was known for varieties of dimen- 
sion < 3 over an arbitrary field of characteristic 0, thanks to the work of Zariski (for 
curves and surfaces over a complex field -- this is the classical result). In characteristic 
p > 0 a theorem on resolution of singularities (and by the same token the existence of a non- 
singular model) has been proved as yet only for dimensions n ~3 (for n = 2 and 3 and p > 5, 
see [128, 130]). 

The important and frequently used concept of a normal variety (or normal model) was in- 
troduced by Zariski; to him is due also the procedure for the normalization of any variety 
X, based on a purely algebraic operation of the integral closure of local rings OX,x, x C X, 
in a quotient field k(X) (see [33]). A normal model does not have singularities in codimen- 
sion I; consequently, for curves this procedure leads to a nonsingular model. New results on 
the properties of normal varieties are related exclusively to commutative algebra and the 
abstract algebraic geometry (see [31]). 

One of the central concepts in birational geometry is that of a minimal model. A non- 
singular projective variety X over a field k is called a minimal model if every birational 
morphism X § onto anonsingular projective variety Y is an isomorphism. However, if any 
birational map X§ X is an isomorphism, then X is called an absolute minimal model, otherwise, 
a relative one. In each birational class in which a nonsingular projective model exists, a 
relatively minimal one exists too. An absolutely minimal model, obviously, is unique to 
within isomorphism in its own birational class; therefore, its existence reduces the prob- 
lem of birational classification to classification within isomorphism. A nonsingular pro- 
jective model has been determined uniquely in dimension 1 (see [122], for example). Enriques 
proved the existence of the absolutely minimal model over an algebraically closed field of 
characteristic 0 for all surfaces except rational and ruled ones. This result, as well as 
the results relating to the description of relative minimal models, have been reproduced in 
a number of papers [2, 68, 83, 759, 760]. In [161, 162, 181, 534, 715] they are generalized 
to two-dimensional regular schemes. Almost nothing is known on minimal models in dimensions 
n~3. 

Minimal models of surfaces over an algebraically closed field possess the characteristic 
property of the absence on them of exceptional curves of first genus (i.e., irreducible cur- 
ves contractible to a nonsingular point by a birational morphism of the surface). According 
to the Castelnuovo--Enriques criterion (for example, see [2]) such curves E are characterized 
by the conditions: E is a nonsingular complete curve of genus zero and its self-intersection 
index equals --i (for arbitrary regular two-dimensional schemes see [534, 715]; for contrac- 
tion to a singular point see M. Artin [5], as well as [146, 147]). 

The first generalizations of the Castelnuovo--Enriques criterion to the multidimensional 
case and only for contraction to a point were given by Kodaira in the algebraic case and by 
Grauert in the complex-analytic case. A general criterion was given by Moishezon [82] in 
the following formulation: Let f: X' § be a proper morphism of complex varieties, Y' be a 
reduced complex subspace in X', Y be a complex subvariety, [(yr)~y, ~X,\Yr~X\y be an iso- 
morphism, and dimY' > dimY; then Y' is called an exceptional subvariety of first genus, 
while f is called a contraction. If the number of algebraically independent meromorphic 
functions on X' coincides with the dimensionality of X', then the following criterion holds. 
In order for an irreducible complex subspace Y' of a compact variety X' to be an exceptional 
subvariety of first genus, it is necessary and sufficient that the following three conditions 
be fulfilled: 
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a) Y' is nonsingular, codimY' = I; 

b) the morphism ~ : Y' § onto a complex variety exists, being a locally trivial fiber- 
ing into projective spaces pm; 

c) the intersection Y~-~-~(y) of cycles on X' coincides with the class of hyperf!at sec- 
tion into pm taken with a minus sign, or, what is equivalent, the restriction to Y' of the 
sheaf of ideals I = OX'(--Y') coincides with the natural very ample sheaf Oy'/y(1) of the 
projective morphism % 

It turned out that analogous conditions are necessary, but not always sufficient, for 
contraction inthecategory of algebraic varieties [82]. This fact serves as one of the rea- 
sons for the origin of the concept of minischeme or algebraic space for which the contrac- 
tibility criterion now acts with full force (Moishezon [82], Artin [142]). Artin [142] stud- 
ies the more general situation of arbitrary modification in algebraic spaces. 

Lascu's papers [525-527] also were devoted to the generalization of the Castelnuovo-- 
Enriques criterion to n-dimensional varieties. His contractibility criterion in the category 
of algebraic varieties contains, besides conditions a)-c), the further condition R~f,I n = 0 
for n~2, where I = OX,(--Y') is a sheaf of ideals, settingY' into X'o In [45] Moishezon's 
contractibility criterion is extended to arbitrary complex varieties. 

Hironaka [421] constructed an example of a birational morphism of three-dimensional 
varieties, not decomposable into a composition of monoidal transformations with nonsingular 
centers (see below), from which it follows that the absence on a variety of an exceptional 
subvariety in the sense of Moishezon still does not signify that it is minimal. 

The concept of a minimal model was extended to families of algebraic curves and Abe!ian 
varieties (see w 

The traditional approach to the concept of a "good" model of an algebraic variety con- 
sists in selecting a "good" birational immersion of it into a projective space, as well as 
into other special varieties. For example, the fundamental model of an n-dimensional va- 
riety X in Italian geometry was its birational representation as a hypersurface in pn§ with 
the usual singularities (see [672, 757]). The fact that various good representations are 
possible for an algebraic curve: as for example, as a planar curve having, possibly, only 
the usual double singular points; imbedding as a nonsingular curve in p3; canonic immersion 
of a nonhyperelliptic curve of genus g > 1 into pg_1; representation as a finite (ramified) 
covering of the straight line P~; the immersion into it of a Jacobi variety; is used for in- 
vestigating its properties (see w and particularly for studying the moduli space (see w176 

See w for various representations of surfaces. 

The idea of constructing a model in birationally invariant terms, i.e., in terms of the 
field of functions K = k(X), is due to Zariski. In dimensions greater than 1 such a model 
is not an algebraic variety in the usual sense (it is too "endless"), namely, it is the so- 
called Zariski--Riemann space (see [33]); its set of points consists of all possible regular 
local subrings OcK of maximal dimension, containing field k. In the one-dimensional case 
it coincides with the usual nonsingular complete model. In dimension n = 2 its description 
is reproduced in Lipman's addendum in book [757]; it is a certain formalization of the clas- 
sical conception of "infinitely close points" and of linear systems with prescribed base con- 
ditions, which were the fundamental instrument in the birational geometry of M. Noether and 
of the Italian geometers (see [752]). An interesting variant of this two-dimensional model 
was given by Manin [60], called a "foamy space." The birational invariance of a "foamy 
space" and especially its Picard groups were used in [60] (also see [68, 36-38]) for a bira- 
tional classification of rational surfaces over perfect fields, as well as for the study of 
groups of birational automorphisms. 

2. Birational Maps and Birational Invariants. The simplest birational maps are the qua- 
dratic (invertible) transformations of projective spaces~ They played a very important role 
in classical birational geometry, mainly because they generate the whole group of birational 
automorphisms on the plane p2 over an algebraically closed field (Noether's theorem, see 
Para. 3 below). Certain concrete examples of quadratic transformations are met with in the 
literature and here (for example, see [198, 203, 407, 618]). However, in modern birational 
geometry the central place is occupied by the (more elementary and most important) concept 
of a monoidal transformation with a nonsingu!ar center, also called a blowing-up or a ~- 
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process. This concept is a special case of the most general concept of the blowing-up of a 
coherent sheaf of ideals. 

Let X be an arbitrary algebraic variety (or scheme), I be a coherent sheaf of ideals in 
OX, Y~X be a closed subscheme given by I. The morphism f: X'+X is called a blowing-up 
of sheaf I or a monoidal transformation with center in Y if the following conditions are 
fulfilled: 

i) f*([)=l| Ox'is an invertible sheaf of ideals on X'; 
ox 

2) if g: X"§ is an arbitrary morphism satisfying condition i), then there exists a 
unique morphism h: X"§ with foh = g (see Hironaka [116], and also [60, 61]). 

A monoidal transformation is a proper birational morphism "blowing up" Y upto the divi- 
sor f-1(y) = y, inX' and being an isomorphism outside Y'. Its explicit construction has the 

f o r m f : P r o ]  ~ X ;  i f  X and Y a r e  smooth  and codim Y = r > 2 ,  t h e n X '  a n d f - * ( Y )  = Y' a l s o  i s  

smooth  and Y' +Y i s  a l o c a l l y  t r i v i a l  f i b e r i n g  i n t o  p r o j e c t i v e  s p a c e s ,  b e i n g  a p r o j e c t i v i z a -  
t i o n  o f  a n o r m a l  v e c t o r  b u n d l e  Ny/X ( s e e  [60,  1 2 2 ] ) .  By v i r t u e  o f  p r o p e r t y  2) t h e  morph i sm 
of  c o n t r a c t i o n  o f  an e x c e p t i o n a l  d i v i s o r  o f  f i r s t  genus  ( i f  i t  e x i s t s )  i s  a m o n o i d a l  t r a n s -  
f o r m a t i o n .  

With t h e  a i d  o f  m o n o i d a l  t r a n s f o r m a t i o n s  w i t h  n o n s i n g u l a r  c e n t e r s  i n  smooth  v a r i e t i e s  
Z a r i s k i ,  H i r o n a k a ,  and Abhyanka r  r e s o l v e d  t h e  s i n g u l a r i t i e s  o f  t h e  s i n g u l a r  v a r i e t i e s  em- 
bedded  i n  them and p r o v e d  a t h e o r e m  on t h e  r e m o v a l  o f  p o i n t s  o f  i n d e t e r m i n a c y  o f  r a t i o n a l  
maps o r  t h e  t r i v i a l i z a t i o n  o f  c o h e r e n t  s h e a f s  o f  i d e a l s  i n  t h e  s e n s e  of  H i r o n a k a  [ 1 1 6 ] .  We 
a r e  d e a l i n g  w i t h  t h e  f o l l o w i n g  a s s e r t i o n .  L e t  g: X§  be  an  a r b i t r a r y  r a t i o n a l  map o f  a 
n o n s i n g u l a r  v a r i e t y  X i n t o  a v a r i e t y  Y; t h e n  t h e r e  e x i s t  a f i n i t e  c h a i n  o f  m o n o i d a l  t r a n s -  
f o r m a t i o n s  w i t h  n o n s i n g u l a r  c e n t e r s  f~: Xi+I~X~, i = 0  . . . .  ,N - - l ,  Xo=X, and a b i r a t i o n a l  morph i sm 
h : X ~ - ~  such  t h a t  g = h o  (~1 . . . .  ~ ) - 1 .  H i r o n a k a  [116-118]  p r o v e d  t h i s  f a c t  f o r  v a r i e t i e s  
o f  a r b i t r a r y  d i m e n s i o n  in  c h a r a c t e r i s t i c  0 ( i t  had b e e n  known e a r l i e r  f o r  s u r f a c e s  and f o r  
t h r e e - d i m e n s i o n a l  v a r i e t i e s )  and Abhyanka r  [128,  130] p r o v e d  i t  f o r  v a r i e t i e s  o f  d i m e n s i o n  

3 in characteristic p > 0. 

Any vector bundle E over a nonsingular projective variety X in characteristic 0 can be 
turned into an extension of linear bundles on some projective nonsingular variety X' obtained 
from X by means of a finite sequence of monoidal transformations with nonsingular centers 
[116]. A flattening, procedure for nonflat morphisms is effected with the aid of monoidal 
transformations of the base ([653], and also Hironaka (preprint)). 

From nonsingular projective surfaces every birational morphism is a composition of 
monoidal transformations with centers at points and every rational map can be decomposed 
(essential uniquely) into monoidal transformations and transformations inverse to them [534, 
715]. The already-mentioned example of Hironaka shows that in the three-dimensional case not 
every birational morphism admits of a decomposition into a composition of monoidal transfor- 
mations. The representation of any such morphism in the form of a sequence of blowing-ups 
and contractions with nonsingular centers remains an unsolved problem. 

From the theorem on the removal of points of indeterminacy of rational maps in dimen- 
sion n we can derive a theorem on the birational invariance of the cohomology spaces Hi(x, 
OX) for smooth complete varieties X (Hironaka [116], Abhyankar [129]) and, in particular, 
we can give an affirmative answer to the classical question on the birational equivalence of 

arithmetic genus 
n--I 

p= (X)= ~ ( -- I) ~ dimkM "-i (X, Ox) 
i=0 

(for all n in characteristic 0 and for n<3 in characteristic p> 5). By Serre duality fol- 
lows hence the birational invariance of Hn]~(X, ~), where ~ denotes a pencil of regular dif- 
ferential r-forms on X; when r = n this is the canonic invertible pencil on X, often denoted 
also as m x. The birational invariance of geometric genus pg=dimkf-fn(X, Ox)=dim~f-f~ ox), 
as well as of all spaces of regular differential forms l-/~ Q~, r>1, was known earlier for 
all smooth varieties in any characteristic (see [123], for example). Among the invariants 
connected with differential forms the ones most commonly used are the so-called multiple 

�9 0 p  genera Pm=dlm~ (X,o~m), m>2 (see [757, 455]) Paper [13] was devoted to the study of 
various tensor invariants arising from differential forms. 
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An important birational invariant, connected with multiply canonic maps of X into pro- 
jective spaces, is the so-called Kodaira dimension x(X), defined as follows. Let %n:X-+P~ 

be a rational map defined by the invertible pencil ~x@m , re>I, where N-----dimJf~ c0xQ~)--!; 
then 

(X) =max  (dim ~ (X)) 

for at least one m if N>I, otherwise, x(X)--.--oo. Some applications of the invariant ~(X) 
for the study of varieties of dimension n ~ 3 are contained in [737, 455]. Invariants, con- 
nected with the Kodaira dimension, and their application to the problem of the rationality 
of three-dimensional varieties occur in Iitaka [460]. 

The classical results on the birational invariance of the fundamental group on smooth 
projective varieties over a complex field were generalized by Grothendieck (see survey [31]). 
Another simpler invariant can be extracted from the fundamental group, viz., the torsion sub- 
group in the group of one-dimensional homologies or (from the formula of universal coeffi- 
cients) the torsion subgroup in two-dimensional cohomologies with integral (or integral l- 
adic in characteristic p # l) coefficients. By Poincar~ duality this invariant coincides 
with the torsion subgroup in the N~ron--Severi group of divisor classes. Torsions in the 
latter group were known in the classical literature as Severi "divisors" and were frequently 
used for constructing irrational varieties with zero genera (see Roth [672]). In 1959 Serre 
[706] proved that the fundamental group (and, consequently, the Severi "divisors") does not 
distinguish unirrational and rational varieties, having shown by the same token the incon- 
sistency of all the classical attempts to use this invariant to construct counterexamples 
to Lurotte's problem in dimension n ~3. 

Such counterexamples were constructed independently (and practically simultaneously) by 
Clemens and Griffiths [205] (n = 3), Iskovskikh and Martin [39] (n = 3), and Artin and Mum- 
ford [143] (for any n). Let us describe the invariants they used. 

Artin and .Mumford used torsions in three-dimensional cohomoiogies Tots H3(H, Zl). The 
birational invariance of this group can be established directly by use of the theorem on the 
removal of points of indeterminacy of a rational map [143]; however, this fact was first dis- 
covered by Grothendieck (and even without the resolution theorem) in [402]. He proved the 
birational invariance of the Brauer group Br(X) and established its connection with Tors 
Ha(X, Zg). Deligne's report [221] was devoted to an exposition of Artin and Mumford's work. 
For surfaces over a nonclosed field the Brauer group is closely related with another bira- 
tional cohomological invariant H~(k, Pic X) (Ga!ois cohomologies) introduced earlier by Manin 
[68] (also see [60]). 

A new interesting birational invariant -- the polarized intermediate Jacobian J3(X) -- 
was found by Clemens and Griffiths [205]; with its help they proved the irrationality of a 
three-dimensional cubic hypersurface in p4 over a complex field, having by the same token 
solved a famous classical problem. For smooth projective three-dimensional varieties X with 
H~ X, ~X) = 0 over the complex number field C the intermediate Jacobian J~(X), defined as 
the complex torus H~,2(X)/H3(X, Z), where H~,2(X) is the corresponding Hodge component; in the 
expansion of H3(X, C), is an Abelian variety. If HI(X~ Z) = 0, then a skew-symmetric form 
on H3(X, Z) (the intersection index) prescribes on J3(X) a certain principal polarization @o 
Under birational transformations only the Jacobians of curves with the natural Poincar~ 
polarization can be appended to [J3(X), @]; therefore, if [J3(X), 8] is not the Jacobian of 
any curve whatsoever, equipped with Poincar~ polarization, then X is an irrational variety. 
The fact that for a cubic X the five-dimensional polarized Abelian variety [J3(X), @] is not 
the Jacobian of a curve can be established by studying the geometric properties of the divi- 
sor @ (for example, its singularities are not the same as in the Poincar~ divisor). This is 
a special case of the so-called Prim varieties. A good geometric exposition of this circle 
of questions appears in Tyurin [108]. A generalization in characteristic p > 0 was given by 
Murre [594]. 

Iskovskikh and Manin [39] used a generalization to the three-dimensional case of the 
birationally invariant conception of "virtual linear systems with prescribed base conditions" 
which was widely used by Noether and the Italian geometers in the theory of surfaces. In 
the modern interpretation this is a certain theory of intersections (or generalized Chow 
rings) on Zariski--Riemann spaces. Birational invariants arise here as certain inequalities 
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connected, on the one hand, with the behavior of canonic classes under birational transfor- 
mations [639] and, on the other, with the purely geometric properties of positiveness and 
mobility of cycles. A property was proved in [39] that on a smooth three-dimensional hyper- 
surface X of degree 4 in p, there are no birational automorphisms.besides the projective 
ones and, consequently, X is not rational. The unirationality of certain such hypersurfaces 
was established earlier by Segre [695]. The original idea of the proof and even the formu- 
lation of the result are due to Fano who, however, was unable to give an exhaustive proof. 

Individual special results on rational and unirational varieties are to be found in 
[73, 74, 125, 234, 264, 442, 470, 659-662, 727, 743]. 

See [98] for certain other birational invariants connected with the concept of the ra- 
tional equivalence of O-cycles. 

3. Cremona Transformations and Other Birational Automorphisms. The group of birational 
automorphisms of an n-dimensional projective space pn is called an n-dimensional Cremona 
group and is denoted by Cr n. The already-mentioned Noether theorem asserts that the two- 
dimensional Cremona group over an algebraically closed field is generated by quadratic trans- 
formations (or by the one standard transformation (Xo,Xi, x2)~(Xo -I, xl -I, x2 -1) and projective 
transformations). It is re-proved in [2, 84, 670] by essentially the same method. The clas- 
sical results of Cantor and Wiman on the classification to within conjugacy of finite sub- 
groups (in particular, of involutions, i.e., subgroups of order 2) are partially reestablished 
in [36, 37, 68, 69]. Individual results on quadratic transformations of a plane are obtained 
in [199, 235]. Certain concrete examples of Cremona transformations in a plane are con- 
sidered in [102, 201, 251, 522]. 

Interesting results on groups of birational surfaces of del Pezzo over a perfect field, 
in particular, cubic surfaces in p3, were obtained by Manin [60, 67, 68]. He has described 
not only the generator but also all the relations in the cases investigated. In [60] bira- 
tional automorphisms of cubic hypersurfaces are applied to the study of the rational points 
on them. 

Birational automorphisms of rational surfaces with a pencil of rational curves defined over 
a perfect field were studied in [36, 37]. 

Almost nothing is known about groups of birational automorphisms of varieties of di- 
mension n>3 except for individual results on the Cremona group and on certain concrete Cre- 
mona tranformations. 

The most essential results in this direction were obtained by Demazure [227] (also see 
[423]). He generalizes the well-known result of Enriques on maximal algebraic subgroups in 
a two-dimensional Cremona group to dimensions greater than 2. Enriques' result is that any 
connected maximal algebraic subgroup in Cr2 is a group of biregular automorphisms on some 
relatively minimal model of field k(x, y) (i.e., on a plane or one of the ruled surfaces Fn, 
n~ 0, n # i). Demazure studies connected algebraic subgroups in Crn, containing an n-dimen- 
sional decomposable torus. Their classification is reduced to the classification of the so- 
called "Enriques systems" (analogs of root systems). Such groups act on certain varieties 
which are compactifications of the n-dimensional torus. A complete classification can be ob- 
tained for semisimple groups. 

Frumkin [115] studies the classical concept of the genus of a birational automorphism 
of a three-dlmensional variety, i.e., the maximal Value of the genera of its base curves. 
Transformations of genus< g form a subgroup in the whole automorphism group. It is shown 
that in Crs corresponding filtration is infinite; in particular, Cr3 is not generated by 
quadratic transformations (even by any transformations of bounded genus). An interesting 
fact is established: any birational map of complete smooth three-dimensional varieties in 
characteristic O can be decomposed, "modulo transformation of genus O," into a composition 
of monoidal transformations and transformations inverse to them. 

Certain multidimensional quadratic transformations are studied in [198, 203, 618]. 

It is well known that a Cremona transformation of a plane and its inverse are of like 
degree. This is already not so in dimension 3. Certain special transformations of such 
type are studied in [702-704]. Certain other examples of birational transformations are in 

[183, 198, 544, 569, 692]. 
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In conclusion we note that one of the most interesting unsolved problems is the prob- 
lem of describing the groups of birational automorphisms of three-dimensional Fano varieties, 
in particular, the three-dimensional cubic. 

The problem of characterizing unirational and rational varieties occupies a central 
position in the birational classification of three-dimensional varieties. 

~2. Riemann--Roch Theorem and Intersection Theory 

i. Riemann--Roch Theorem. This theorem, in the classical formulation computing the 
dimension of a complete linear system of divisors on curves or surfaces, was generalized in 
1956 to varieties of arbitrary dimension by Hirzebruch (see [119]) (in the complex case). 
In 1957 Grothendieck gave a purely algebraic proof of this theorem, true for nonsingular 
projective varieties over an algebraically closed field of arbitrary characteristic [175, 
397]. The Riemann--Roch-Grothendieck theorem asserts the realizability of the relation 

f ,  (chx (5 ~) Todd (Tx)) ----- chy ( f ,  (cl (~))).  Todd (Ty) 

for any proper morphism f:X§ of smooth quasiprojective varieties and of a coherent sheaf 
on X. The values on both sides belong to A(Y)| where A(Y) is the Chow ring of variety 

Y; here f, is determined with the aid of the operation of "direct image of a cycle," cl (~) 
is the class of ~ in the Grothendieck group KCoh(X) of the category of coherent sheafs on 

X, f. (c|(~))=~ (--I) zcl (~If,~), chx (--), chy(--) [respectively, Todd() ] are universal po!yno- 
i 

mials with coefficients in Q of the Chern classes of sheaf ~ (respectively, of the Chern 
classes of the tangent bundles TX, Ty to varieties X and Y). The Chern classes cI(E)~A~(X) 
of a locally free sheaf E were defined by Grothendieck in [394] with the aid of the splitting 
principle. For a coherent sheaf they are determined by additivity, using the equality 
KCoh(X) = K(X), where K(X) is the Grothendieck group of the category of locally free sheaves 
on variety X. 

When Y is a point the preceding formula turns into the equality 

X (Y, ~r = ~ ( - -  1) ~ dirnkH ~ (X, or -----[ch x (~)-Todd (X)] (X), (*) 

where Z[X] denotes the n-dimensional component for any Z~A(X)| [An(X) is identified with 
Z]. When k = C and ~ is a locally free sheaf equality (*) turns into Hirzebruch's theorem. 
Here, instead of the ring A(X) we examine the ring of rational cohomo!ogies H*(X, Q). In 
the general case there also exist modifications of the Riemann--Roch--Grothendieck formula, 
in which the Chern classes take values in l-adic or crystal cohomologies (see [157-159, 396]). 

To Grothendieck is due the idea of defining Chern classes without using either cy- 
cles or cohomologies (the 1957 manuscript was published in [397]). In this theory the ring 
A(X)| is replaced by the ring Orlop(X), i.e., a graded ring relative to the descending fil- 
tration Kcoh (70~=F~p~ . F n ' . �9 . ~ top defined by the codimension of the sheaf s support The Chern 
classes are defined with the aid of the formula ci(~)___]i(x--e(x)) mod Ftop, where x-~-cl(.~)G 

Kcoh(X), e:KCoh(X)->Z is an augmentation, yi are operations of exterior power, extendable 

from ring K(X) onto KCoh(X). 

If f is a morphism of a regular embedding with a conormal sheaf N, then the Riemann-- 
Roch--Grothendieck formula yields, to within torsion, an expression for the Chern classes 
ci[f,(x)] of the form ci(/.(x))-/.(Pi((c~(x))~, (c~(N))~, where the Pi are certain universal in- 
tegral polynomials. 

In [466] this formula is proved without an assumption on torsion (the "Riemann--Roch 
theorem without denominators"). In 1957 Grothendieck [397] proved (in the case char k = 0) 
such a formula (without torsion) using the ring Gr~op, in one variant of the theory. 

The Riemann--Roch theorem is generalized in [699] to the case of a proper morphism of a 
locally complete intersection of Noether schemes possessing ample invertible sheaves. In 
order to give meaning to the Riemann--Roch formula in this case, a ring Gr.(X) is introduced, 
serving as a replacement of ring A(X) or Gr~op(X ) (the absence of the ground field and of 

809 



the nonsingularity condition). This ring is a graded ring relative to X-filtration in K(X), 
in which FiltiK(X) is generated by expressions of the form 7i~(x1--~(xl)) ..... 7i~(xk--~(x~)), ii- ~ 
...~-i~>L The Riemann--Roch theorem for a projective morphism of smooth algebraic varieties, 
using ring Gr'(X) instead of A(X), is set forth in [61]. The absence of the condition of 
regularity of the schemes does not permit the identification of rings KCoh(X ) and K(X), 
which compels Grothendieck to examine only the ring K(X) (for which alone the operations yi 
are defined). The homomorphism f,: K(X) +K(Y) is determined with the aid of the techniques 
of derived categories. In the case of smooth quasiprojective schemes the rings Gr'()0, 
Grtop(~) and A(X) are isomorphic modulo torsion. 

Subsequent generalizations and variants of the Riemann-Roch theorem are discussed in 
Reports 0 and XIV of seminar [699]. The Lefschetz formula on the fixed points of coherent 
sheaves is derived in [232] from the Riemann--Roch formula. For the case k = C an analytic 
proof of this theorem (for locally free sheaves) was given by Atiyah and Singer (see [7]). 

2. Computation of K(X) and of the Chern Classes. A complete computation of the Grothen- 
dieck ring K(X) for the category of locally free sheaves on a scheme X is known only in very 
special cases. Obviously, this problem is very difficult since the knowledge of K(X) per- 
mits in principle the computation of the corresponding grade d ring Gr'(X) and, together with 
that (if X is a quasiprojective smooth scheme), of ring A (X)| The computation of the lat- 
ter ring has for a long time now been one of the most difficult problems in algebraic geom- 
etry (see w 

If X is a Noetherian scheme, i : X ' c ~ X  is a closed subscheme of it, j:Uc->X is an em- 
bedding of the complement to X', then there holds the exact "homotopy sequence": 

K (X')~K (X)~K (U) 4.0. 

This statement (see [175, 699]) plays an important technical role in the computation of K(X). 

If (Xi, fij) is a projective system of Noetherian schemes, while the fij are flat, then 

there exists the isomorphism K(A)~IimK(Xi), where X=lim(Xi,/ii) ([699], Rapt. IV). The 

group K(X) changes under an extension of the ground field k'/k. The nucleus of the homomor- 
phism K(X) § is a periodic group, it is trivial if k is separably closed, while k'/k 
is a separable extension (see [699], Rapt. XI). 

The homomorphism L§ c1(L) defines the isomorphism of the Picard group Pic(X) and of the 
GrI(X). If X is a regular scheme with a very ample sheaf, then K(X) ~ KCoh(X) and the iso- 

morphism 

Kcoh (X)/F~op (X) ~ Z| (X) 

holds ([61]; [699], Rapt. X). 

If X is a vector bundle corresponding to a locally free sheaf E of finite type on a Noe- 
therian scheme S, then the homomorphism f*: K(S) § is an isomorphism ([699], Rapt. IX). 
In particular, if X is a variety over field k, then K(XxA~)~K(X) ([175]; [699], Rapt. 0). 

In [699], Rapt. IX, K(X) is computed, where X is the principal homogeneous space for 
the torus G u and for the general linear GL(n) S. Group K(X) for splittable reductive group 

m,s ,. , 
schemes was s=ualea by Serre [708]. 

An important role in the proof of the Riemann--Roch theorem is played by the computation 
of K(X), where X = P(E) is a projectivization of the vector bundle defined by a locally free 
sheaf E of rank r on a regular connected Noetherian scheme S with an ample sheaf. The ring, 
K[P(E)], treated as a K(S)-algebra relative to the isomorphism f*:K(S) § is generated 
by the element e = cl[Ox(1)], while the ideal of the relations is generated hy the ele- 

r+ l  r+ l - - i  
ment Z(--l)icl (A E)e i. In particular, K[P(E)] is a free K(S)-module of rank r+l. If S 

i=0 

is a point, we obtain hence that K(P~)--~Z[T]/(I--T) r+1 (T corresponds to cl (Op~ (i))). For 

the trivial bundle on the k-scheme S we have K(SxP~)~K(S)| When k = C, n = I, this 
fact is analogous to the theorem of complex Bott periodicity in topological K-theory. 
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The computation of K(X), where X is a flag variety (in particular, a Grassmann variety) 
(see [699], Rept. VI), serves as a generalization of the preceding results. 

K(X'), where X' is the result of applying a monoidal transformation to a smooth projec- 
tive k-scheme X with center in a regularly embedded subscheme Y, is studied in [61], [699], 
Rept. VII, and [175]. The group K(X') is computed in terms of K(X), K(Y), and the class of 
the conormal sheaf NY/X and its exterior powers. 

The Chern classes ci(X') were computed by complex methods by Porteous [639~. In case 
char k > 0 his formula can be derived from the Riemann--Roch-Grothendieck theorem (see [148, 
262] for other proofs of it). 

Kleiman [488] obtained important results on Chern classes of sufficiently ample vector 
bundles E on a quasiprojective smooth variety X [for which E(--I) is generated by global sec- 
tions]. Using the immersion of X with the aid of E into a Grassmann variety and a detailed 
study of its Schubert subvarieties, he showed that the Chern classes ci(E) of such bundles 
generate the ring A(X)@Q. In addition, ci(E) can be represented by a certain subvariety 
Z i which is nonsingu!ar for i = 1 or i > (dimX--2)/2. A detailed description of the singular- 
ity Zi is given in the general case (see [492, 493]) (obtained independently by Griffiths 
as well). 

See the survey [31] on the Chern classes of ample bundles in the sense of Hartshorne~ 

Papers [261, 688-691] are devoted to ascertaining the connection between the Chern-- 
Grothendieck characteristic classes and the classical definitions of covariant and canonic 
Todd--Segre sequences. 

The connection between algebraic and topological K-theories was clarified in [467]. 

3. Intersection Theory. For nonsingular projective varieties this theory was constructed 
by van der Waerden, Chevalley, Samuel, Well (see [8] for a history of the question). The 
theory of Chow rings is set forth in Chevalley's seminar [698]. For the case of divisors 
an elementary proof of the properties of the intersection index is contained in [123]o Papers 
[165, 168, 663, ~ 667, 748] are devoted to certain special aspects of intersection theory. 

An interesting problem in intersection theory is the problem of generalizing it to a 
wider class of schemes. 

In Shafarevich's lectures [715] (also see [218, 534, 609]) intersection theory is con- 
structed for two-dimensional regular schemes, proper over a normal local ring~ This theory 
plays an important role in the classification of degenerate fibers (see w and in the study 
of the singularities of surfaces. Intersection theory on two-dimensional Zariski spaces 
(see ~I) is set forth in [60, 218, 757]. Height theory permits us to determine the inter- 
section of divisors on arithmetic surfaces (regular two-dimensional schemes, proper over the 
integer ring of the field of algebraic numbers) [611]. An interesting global version of this 
theory, accounting for Archimedian valuations, and a generalization of the connection formula 
to this case have been given by Arakelov (unpublished). 

In the case of singular normal surfaces three different methods were proposed for the 
definition of the local intersection index: topological [656, 657], using resolution of sin- 
gularities [54], and purely algebraic [22]. All these definitions coincide. We remark that, 
in general, the intersection index in this case is a rational number. 

An absolutely original idea for the generalization of intersection theory to arbitrary 
schemes belongs to Grothendieck [699]. Instead of the Chow ring A(X) he proposed to examine 
the ring Gr.(X), i.e., a graded ring corresponding to the filtrationPi(X)~{cl(~>Idi msupp~-~} 
of the Grothendieck ring KCoh(X) of coherent sheaves on scheme X. This ring plays the role 
of the integral algebraic homology classes. The role of the cohomologies is played by the 
ring Gr'(X) figuring in the Riemann-Roch-Grothendieck theorem (see Para. i). There holds the 
multiplication formula Fi~tiK(~).Fj(X)-+F~_i(X), induced by the tensor product operation for 
sheaves, giving the structure of a Gr'(X)-module on Gr.(X). If X is a proper scheme over a 
field k, then a degree homomorphism deg:Go(X)-+Z, exists which determines the pairing Ori(X) 
X Or~(70-~Z (the intersection index). In the case of smooth schemes over a field the rings 
Gr'(X) and Gr.(X) are isomorphic ("Poincar~ duality"). In addition, if, further, X is quasi- 
projective, then to within torsion these rings are isomorphic with the Chow ring A(X) (in 
the general case only the equality Pic(X)~Or~(X) holds) and we obtain the usual intersection 
theory. 
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w Algebraic Cycles 

i. Equivalence Relations on Algebraic Cycles. An algebraic cycle on a scheme X is a 
formal linear integral combination Z = EmiZ i of closed integral subschemes~ i ..... The set of 

all cycles forms an Abelian group C*(%)= @ C;(X), graded with respect to codimension. This 
P 

group has been studied, mainly, as yet only in the case when X is a smooth quasiprojective 
variety of dimension n over an algebraically closed field k (only the component CI(X), close- 
ly connected with the Picard group of scheme X, has been studied in the general case). In 
what follows we examine this case alone. When cycles Z and W intersect "tamely" the meth- 
ods of local algebra permit us to determine the intersection cycle Z.W=~i(Z. IV, Yi)Fi [I00, 
705] possessing the properties of commutativitv and associativity. 

Cycles ZI and Za on X are said to be algebraically equivalent if there exist a quasi- 
projective connected variety T and a cycle Z on XxT such that for closed points t:, ta CT 
the cycle Z.(Xx t~) [respectively, Z.(Xx ta)] is defined and coincides with Z: (respectively, 
with Z2). If in this definition T can be taken as a rational variety, then Zx and Za are 
said to be rationally equivalent. When ZI, Z2ECI(X), rational equivalence coincides with the 
linear equivalence of divisors. 

With the aid of the "shift lemma" the intersection operation allows us to define the 
multiplication of classes with respect to rational equivalence, converting the correspond- 
ing factor group into a commutative associative ring denoted by A(X) and called the Chow 
ring of variety X. For any morphism f:%-+u of algebraic varieties there have been defined 
the functorial homomorphism of rings,/* :A(Y)--,-A(X) and the homomorphism of group [ .:A(X) ~ 
A(Y) related by the projection formula [,([}(W).Z)=W.f.(Z). A detailed account of this theo- 
ry is contained in Chevalley's seminar [698] (also see [436]). 

An equivalence relation R on C*(X), cruder than rational equivalence, for which the 
corresponding factor set C*(X)/R isa ring relative to the operations of multiplication and 
intersection of cycles with functional homomorphisms f* and f, [everything is consistent with the 
canonic homomorphism A(X)--."C*(X)/R ], is called an adequate equivalence relation. 

Examples of adequate equivalence relations are algebraic equivalence, T-equivalence 

(Zx~Z2, if amv~O such that mZ17gmZ2), numerical equivalence (ZIn~Z2, if for any cycle W 

of complementary codimension, Z.WI~gZ.W2, if both sides are defined). For any theory of 

Weil cohomologies H*(X) (see [31, 485]) we can define the adequate homological equivalence: 

Z1h~mZ2, if ~(ZI)=~(Z2), where ~:C*(X)-+H2*(X) is a map of cycles. The corresponding quo- 

* X c H  2. tient-ring C*(X)/hom can be identified using map Y with the subring /qalg( ) ~ (X) of al- 

gebraic cohomology classes. It is not known whether H~Ig (X) depends upon the cohomology theory 

chosen. 

Griffiths [388] examined an interesting adequate equivalence relation. For any q-di- 
mensional cycle Z on a variety X and for an algebraic family WcXXT of (q -- l)dimensional 
cycles on X, he defines an incidence divisor DzcT, by setting Oz----nprW.(ZXT). A cycle Z 
is said to be incidently equivalent to zero if for all T and W the divisor D Z is linearly 

equivalent to zero. 

Important adequate equivalence relations are connected with maps of cycles in Abelian 
varieties. For example, if k = C and Jr(X) is the r-th intermediate Weil Jacobian of the 
variety X, then there is defined the canonic homomorphism ~: C~om(V)--+Jr(X) [where C~ (X) 
is the group of cycles, homologous to zero, of codimension r on X]. The nucleus of t~s 
homomorphism defines the Weil equivalence relation [487]. An analogous construction, using 
the Griffiths Jacobian, defines the Griffiths equivalence relation. Cycles Z and Z' are said 
to be Abel equivalent, Z~Z', if Z -- Z' lies in the nucleus of any rational homomorphism of 

abl 

X into an Abelian variety [487]. 

Let u denote one of the equivalencies introduced above and let C=(X)=~C~X) be the 

corresponding subgroup of cycles u-equivalent to zero. 
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There hold the embeddings of graded groups 

c~t (x) c c~.~ (x) c c~,~ (AO c c~ (x) ~ C~om (x) c c ~ ( x )  c c (X)o 

For one-dimensional components (i.e., fordivisors) there hold the equalities C~at()0----C~c(X) 

1 I i 1 [388] and C~(X)=Cnum(~0. The factor group Calg(X)/Crat(#O has the structure of an Abelian 

variety [the Picard variety Pic~ of variety X], the factor group CI(X)/C~g(X) is finitely 
generated [the N~ron--Severi group NS(X) Of variety x], while its subgroup C$(X)/C~Ig(X) is 
finite (this last result is very well known; e.g., see [8]). 

The appearance of Griffiths' counterexample to the expected equality-C*(X)T = C~om(X) 

caused a sensation [380]. An analogous example for an l-adic homological equivalence was 
next constructed by Grothendieck in arbitrary characteristic [473]. The latter construction 
makes essential use of the Picard--Lefschetz theory (see w 

The question of the coincidence of C~.m(X) and C~o~(X) is still open (see later on). 

The group C~I~(X)/C~at(X) is not "finite dimensional" (the precise meaning of this is dis- 

cussed in [56, 98, 487]). For example, for algebraic surfaces with pg > 0 the cosets in C~g(X)/Cr~tdo 
not form an algebraic family [56]. Conversely, the factor group Ca~r (X)/C~cr (X) can be rigged 
with the structure of an Abelian variety [Griffiths' r-th Picard variety Pic~(X)] [388]. 

It is not known whether the group C~(X),,Calg(X) is finite. The group C~om(X)/C~(X) 
[called the Griffiths group in [473] and denoted Griffr(x)] is assumed to be finitely gen- 
rated (see [388]). A closed connection is shown in [473] of the Griffiths group of common 
fiber of the Lefschetz sheaf on a variety X with the group of primitive algebraic classes of 
cohomologies of X. We do not know, for example, whether Griffr(x) is a birationa! invariant 
of variety X. 

The group C*()O/C~om(X) is isomorphic with the subgroup of algebraic classes of cohomo- 

logics H~I~(X) and, therefore, is finitely generated for any theory of Weil cohomologies. 

In particular, the group C*(X)/C~,m(~ is finitely generated (independently of the choice of 

cohomologies!). This fact was proved by Grothendieck (using l-adic cohomologies) and by Luc- 
kin [538] (using his own cohomologies). 

Griffiths [388] proves the embedding C~ig(X)~C6riff(X)~C~c(X) (a generalization of Abe!'s 
theorem). If C~om(AXX)=C~(AXX) for any Abelian variety, then C~e~,()O=C~b,(X) [487]. 

t - C f The factor group CaI~(X)/ WeU(X) is isomorphic with the Abelian subvariety jr(x) in jr(x) 
(which is called the r-th Picard variety in [536]). If C~om(X)=C~(X),then J~(X)aparametrizes 
Poincar~'s universal family of (n -- r)-dimensional cycles and possesses the property of uni- 
versality relative to analytic maps of the group C~Ig(X) into Abelian varieties [536]. If 

C]om(XXJa(X))=Cn,m(XXYa(X)), then the Abelian varieties jr(x) and I n-r-1 a ~a (X) are dual to each 

other. 

r (X) relative to the map e~:C~o~(X)-+Tr(X), where Tr(x) is The image Ir(X) of group Calg 

the r-th intermediate Griffiths Jacobian, is a suhtorus of Tr(x), possessing the structure 
of an Abelian variety [388]. It(X) is contained in the maximal complex subtorus At(X) of the 

image of the canonic homomorphism Hr-1'r(X, C)-+Tr(~0. It is conjectured that !r(X) = Ar(X). 
A positive solution to this problem would allow us to prove the duality of the Picard-Grif- 

fiths varieties Pic~(X) and Pic~_r_1(X ) (n = dimX). The last fact has been proved as yet 

only for r = (n+1)/2 [388]. As Griffiths noted, ~r(C~om(X)) , in general, is not contained in 
Ar(X); it is precisely this observation that led him to construct the example of noncoinci- 
deuce of C~(X) and C~om(X). 

2. Standard Conjectures. The question of the coincidence of the numerical and the homo- 
logical equivalences is closely related with the so-called "standard conjectures" on a!ge- 
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braic cycles (see [400, 485]). The connection of the latter with the Weil conjectures on 
the ~-function (respectively, with motif theory) is discussed in [485] (respectively, in 
[228]). 

Later on H*(X) denotes the algebra of rational (if k = C) or 1-adic rational cohomoio- 
gies of a smooth n-dimensional projective variety over an algebraically closed field k. Let 
LX denote a fixed polarization of variety X. The following two conjectures are called stan- 
dard: 

i) B(X): The correspondence Ax~fI2n-2(XXX), associated with multiplication by the co- 
homology class LX, is an algebraic cohomology class. 

2) IP(X, L): The quadratic form (a,b)-+Ln-2pa.b determines the sign (--l)n+l on the sub- 
space of algebraic primitive p-cycles [the cycle xEH~,g(X) is called primitive if L~-Px = 0]. 

We also consider the following statements. 

n 3) C(X): The Kunneth components of the class of diagonals A in Halg(X x X) are alge- 
braic. 

4) A(X; L): The map L~-2p.H~,g(X)-+An-P(X) is bijective. 

5) HodgeP(X): Let k = C, then Hp,~(X, C)NII2P(X)-----H~(X). 
* X 6) D(X):C~(X):C~o~( ). 

7) VL (the strong Lefschetz theorem): The map L~-Z: I-li(X)-+H2n-i(X) is an isomorphism for 
O<i<u.  

It is known that B(X) is fulfilled for surface, flag varieties, complete intersections, 
and Abelian varieties [400, 535]. Conjecture IP(X, L) is fulfilled if k = C (Hodge's index 
theorem) or if n<2 (Segre-Grothendieck; see [23]). 

Conjecture HodgeP(X) is always fulfilled, if p = 0, i, n -- i, n (see [485]), for acubic 
hypersurface in p5 and V P (see [401]). In [401] Grothendieck shows that the generalized 
Hodge conjecture, connecting Hodge filtration on Hi(x, Q) and "arithmetic" filtration (with 
respect to the codimension of the support of the cohomology class), is false in the general 
case. The connection of Hodge's conjecture with Tate's conjecture on algebraic cohomology 
classes is discussed in Deligne's report [209] (see survey [88] on Tate's conjecture). We 
remark that their equivalence for arbitrary Abelian varieties was recentlyproved by Pyatets- 
kii--Shapiro [92] (Pohlmann [632] had proved this earlier for CM-type Abelian varieties). 

Conjecture C(X) is true for Abelian varieties [535]. The strong Lefschetz theorem is 
valid if k = C (Hodge theory). As Deligne has proved recently (unpublished), the same is 
true in the general case too. 

The following implications hold (see [485]): B(X)::~A(X,L); D(X):~A(X,L); A(XI L)&I (X, L)':> 
D(X); for all x and p, HodgeP(X)=>-B{X)&C(X) ~ for all X and L, A(X, L)=> B(X); for all X, 
B (x) =~ c (x ) .  

From these implications it follows that for k = C conjecture D(X) is fulfilled for 
Abelian varieties and for any varieties with n~<4 [535]. In addition, the standard conjec- 
tures are equivalent to two other pairs of conjectures: A(X)&f(X,L) or Ip(~&[~X,~). 

3. Other Questions. The problem of the smoothing of algebraic cycles on smooth varie- 
ties is investigated in [422, 488]: For a given cycle Z find a cycle Z' = EniZi such that 
Z ~ Z' and the Z i are smooth varieties. Hironaka [422] solves, modulo resolution of sin- 
gularities (i.e., for example, if char k = 0), this problem positively for d-dimensional cy- 
cles, where d~< min[3, (n -- 1)/2]. Over a field of arbitrary characteristic he proves 
smoothing "with rational coefficients" (~ an integer m > 0 such that mZ is smoothed) for cy- 
cles with d-.<(n -- 1)/2. Kleiman [488, 493] proves an analogous result for d~<n/2. 

The connection between the cohomologies of variety X and its hyperflat section H is 
given by the classical "weak Lefschetz theorem": the canonic homomorphism H~(X, Q)-+H~(H, Q) 
is bijective if i<n--2 and is injective for i<n--l. Its 1-adic variant was proved in [654]. 

If H is a nonsingular hyperflat section of a smooth irreducible variety X of dimension 
n~3, then Lefschetz' theorem on the hyperflat section asserts the bijectivity of the restric- 
tion homomorphism PicX*Pic H (see survey [31]). In particular, Pic X = Z for nonsingular com- 
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plete intersection of X in pn of dimension n~3 and is generated by the class of hyperflat 
sections. 

This theorem is obviously false for n = 2 (it is sufficient to consider the example of 
a quadric or a cubic). However, M. Noether proved that the latter assertion is preserved for 
a "general" surface of degree d > 4 in p3 In [214] Deligne proves the following stronger 
result. Let X~P 2n+d be a complete intersection of dimension 2n with h=n, 0(X)~0. Then each 
algebraic class of l-adic cohomologies in Hz~n(X) is proportional to the class of H n, where 
H is a hyperflat section. Several more general statements were proved earlier by Moishezon 
[78] in the case of k = C. 

w Geometry of Families of Varieties 

The method of stratifying an algebraic variety into subvarieties of lower dimension is 
a very important technical tool in the study of the geometry of varieties. On the one hand, 
it makes it possible to carry out induction with respect to dimension, and on the other, to 
extract information on specific properties of varieties from the properties of the critical 
points and degeneracies. In recent times it has with success been applied to solw~ old clas- 
sical problems in algebraic geometry (by Griffiths when constructing the counterexample to 
the conjecture on the coincidence of algebraic and homological equivalence of cycles [380, 
473]; by Deligne in proving Weil's conjecture, cf. [476]). 

By an algebraic fibering or a family of algebraic varieties we shall mean~ in what fol- 
lows, a flat proper morphism f: X§ of regular schemes. Chapters 2 and 4 of the Grothen- 
dieck--Dieudonn~ "Elgments de g~omgtrie alg~brique" are devoted to the most general proper- 
ties of such fiberings and a discussion of them can be found in survey [31]. Here we in- 
terest ourselves in the questions of mainly a global geometric nature, relating to certain 
special classes of families. We leave aside the applications to arithmetic of the questions 
being examined. 

i. Monodromy of a Family. If a general fiber of an algebraic bundle f: X§ S is smooth, 
then there exists a maximal open set U c S  such that ftf-1(U) is smooth, and consequently, 

R~f,QtlU is a locally constant sheaf. By the same token, for any point sCUthere is de- 

fined the representation >~:~1(U,~_+Aut(f-fi(XF,Ql)), where =I(U,~ is a fundamental group (de- 

fined in the sense of Grothendieck if S is not a complex variety), while XN is a geometric 
fiber of f over point s. If S is a smooth k-scheme, this representation is called a global 
monodromy of the family and is an important global invariant of the bundle. If S is an ar- 
row with a closed point xo and a general point ~, then U=~, ~1(U,~=Gal(k(~/k(~))and ~ 
is called the local monodromy. In the complex case, instead of S we can consider the disk D, 
instead of xo its center 0, instead of U the punctured disk D* = D--{0}, and instead of 
any point y~D*; as aresultweobtainthelocalmonodromy 0i:=~(O* y)~Z-+Aut(Hi(Xy, Q)). The image 

IEZ is called a monodromy transformation and its matrix T (defined to within conjugacy) is 

called the monodromy matrix. The monodromy theorem holds in this case: An N exists such 
that (T N -- E)i+l = 0. The first (topological) proof of this theorem was given by Landman 
in 1966 (see [524]). Later a geometric proof was found by Clemens [204]. An algebraic ver- 
sion of this proof was independently given by Grothendieck ([700], Rept. I). 

If (3F~e, V) is a sheaf of relative de Rham cohomo!ogies of a morphism f with a Gauss-- 

Manin connection V (see survey [31]), then the sheaf of horizontal sections of V is Rqf,C. 

By the same token the monodromy is closely related with the corresponding connection V (in 
the classical case this is simply the monodromy of the corresponding system of differential 
equations; see [208]). On the basis of this connection, Katz and De!igne gave an arithmetic 
proof of the monodromy theorem in the following stronger form: NN>O, such that (TN -- E)r = 0, 

where r is the number of pairs (p, q) with p+q = i and hP,q(xt) # 0 (see [477])~ 

A study of the period map O:D-+~/{T k} (see w and the methods of complex hyperbolic 

analysis allowed Borel to give an analytic proof of a theorem on the quasiunipotency of mono- 
dromies: The eigenvalues of T are roots of unity. This same statement was proved with the 
use of the theorem on the regularity of the Gauss--Manin connection in Deligne's book [208] 
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(based on an idea of Brieskorn [12]). Recently Schmid [681] succeeded in considerably sim- 
plifying Borel's proof and in obtaining the monodromy theorem in the Katz--Deligne form. 
The theorem on the quasiunipotency of monodromies has a local analog which instead of X 
examines a sufficiently small neighborhood X(x) of an isolated singular point x of a fiber 
Xo of the morphism f: X§ and studies the monodromy transformation p(x):~1(D*,g)-+Aut(H~(X(x)y, 
Q), where n = dimXo. Its proof was found by Brieskorn [12, 179]. An algebraic analog of 
this theorem (the theorem on the quasiunipotency of an l-adic representation) was proved by 
Grothendieck ([i01, 709]; also see [700], Rept. I). The representation p(x) (as well as its 
global variant) is studied in the theory of the singularities of differentiable maps; a dis- 
cussion of the results obtained would take us too far afield (see Arnol'd's survey [4]), A 
detailed study of a local monodromy on one-dimensional cohomologies of an Abelian variety 
was carried out by Grothendieck [399]. The theory of N~ron's models plays an essential role 
here. In one special (but important) case the corresponding result was obtained by Igusa 
[448]. 

The local problem of invariant cycles (see [21]) is an interesting one. If pi:~1(D*,y)-+ 

Aut(Hi(Xy, Q) is a local monodromy, then the canonic homomorphismH~(X, Q)-+Hi(Xy, Q)~I is 

surjective. It has been proved for a family of curves [21], surfaces (Katz, 1970, unpublished), 
while only a sketch of a proof is known in the general case, due to Deligne (unpublished). 

If p:=l(U,~-+Aut(f-fL(Xs, Q) is a global monodromy and X is a nonsingular compactifiea- 

tion of X, then the canonic homomorphism Hn(X,Q)-+Hi(Xs, Q) is surjective (Deligne [25, 210]). 

Hence it follows that fft(Xs, Q)~,=H~ is a Hodge sublattice (see w in Hi(Xs, Q) not 

depending on the point sEU. An analog of this statement for the case when S is a compact 

analytic variety was proved by Griffiths [383]. From this result he derived the following 

corollary: If section =@ff0(U,@nf,C)is of type (p, q) at point s, then it is of type (p, q) 

everywhere. This statement, modulo the Hodge conjecture, proves Grothendieck's conjecture 
[395]: If u is an algebraic cohomology class at point s, then it is an algebraic cohomology 
class everywhere. A special case of this statement was proved in [166]. 

Another corollary is the following theorem of Grothendieck [398] and Borel--Narasimhan 
[174]: if f: X+ S and g: X' +S are families of Abelian varieties and the morphism u:R~f.Z-~ 

~Ig,Z is induced at some point s~S by the morphism ~s:Xs-+X~, of Abelian varieties, then u 

is induced by the unique morphism ~:X-+X" of the families. 

Deligne [210] also proved the following important result: A global monodromy is a semi- 
simple representation on any direct summand in R~f,Q. In particular, hence it follows that 

the image ~I(U, s) relative to the complex global monodromy p:~1(U,s)-+Aut((~nf,C)s)iS a Lie 

group whose connected component is a semisimple group. 

2. Theory of Vanishing Cycles2 Seminars [700, 701] were devoted to an exposition of 
this theory. For any algebraic bundle f: X§ it studies the connection of the degeneracies 
of morphism f with the deviation of the sheaves of cohomologies Rif,Q (or RiF,QI in the gen- 
eral case) from the locally constant ones. In the simplest case, when the singularities of 
the fibers are degenerate quadratic points, this theory goes back to Picard and Lefsehetz. 

In what follows we assume that the base S is one-dimensional. If f is a smooth morphism, 

the specialization homomorphism spl:H~(XT, Zz)-+HI(X~, Zt) is bijective (here ~ is a geometric 

generic point, while s is a geometrically closed point of S). If S is a complex variety, 
then instead of l-adic cohomologies we can examine the usual integral cohomologies, while 
instead of XN a "typical" fiber Xy of morphism f. In the general case Grothendieck con- 

structs in [700] an exact sequence of Zl-modules (respectively, Z-modules): 

. . .  ~ H ~ (X 7, Z 3  -+ H ~ (X~, Z3 ~ ~ , ~  -+ H ~+~ (X7, Z 3  - +  �9 . .  
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(respectively, 

r --+ ( ~ ,  . . . ) .  �9 . .  - +  H~ (X, ,  Z)---> H ~ (Xy, Z)-+ ~ H~+ 1 " Z)-+ 

The module ~is,t (respectively, ~ ) is a module of the vanishing l-adic (respectively, in- 

tegral) cohomologies and measures the deviation of the sheaf ~i/.Z l (respectively, ~i/,Z) 

from the locally constant one in the neighborhood of point s. If X~ has only isolated sin- 

gularities xl, ... ,Xm, then ~i~,t~_@~t(xj), and ~,t(xi):O fori>n=dimXy and fori <n (modulo 
7 

resolution of singularities; for example, if chark(s) = 0 ([700], Rept. I)). This result is 
an algebraic analog of the more exact assertion of Milnor [77, 570]. Namely, by localizing 
f at point xj, in the notation of Para. i, the space i(Xj)y has the homotopy type of a bou- 
quet (union) p(xj) of n-dimensional spheres (a local comparison theorem was proved in [213]: 

Hi(X(xi)y, Z)| s,t(x7)). The number p(xj) (the Milnor number) is computed as the dimension 

of the C-space 

~. / l a : ,  af 
I t . . . .  or,,+7)' 

where f = 0 is the local equation of fiber X s at point xi, while tl, ..., tn+ ! are the local 
parameters of a local analytic ring X at point xj. In [212] Deligne proves an algebraic 
analog of this formula taking "wild branching" into account in char k = p > 0 (its hypotheti- 
cal formulation had been independently found in [30]). 

The sum Z~(xs)~z(Xs)--z(X~), where X is the topological Euler characteristic, and 
) 

s6s  J ' s6s  

A generalization of the first (respectively, second) equality to the case of not necessarily 
isolated points and chark>0was given in [461] (respectively, in [30]) (also see [212]). 

An l-adic variant of the Picard--Lefschetz theory was presented in [215], relating to 
the study of vanishing cycles for the case when S = P~ and the fibers of morphism f: X§ 
have no more than one like double point (a Lefschetz sheaf). Each smooth projective variety 
has a birational model possessing such a sheaf [475]. If n = dimX, then I-fn-1(X, Qt)kffn-1(X~, 
Qz) (the weak Lefschetz theorem), and the orthogona! complement (relative to Poincar4 duality) 

defines the subspace En-l(XT) cffn-l(Xf, Qz) of the vanishing cycles. For any closed point 

s6S there exists an element gs6En-i(X{) (mapped, if n = 2m+ i, onto the generator of the 

group of vanishing cycles in ~1~-i ). All such 8 s generate En-I(X{). The action of the iner- 
tia group I at point s on ff~-1(X{, Qt) is described by the Picard--Lefschetz formulas [215]. 

Deligne proved that a representation of a global monodromy acts on En-i(X{) absolutely ir- 

reducibly ([254] together with an unpublished proof of the strong Lefschetz theorem; see ~3). 
�9 ; 

If n is even, then Polncare duality induces a skew-symmetric bilinear form 9 on Hn-l(Xs, 
Z), where X s is a nonsingular fiber. Global monodromy preserves ~ and defines the symplectic 

representation p:ai(U, s)-~Sp (Hn-i(Xs, Z), 9). The image O is Zariski-dense in Sp (Hn-~(Xs, Z), 9) 

[220, 746]. This fact plays an important role in Deligne's proof of Weil's conjecture on 
the {-function. 

Applications of the Picard--Lefschetz theory to the theory o9 algebraic cycles (Griffiths' 
counterexampie in case chark# 0), to Noether's theorem (see w and to the theory of the 
~-function are given in [701]. 
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3. Desenerat e Fibers. A geometric classification of nonsmooth fibers of a family of 
algebraic varieties is known only in a few cases. Besides the one-parameter families of 
curves, classification is known for degenerate one-parameter families of two-dimensional 
Abelian varieties [735, 736] and for surfaces with a rational general fiber [75]. 

A complete classification, as far as families of curves are concerned, exists only for 
curves of genus g~2. Here it is natural to restrict ourselves to the case of minimal mod- 
els, i.e., exceptional curves of genus 1 are not contained in the fibers. The fundamental 
invariants of a degenerate fiber are: the geometric configuration of the irreducible com- 
ponents of the fiber, the corresponding intersection indices, the genera of the components, 
the multiplicities of their embedding in the fiber, as well as the local monodromy in a 
neighborhood of the fiber. In the case of curves of genus g = 0 there are no degeneracies. 
For g = 1 the degenerate fibers were described by Kodaira [43, 503] (k = C) and by N~ron 
[608] (Kodaira's method was carried over to the arithmetic case by Deligne [218] and N~ron 
[609]). In each case Kodaira computed the monodromy transformation. In case g = 2 and k = 
C a complete classifiGation was given in [600-602]. The possible types were indicated (with- 
out existence proofs) earlier by Ogg [622]. As in the case of g = 1 the local monodromy 
transformation is an invariant of the degenerate fiber Xy. Restricting f to the disk D~y, 

we obtain the map s: D* § into the moduli variety M2 of curves of genus 2, continued upto 
the map s: D§ M~, where M2 is a compactification of M2. In [600] it was shown that f is 

determined locally By its own monodromy, by the image ~(0)@,~ 2 and by the order of the func- 

tion s~(~) at 0, where ?=0 is the local equation of 7H~\M 2 at point ~(0). 

A construction of the compactification Mg of the moduli variety Mg of curves of genus g, 
based on the concept of a family of stable curves, was given in [222] (also see [651] for an 
account of this paper). Such is the name given to families of curves (over not necessarily 
a one-dimensional basis), whose degenerate fibers have only double like points, while each 
irreducible rational component intersects the other components at no less than three points. 
A rough moduli space M~ exists, parametrizing stable curves of arithmetic genus g over field 
k. The moduli scheme Hg of smooth curves is contained in M--g as an open set; ~g is a normal 

and proper algebraic space [651] over Z. 

An important role in the proof of the properness is played by the theorem on stable re- 
duction of curves: after a certain ramified coverirLg of the base the minimal model of a 
general fiber is a family of stable curves. The proof of this theorem was given in [222] 
(using the analogous theorem of Grothendieck for Abelian varieties [399]), and also by Artin 
and Winters (see [144, 651]). The latter proof contains interesting general results on the 
structure of degenerate fibers for an arbitrary genus g > 0. 

4. Families of Curves. The theory of one-parameter families of curves is closely con- 
nected with the theory of surfaces and the theory of algebraic curves over the field of al- 
gebraic functions of one variable. An important role is played here by the concept of a 
minimal model of a bundle (see Para. 3). The arithmetic applications of this theory are 
connected first of all with Mordel!'s theorem and with finiteness theorems (see Parshin's 
surveys [88, 629]). We remark on the recent significant progress in this area achieved by 
Arakelov [3]. By developing Parshin's techniques [87] (and, in particular, using the theory 
of families of stable curves; see Para. 3), he succeeded in proving Shafarevich's conjecture: 
there exists only a finite number of nonisomorphic nonconstant bundles of curves of genus 
g > 1 with a fixed set of degeneracies on the base (a complete algebraic curve over an alge- 
braically closed field of characteristic zero). This assertion was proved in [87] for bun- 
dies with an empty set of degeneracies. 

Besides arithmetic application, [3, 87, 89] contain interesting geometric facts on 
fiberings into curves over a field k of characteristic 0. For example, the following iso- 
triviality criterion is proved in [87]: A smooth bundle f: X§ B of curves of genus g > 1 
over a complete curve B is isotrivial if and only if the degree of bundle R~f~ Ox equals 
zero. This is true even in case char k > 0 (Parshin, unpublished). If the genus of curve B 
equals 0 or i, then this condition is always fulfilled in char k = 0. Examples of smooth 
nonisotrivial bundles have been presented by Kodaira (see [87]). 

If f: X§ B is a bundle with a general fiber of genus g, then sheaf R1[~Ox is not always 
locally free. However, this is so if f is cohomologically flat (i.e., ~ Ox=O~ is univer- 
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sal for any change of base). The latter condition is fulfilled if the greatest common divi- 
sor of the multiplicities of the degenerate fibers are relatively prime with the character- 
istic of the ground field k [650, 652]. If f is cohomologically flat, then the Riemann-- 
Roch--Grothendieck theorem yields the equality 

Z (X, Ox)----(1 --g) Z (B, OB)--deg (RI/.Ox). 

In particular, the Euler characteristic is multiplicative for isotrivial bundles. The am- 
pleness of the sheaf ~Iz/B on X if f: X§ B is a smooth nonisotrivial bundle of curves of 
genus g > 1 over curve B of genus q~2 is proved in [87]. This fact was generalized by Arake- 
lov to families of stable curves [3]. 

Little is known about multiparameter fiberings into curves. The only general result 
is an assertion on the purity of the set of degeneracies (the projection of the set of points 
of nonsmoothness of the morphism forms a divisor on the base). Its proof is given in [29, 
231] and in [647, 720] if the ground field is the complex number field. Families of ratio- 
nal curves over a two-dimensional base were investigated in [143] and of elliptic ones in 
[478]. 

By generalizing Tate's theory of p-adic uniformization of elliptic curves, Mumford con- 
structed a beautiful theory of uniformization of curves over a local base [57, 590]. This 
is a certain analog of the classical Schotky uniformization. If A is a complete local ring 
with quotient field K, then the group PGL(2, K) acts birationally on P~. Roughly speaking, 
in order for it to act "well" it is necessary to blow-up all the points of indeterminacy of 

all maps V ~POL (2,K) onto a closed fiber. By selecting the subgroups FcPGL (2, K) in a 

specified manner and by factoring the action with respect to them, we can obtain curves of 
any genus X§ whose closed fibers are strongly degenerate, i.e., consist of a finite 
number of rational curves intersecting transversal!y and having only like double singulari- 
ties. 

w Moduli of Nlgebraic Varieties 

The problem of moduli of algebraic varieties has been the subject of numerous papers 
in the classical literature. However, until recently only the analytic theory of modu!i of 
curves (Teichmuller's theory) and of Abelian varieties (the upper Siegel semispace with a 
modular group acting on it and the theory of the ~-function) were the most satisfying. The 
algebro-geometric theory was especially birational and reduced mainly to counting the num- 
ber of complex parameters (moduli) on which a general variety of given type depends. Rie- 
mann already had established that the number of moduli of curves of genus g > 1 equals 3g--3. 
The very concept of a "moduli variety" had not even been defined in the problem of the 
existence of a moduli variety (for example, see [580]). A precise statement and understand- 
ing of the problem became possible thanks to the original ideas of Kodaira and Spencer [511- 
513] and to the general theory of deformations of structures and of Grothendieck's represent- 
able functors (see survey [31]). Mumford did this in a series of remarkable papers [578- 
586]. The basic definitions and original results are presented in his book [580]. The prob- 
lem proved to be so difficult that the existence of even a "crude" (see Para. 3 below) moduli 
scheme has been proved as yet only for curves, Abelian varieties, and certain special varie- 
ties. As Mumford writes (see the Appendix to Chapter V in [757]), the state-of-the-art is 
such that in many cases the moduli scheme, in general, does not exist, and where it could 
exist it still has not been proved that it does exist. In separate cases its existence is 
known as a complex-analytic space or as an Artinian algebraic space (see [651, 637])~ 

i. Statement of the Problem and Some General Results. The most essential feature in the 
contemporary treatment of moduli theory is its separation into a local and a global theory, 
as well as the introduction of the important concept of a polarized variety (Matsusaka [556], 
Mumford [580]). Only polarized varieties vary well in algebraic families. The construction 
of a moduli theory of unpolarized varieties (curves, for example) is possible in the majority 
of cases, only because some canonic polarization exists on them. 

Let Xo be a complete smooth variety over an algebraically ciosed field k. The pair 

(X0, ~0), where ~oGPiCXo/Pic~ is the class of a certain ample invertible sheaf L~PicXo, and 

Pic~ is the connected component of the Abelian Pic Xo, is called a polarized variety. 
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A smooth projective morphism of schemes f: X+ S, where S is a Noetherian scheme, while 
the fibers are algebraic varieties, is called a family of varieties with base S. We some- 
times consider not necessarily smooth families (for example, flat ones, etc.) (see [222, 
i04]). 

The pair (X/S, ~/S) is called a polarized family, where X/S is the family f: X+ S with 

base S, while ~/S is the class of a relatively ample invertible sheaf LX/S in Hom(S, Pic X/S) 

modulo Hom(S, Pic~ where Pic X/S is a relative Picard scheme (see survey [31]). 

The main idea in the construction of a global moduli theory consists in the following. 
Let there be given a collection ~ of objects with fixed discrete invariant (for example, 
curves of genus g with canonic polarization, polarized Abelian varieties of dimension n and 
degree d, n-dimensional polarized varieties with a given Hilbert polynomial, etc.) whose 
moduli have to be constructed. For this we examine all possible polarized familes (X/S,~/S) 
whose geometric fibers with the induced polarization belong to ~ and we construct the func- 
tot 

set of polarized families (X/S, ~ /S) 
Jg (S) = to within isomorphism over S 

With each morphism h: T§ S we associate a map A*:i[(S)-+i2(T) by taking an induced family. 

Let M be an object in the category of algebraic varieties, schemes, algebraic spaces, 
analytic spaces (in a theory over C), etc. and let hM be a functor of points in the corre- 

sponding category: hM(S) = Hom(S, M). 

i. If functor J~(S) is representable, i.e., J~ = h M for some M, then in this case a 

universal family with base M exists and M is called a finite object in moduli theory. 

2. If amorphism ~:~-+hM, exists for some M, possessing the two properties: 

a) For each algebraically closed field k the morphism ~ induces the isomorphism 

(Spec k) : ~ (Spec k) ~ h~ (Speck); 
b) for each object N and morphism @:J~-+hN there exists a unique morphism X:hm->hN 

such that @=Xo~, then object M is called a "crude" (global) moduli space (respectively, 

variety, scheme, etc.). 

In this case a universal family does not, in general, exist on M, but the set of geome- 
tric points of M is found to be in a natural one-to-one correspondence with the set of all 
polarized varieties from .9~ (to within isomorphism), defined over algebraically closed 

fields [580]. 

The functor ~ is representable in very few cases (for example, for curves of genus g >i 
without automorphism). It is not representable even in the case of all smooth curves of 
genus g>I (see [582]). However, if we examine the functor of polarized families of curves 
(or of Abelian varieties) with an additional structure, namely, "rigidity," then it proves 

to be representable (see below). 

The standard plan for constructing a crude moduli space reduces to the sequential solv- 

ing of the following two problems. 

A. The construction of a sufficiently large (complete) polarized family (containingto 
within isomorphism all the objects from~) f: X§ as a universal family (of deformations) 
of the subvarieties of the projective space pn, i.e., the construction of H as some sub- 
scheme of the Hilbert or Chow scheme (see survey [31] on the latter). 

B. The construction of the factor M = H/R by the equivalence relation R identifying the 
point from H, the fibers over which are isomorphic. 

In the case of polarized families with rigidity the family f: X§ of problem A can be 
given also over some covering of a subscheme of the Hilbert scheme or over a subscheme with 

product of the Hilbert scheme (see [580]). 

One of the first questions arising in the attempt to solve problem A is that of the 
simultaneous immersion of polarized varieties with a fixed numerical invariant into a pro- 
jective space. More precisely, let (X0, ~0) be a polarized variety, i0E~0 be an ample in- 

820 



vertible sheaf, and h(n)=X(X0, L$) be a Hilbert polynomial. Then if (X/3,~/S) is a polarized 

family with a connected base S and relatively ample invertible sheaf LX/S, containing (Xo, 

Lo), then the Hilbert polynomial hs(n)~-l(X/S L~/s) does not depend on sGS and coincides with 

h(n) (see [580]). Does a constant C, depending only on theHilbert polynomial h(n), exist 
such that when n > C the sheaves L n are very ample for all polarized varieties (Xs, ~) with 

S 

polynomial h(n) and ffi(Xs, L~)=O with i > 07 An affirmative answer to this question has been 

known for a long time for curves and Abelian varieties (see [49, 50]). In the case of curves 
C depends only on the genus g of the curve. For Abelian varieties C = 3. One of the fun- 
damental theorems of Matsusaka and Mumford [560] asserts the existence of such a constant for 
polarized surfaces. Matsusaka [555] proved this in the case of arbitrary smooth polarized 
varieties over an algebraically closed field of characteristic O. He had previously [558~ 559] 
proved the existence of such a constant for canonically polarized varieties (i.e., with an ample 
canonic sheaf) over a field of characteristic 0. The last result was obtained by Tankeev 

[103] also. 

For a surface of fundamental type with a canonic polarization (not necessarily smooth; 
admitting of isolated rational singular points) in characteristic 0 the constant C does not 
depend even upon the Hilbert polynomial, i.e., is an absolute constant. This follows from 
the results of Kodaira [500] and Bombieri [170, 171] (also see [104]). 

Another question in problem A is the following: Is the type of the variety preserved 
under deformations (in smooth polarized families, for example)? Grothendieck (also see 
[580]) showed that a smooth algebraic deformation of an Abelian variety is an Abelian variety. 
An analogous result for surfaces of type K3 can be found, for example, in [637]. See [377] 
on deformations of a projective space. 

The scheme H in problem A can be reducible, unconnected, singular, and even unreduced 
(see Para. 2 below). Even in concrete cases of surfaces of fundamental type we do not know 
which invariants separate the irreducible components of scheme H. 

In problem B the equivalence relation on H is usually given by the action of an alge- 
braic groupG [most often PGL(n)]. The problem of the existence of the factor is a very dif- 
ficult one. It is discussed in detail in Mumford's book [580] (also see survey [31]). 
Mumford introduces the concepts of a category functor and a geometric one. The construction 
of a crude moduli space is reduced to the most difficult and highly subtle problem of the ex- 
istence of the geometric factor. See Para. 3 below for those few cases in which it is known 
to exist. The concept of stability, introduced by Mumford, corresponding to the concept of 
orbits of general position, is a very valuable one for modu!i problems. 

The first fundamental theorem of Matsusaka and Mumford [560] states that the isomorphism 
of complete smooth polarized Varieties (not ruled) over a discrete valuation ring, given 
over a general point of this ring, can be continued upto isomorphism over the whole ring. 
This fact is used to verify the closedness and properness of the action of group G on H. 

The nonexistence of moduli varieties even in good cases compelled Matsusaka to intro- 
duce the concept of a Q-variety, generalizing the usual variety as much as necessary for the 
moduli problem. As a Q-variety the crude moduli variety exists in all cases when there ex- 
ists the "universal family of algebraic deformations" (in the sense of Matsusaka)~ i.eo, 
when problem A is solvable. 

Besides algebraic curves and Abelian varieties (see Para. 3) the solution of the crude 
modu!i problem is known in the following cases: 

i) exists as a complex space: for polarized surfaces of type K3 (see [96]) -- in this 
case M is a 19-dimensional complex variety; for surfaces of fundamental type (see [104]) -- 
here the existence of only Mred has been proved, i.e., only of the reduced subspace. It is 
not known whether M coincides with Mre d. An example when M is reducible exists; 

2) exists as an algebraic space over C: in [637] Popp proved the existence of the crude 
moduli space for polarized surfaces K3 and for canonically polarized varieties with a very 
ample canonic sheaf -- in the last case the existence of only Mre d was proved. 

2. Local Theory and Deformations. Local moduli theory studies "infinitesimal" deforma- 
tions of a fixed variety Xo [or of a polarized variety (X0, ~0)] and its main problem is the 
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construction of a universal family of such deformations. Kodaira and Spencer [511-513] 
examined it from the analytic point of view. Their fundamental theorem, improved later by 
Kuranishi [516] and Douady [233], is the following: There exists a proper smooth morphism 
of complex-analytic spaces 

u: X-+S 

with a fixed point soES , an isomorphism u-l~o)~Xo and a local base S (i.e., instead of S we 
can examine any small neighborhood S'gs 0 in S), such that: 

a) any other small deformation is induced by deformation u: X§ S; 

b) the Kodaira-Spencer map @: Tso,s+f-P(X o, Txo) is an isomorphism, where TXo is the sheaf 

of germs of sections of a tangent bundle, while Tso,S is the Zariski tangent space to S at 

point So. 

In other words, there always exists a versal family of infinitesimal deformations. If 
in condition a) each deformation X' + S' is induced by the one morphism S'§ S, then X§ S is a 
universal family. This is so if H~ TXo)=O. 

We note that the base S of a versal family can be singular, reducible, and even un- 
reduced. Locally it is given in the space I-I1iXo, Txo) by no more than dim /-/20( 0' Tx~ equa- 

tions (Kuranishi [516]), i.e., dim ff2(X0, TxOis the largest number of obstructions to the 

continuation of first-order infinitesimal deformations to the present deformations in a 
neighborhood of point so. If /-P(X0, Tx0)----0, there are no obstructions and S is nonsingular 

at So and is reduced. 

An analog of this theorem in formal geometry, suitable for all characteristics and for any 
scheme, was worked out by Grothendieck and Schlessinger (see survey [31]).. 

Let us now assume that a smooth complete variety Xo over C is rigged with a polariza- 
tion ~0- Then in the base S of a versal family X§ S there exists the largest closed subspace 

I __> S~ ~S, over which the polarization ~o is lifte~ onto X~u-I(S~). The family up :X~ S~ 

is then a versal family of local deformations of the polarized variety (X0,~0). If a canonic 

polarization exists on Xo, then it can be lifted onto the whole family X§ S. In the general 

case there can be points s~S, not falling into any one of the closed subspaces S~ for all 

possible polarization ~0 mn Xo and the fibers u-1(s) over them are not algebraic varieties. 
In formal geometry this corresponds to the nonalgebraizability of the formal scheme of versal 
form deformations [6]. The simplest examples where algebraic deformation does not exist are 
Abelian varieties and surfaces of type K3 (e.g., see [2], Chap. IX). 

Thus, from the Kodaira--Spencer-Kuranishi theory (and its formal analog) it follows that 
the construction of a local moduli space reduces to an analysis of the obstructions: 

a) to the continuation of infinitesimal deformations of order k (k = i, 2,..~ onto 
higher orders: the obstructions lie in fF(Xo, Txo); 

b) to lifting of the polarization from Xo onto X§ the obstructions lie in H2(Xo, 
Oxo) (e.g., see [2], Chap. IX, and [757], Appendix to Chap. V). 

For a smooth curve Xo of genus g>2 

d i m H ~  o, Tx~)=dimH2(Xo, Txo)=0 ,  

dimH2(X0, Oxg=O, d l m H  ~ (X0, Txo)=3g--3, 

t h e r e f o r e ,  t h e r e  e x i s t s  a u n i v e r s a l  l o c a l  n o n s i n g u l a r  m o d u l i  v a r i e t y  o f  d i m e n s i o n  3g--3. 

I n  an Append ix  to  C h a p t e r  V o f  book  [757] Mumford g i v e s  a s i m p l e  e x p l a n a t i o n  f rom t h e  
contemporary position of the classical results relating to the estimation of the number of 
moduli for algebraic surfaces (also see Kodaira [502, 506]. Simplicity here, as Mumford ex- 
plains, is connected with the fact that Italian geometers restricted their consideration to 
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deformations of first order only. The greater difficulties arise when studying the obstruc- 
tions -- this is the classical problem of the "completeness of the characteristic system"(see 
[8, 49, 757]). 

A few but very interesting examples show that obstructions arise when constructing the 
local moduli space already for surfaces over C. Mumford [757] points out that such an ex- 
ample can be obtained by combining his results [589] with a result of Kodaira [502]. Katz 
[471] constructed a class of elliptic surfaces with obstructions. In [472] he, conversely, 
shows that Kodaira surfaces [508] (irregular surfaces possessing a smooth morphism on a com- 
plete curve) do not have obstructions under deformations. 

In a recent very interesting paper Horikawa (RZh Mat, 1974, 5A626) studies the deforma- 
tions of simply connected algebraic projective surfaces over C with pg = 4 and (K~K) = 5 (K 
is the canonic class). Two types of such surfaces are indicated: surfaces of degree 5 in 
P~ and certain two-sheeted coverings of a rational ruled surface. They yield two transversal. 
ly intersecting irreducible components (globally) of dimension 40. The Kuranishi space at 
the points of their intersection is of dimension 41 -- the corresponding obstructions are not 
computed explicitly. Horikawa's paper is more remarkable in that it gives an example of a 
reducible moduli variety for surfaces with fixed numerical invariants (and even simply con- 
nected). The moduli scheme is always irreducible for curves [26]. 

In an appendix to book [757] Mumford derives the following estimate for the number 
of obstructions to deformations of polarized varieties 

o~ ..< d im H2(Xo, Eg~o), 

where E~0 is a locally free sheaf defined from the extensions 

O-+ Ox.-+ E~o~ T x. ~O, 

of an appropriate class of polarizations D 0 in /-/I(X0, ~e ) ~Exi(Txo, Ox,). 
Local theory is employed in global moduli theory already at the level of problem A (see 

Para. i) for the verification of the completeness of the family X§ and the smoothness of 
base H. A variant of the Kodaira--Spencer-Grothendieck deformation theory for a nonsingular 
subvariety Xo inside a complete nonsingular variety Z is found as follows. Let 

X c Z X S  

b e  a n y  f l a t  f a m i l y  o v e r  S o f  s u b v a r i e t i e s  i n  Z, c o n t a i n i n g  Xo a s  a f i b e r  o v e r  a p o i n t  sc6S,  
Then t h e r e  i s  d e f i n e d  t h e  c h a r a c t e r i s t i c  map 

$ ' : r , , -~H0(x  0, N), 

where Tso is the Zariski tangent space to S at point so, while N is a normal sheaf of Xo in 
Z (see Kodaira [506], Mumford [49, 581]). If @' is surjective, then the family X+S is said 

to be complete; ifHt~X0, N)=0, thenSis nonsingular at point so (see [581]). For complete 

families H~ N) can be interpreted as first-order infinitesimal deformations of Xo in Z 
and the obstructions to their continuation, lie in HI(Xo, N). 

When Xo is a curve on a smooth projective F over an algebraically closed field of char- 
acteristic 0, obstructions exist only for "flat" curves. In characteristic p > 0 the exis- 
tence of obstructions is conneczed with the fact that the scheme Pic F can be unreduced. 
These questions were studied in full in Mumford's book [49], i.e., the problem of the "com- 
pleteness of the characteristic series" has been completely solved for curves and surfaces. 

In [589] Mumford shows that the Hilbert schemes of smooth curves of genus 14 and degree 
24 in p3 over C is not reduced: Nilpotent elements in the structure sheaf exist even on 
some open subset. 

Let X+H be a family of polarized variety, being a solution of problem A, and let H C 
Hilb pn be a subscheme of the Hilbert scheme. Then, for any geometric point h@ H and fiber 
Xh we have the maps 
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.p,/HO(Xh,~l,"/Xh } 
Th.H~" i I f[ 

-P"" H ~h,Txb), 
where map d is induced by the exact sequence of sheaves 

0 ---> T x  a --+ Tpn/xa "+ Np~/xh -+ O, 

carrying the most essential information on the local structure of the moduli variety. 

In [96] it was shown that the variety H is nonsingular for polarized surfaces of type 
K3. It is nonsingular also for stable curves of genus g~2, embedded in pn with the aid of 
a 3-fold sheaf (see [26, 222]). 

Small deformations of complete intersections were studied in [378, 556]. 

3. Moduli of Curves and Abelian Varieties. The greater part of the new results here 
are due to Mumford [578-588]. A brief survey of them was given in his report at the Interna- 
tional Congress of Mathematicians in Nice [586]. 

In [580] Mumford showed that for smooth curves of genus g ~ 0 there exists a crude moduli 
Mg over Z, being quasiprojective, normal, and reduced over each open subset Spec Z -- (p) in 
Spec Z, p is a prime. 

Since a finite object does not exist for the moduli of curves of genus g~l, a certain 
replacement for it -- an algebraic stack -- was introduced in [582, 222]. This is a category 
of schemes with Grothendieck's ~tale topology and with certain additional conditions. The 
agebraic stack of the moduli of curves possesses good universal properties and with its aid 
we can obtain geometric information on the crude moduli scheme of curves. In [26, 222] De- 
ligne and Mumford study the stack of stable curves of genus g ~ 2 (the consideration of sta- 
ble, and not merely smooth, curves allows us to obtain a compactification of scheme Mg). 
It is proved that the moduli scheme Mg of smooth curves is geometrically irreducible. 

The irreducibility of Mg| was known previously (for example, from Teichmuller's the- 

ory). In characteristic p>2g+l the geometric irreducibility of Mg| was proved by 

Fulton [256] as well with the aid of constructing the Hurwitz scheme of coverings of 
curves over pZ with specified branching points. 

Raynaud [651] obtained one more proof of the irreducibility of M~, having shown that 
the crude moduli space Mg of stable curves exists in the category of algebraic spaces._ Final- 
ly, in [586] announced that he, Knudsen, andSeshadrihadproved that themodulispaceM of stable g 
curves of genus g > 2 is a projective scheme over Z. The moduli scheme Mg of nonslngu• 
curves is contained in Mg as an open subscheme. 

Rauch has shown that the singular points of the variety Mg | for g > 3 corresponds to 
those and only those curves of genus g over C, which have nontrivial automorphisms; for g = 3 
we need to exclude further those hyperelliptic curves which have only two automorphisms. In 
characteristic p > 0 these results were extended by Popp [634] (the case of g = 3 has been in- 
vestigated in [634] but not upto completion). The lattice Mg of singular points was studied 
in detail by Igusa [449] for g = 2. 

The classical problems of the universality and the rationality of the moduli variety 

714g| remain open. The universality has been proved for g < ii by Severi (see the reference 

in [757]; also see [iii]). Tyurin (unpublished) also proved this fact. The rationality of 
Mg is not known for any g~2 whatsoever. 

In [587] Mumford showed that the Albanese variety of variety Mg| is trivial, i.e., is 
just the same as for rational varieties. He showed that F/[r, F] is a finite cyclic group 
whose order divides into i0, where F is Teichmuller's modular group acting on the Teichmuller 
space of curves of genus g, while IF, r] is its commutant~ This is equivalent to the Picard 
group of the algebraic stacking, classifying curves of genus g > 2, being isomorphic to 

/-/2(F, Z). The equalities Pic(Jg)~-Z/lOZ, for g = 2 and Pic(~)----Z/12Z for g = i have been proved 

(see [51, 582]). 
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Let f: X§ be a smooth family of curves of genus g~ 2. Let an integer n> 0 be invert= 

ible on S; then the sheaf RI~,(Z/nZ) is locally free in the ~tale topology of scheme S and 

has rank 2g. Multiplication in cohomologies provides R~.(Z/nZ) with a locally nondegenerate 

symplectic form with values in Z/nZ, defined to within multiplication by invertible elements 

from (Z/nZ)*. 

The Jacobian structure of level n on X is the giving of the symplectic isomorphism (to 
within a factor) 

R~f, (Z/nZ) ~ (Z/nZ) ~g. 

Let ~g,n be a functor of smooth families of curves with a Jacobian structure of level 
n. It turns out that when n >3 this functor is representable by a quasiprojective scheme 
Mg,n over SpecZ[i/n] (see [580]) and there exists a finite Galois covering Mg,n § over 
SpecZ[i/n]. Scheme Mg,n is smooth for sufficiently large n (Popp [635]). 

The connection of the moduli of curves with the modu!i of Abelian varieties was estab- 
lished by Torelli's theorem: A curve is uniquely determined by its own Jacobian variety J 
with Poincarg polarization 6. 

Mumford laid down the origin of the general algebraic theory of the moduli of Abe!ian 
varieties in [580]. Let Xo be an Abelian variety of dimension g over an algebraically closed 
field k and Lo be an ample invertible sheaf on Xo~ Then there is defined the homomorphism 

A(LD) : X0~0=Pic ~ depending only on the class Lo in Pic Xo/Pic ~ Xo. Its nucleus is a finite 

group of order d 2, where d is some integer (if deg Lo is prime with char k). The number d 2 is 
called the degree of the polarization specified by h(Lo). 

Now let X+ S be an Abelian scheme of dimension g over the scheme S and the null sec- 

tion e:S~X. Mumford calls the homomorphism %: X~X~ which has the form of A on each geom- 

etric fiber, a polarization on X. There does not always exist a relatively ample invertible 
sheaf L such that % = A(L); in this the definition of polarization for Abelian schemes dif- 
fers from the common definition for families of algebraic varieties (see Para. i). However, 
some relatively ample invertible sheaf L(%) can be canonically associated with any polariza- 
tion %. 

For each integer n >i, different from the characteristic of the residue field of scheme 
S, the structure of level n on X/S is the giving of 2g section o1,...,O2g of an Abelian 
scheme X§ S such that: 

I) For all geometric points sQS the images ai(s) comprise a (canonic sympletic) base 
of the group of points of order n on fiber XS; 

2) ~n0~i=e, where ~n:X--+X is a morphism of multiplication by n~ 

Let ~g,~.n(S) be a functor and Ag,d,n be a crude moduli space of Abelian varieties with 

a polarization % of degree d 2 and structure of level no Mumford [580] showed that Ag,d,n is 

for all (g, d, n) a quasiprojective schem~ over an open set of the form Spec Z -- (p). For 
n >3 it is even a finite moduli scheme. 

More profound study of the moduli of Abelian varieties was continued by Mumford [55-57~ 
584-586]. The main purpose of these papers was to work out a purely algebraic analog of the 
analytic theory of theta functions. The idea is to study the functors of families of Abe- 
lian varieties with a finer "non-Abelian" structure, a 0-structure of finite level 6, and 
to pass to the limit relative to isogenies. As a result there is obtained a simultaneous 
embedding of all Abelian varieties with a structure of type ~ into a projective space, while 
the null section of this maximal family is a moduli variety which is given as an open subset, 
given explicitly with the aid of the Riemann theta-relations, of some projective variety. 
Furthermore, when passing to the limit the boundary of the corresponding open moduli sub- 
scheme is given by explicit equations. The e-functions arising here are defined on Taters 
2-adic space of the Abelian variety X, while the coordinates of the canonic immersion are 
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interpreted as theta constants. Thus, there emerges a purely algebraic and very meaningful 
theory, well consistent with the analytic theory of uniformization of Abelian varieties and 
their moduli spaces. The analytic aspect of the theory was developed earlier by Baily [150] 
and Igusa [445, 451, 452]. 

The next stage in the moduli theory of curves and of Abelian varieties consists in the 
study of the structure of the boundaries of moduli varieties, and also in a clear description 
of the moduli subvarieties of the Jacobians of curves in all the moduli varieties of Abelian 
varieties. A comparison of the curve of its Jacobian with the Poincar~ polarization defines 
the morphism of functors 

and 

]n:J~g,~'-->"-~g,L n 

for any level n. By Torelli's theorem they are injective for all geometric points and, con- 
sequently, yield the embeddings 

] : MgC--,.Ag,~,l, 

]~ : Mg,nC~Ag, l ,n .  

The map j:Mg-+Ag,~.1 is not closed; as Hoyt [437] showed, to the points from its closures 
correspond g-dimensional products of Jacobians. More precisely (see [54, 586]), !et 7HgCTHg 

be a subset in the moduli variety of stable curves, corresponding to a stable curve consist- 
ing of nonsingular components and moreover, let their graph be a tree. Then j can be con- 

tinued upto a proper map ]:~Ig-+Ag,l,b The classical problem consists in how to describe the 
image ](Mg) in Ag.1,1 by explicit equations. The paper [250] by Farkas and Rauch, as well 

as the very interesting papers of Andreotti and Mayer [136] and Mayer [567], were devoted to 
it. 

In the case of g = 4 the image of M~ in A~,I,1 is given by one equation. Schotky (as 
far back as 1888) found the euqation of the theta-constant whose null set contains M~. Mum- 
ford [54] explains that as a matter of fact Schotky's equation describes the same. Andreotti 

and Mayer found analytic equations giving the subsets V r inAg.i,1| for which the correspond- 
g 

ing Abelian varieties possess the property: The singularities of their polarization divisor 

have codimension ~ r. It is proved that Mg| is contained in V ~. The reason for the aris g 

ing here of equations of the wave type is explained in [567]. 

Over the complex number field Ag,I:| is represented as a factor of the upper Siegel 
halfspace, i.e., all complex symmetric matrices Z of order gx g with ImZ> 0with respect to 

the modular group F=Sp(2g, Z)/(• I). Its Satake compactification Ag,I,I| is known: Pieces 

of the boundary are the moduli varieties of Abelian varieties of lower dimension. 

In a recent paper Namikawa [Y. Namikawa, Nagoya Math. J., 52, 197-259 (1973)] constructs 
a map from the moduli variety of stable curves into a Satake-compactified Ag,I,~| with a 
blown-up boundary 

]:Mg| Ag,I,I| 

It is shown that j is injective and, when g = 2, is an isomorphism. These statements are 
natural generalizations of Torelli's theorem. 

See [515] on the moduli varieties of certain special Abelian varieties connected with 
polarized surfaces of type K3. A description of the boundary of the moduli space for K3 sur- 
faces is given in [566]. See [514, 716, 717, 735, 736, 754] for other results on the moduli 
of algebraic varieties. 
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w Periods of Integrals on Algebraic Varieties 

Historically the theory of algebraic curves arose in the works of Abel and Riemann as 
the analytic theory of the periods of their "Abelian" integrals, i.e., in modern terminology~ 
as the theory of integrals of everywhere regular holomorphic differential forms of first 
degree with respect to cycles of one-dimensional homologies on an appropriate Riemann sur- 
face (see [122]). In such an approach at least two aims are achieved: 

a) The Jacobian variety of a curve is constructed as a complex g-dimensional torus, 
where g is the curve's genus; 

2) there arises one of the analytic methods for the construction of the moduli space 
of algebraic curves as the space of their complex matrices of the periods. 

The analytic theory of Abelian varieties originated also as the theory of their period 
matrices with known bi!inear Riemann--Frobenius relations picking out among all n-dimensional 
complex tori the algebraic ones (see [14], for example). We have known for a long time the 
analytic construction of the Albanese and Picard varieties as complex tori arising from a 
consideration of the period matrices of one-dimensional regular differential forms of type 
(i.0) and (0.I), respectively (see [8], for example). Recently Griffiths [381-383] (also 
see surveys [21, 385, 392]) developed the general theory of the periods of integrals of dif- 
ferential forms of any order on algebraic varieties with the aim of constructing the moduli 
space as a space of the periods. 

i. Differential Forms on Algebraic Varieties. The general theory of regular differen- 
tial forms on a complex projective algebraic variety was created by Hodge [429] (also see 
Weil [14]). 

The fundamental conclusions of this theory are the following. Let V be an n-dimensional 
projective nonsingular algebraic (or even merely a compact Kghlerian) variety over the com- 
plex number field C. 

(i) For any integer r, O<r <~,there exist a finite-dimensional linear space over C of 
complex-valued harmonic differential forms Jft(V) and its expansion into a direct sum of 
spaces of harmonic forms of type (p, q), p~ 0, q ~0, 

~ , ( v ) =  ~ ~ ,~ (v ) ,  
p+q=r 

and the operation of complex conjugation induces the isomorphism 

~ , . ~  (V) = ~vq,p (V) =H~ (V, Z) | 

(2) There exist the isomorphisms of de Rham, leading an exterior product into a prod- 
uct of cohomologies 

~V ~ (V) ~ H ~ (V, C) = H  ~ (V, Z) | 

and o f  D o l b e a u l t  

~P 'q  (V) ~ H q (V, ~p), 

where ~P is the sheaf of germs of holomorphic differential p-forms on V. 

dimc~P.q(V) are called Hodge numbers. There hold the relations: 

The numbers hP~q = 

hp,q__~hq, p ' h,,q_~h~-q,n-p, b~=_ ~ h p'q, 
p+q=r 

where b r is the r-dimensional Betti number of variety V. 

(3) Let ~i,: be a closed differential form of type (i.!), corresponding to the class of 
hyperflat sections of variety V in H2(V, Z) (or the K~hler metric in the case of an arbitrary 
K~hlerian variety), and L be the operator of exterior multiplication by i I Then there 
holds the isomorphism (the strong Lefschetz theorem) 

827 



Ln-r :.~r (V) ~ j~,2~-r (V), 0 < r < n. 

(4) Let .~r(V)o be the nucleus of the homomorphism 

L "-r+l : .~ '  (V) + .yt~Y +2. 

It is called the space of primitive r-forms. Let ,.~p,q(g)o:,~l~p,q(V)~,~p+q(V)o be spaces of 

primitive forms of type (p, q) and let h$'q----dimJ-cp,q(V)o �9 There holds the Weil--Lefschetz ex- 

pansion for 0<r~ n 

~gr (V) -~- E Li.ffr-~t (V)o. 
O<i<[r/2] 

(5) There is defined the nondegenerate quadratic form 

Q : ..~t~r (V)o ~ ,ff~r (V)o __>_ C, 

r(r+D 
Q(~, ~ ) = ( - - 1 )  2 ~(~,, ,) .-rA~A1, $, ~eg_tr(V) ~ 

V 

(symmetric or skew-symmetric depending on the parity of r) satisfying the Riemann--Hodge rela- 
tions (see Griffiths [381]) 

Q (y~-p,p, ~-q,r q#p, 

Q > o; 

the latter condition signifies that ir(--1)r~Q(~, ~) is a positive definite Hermitian form. 

With the aid of the de Rham isomorphism all the listed properties of the spaces of har- 

monic forms carry over to the spaces of cohomologies ffr(V, C)=ffr(V, Z)| so that we can 

speak of primitive classes of cohomologies /-]P'~ of Hodge numbers h$ 'q, of quadratic forms 

Q (which for algebraic varieties are defined over Z), etc. 

2. Variations of Hodge Structures. Let E be a complex vector space with conjugation 

e-->e (e~E). A polarized Hodge structure of weight k in the sense of Deligne [25, 209, 210] 

and Griffiths [21, 385] consists of: 

a) the giving of the Hodge filtration F~ possessing the property that 

Fp~Fk-p-I~E is an isomorphism for any 0 ~ p ~k; this is equivalent to the giving of the 

expansion into a direct sum 

E :  E EP'q, EP'q=Eq'P, 
p+q~r 

where 

and 

EP'q----FPNF~-r, FP= ~.j EP"~ 
p'-~p 

b) the giving of a Z-lattice H, E~I-/| and of a bilinear Z-form 

Q(E p'q, EP"q') 2-0, if P#P', q=/=q', 

(these are the bilinear Riemann-Hodge relations). 

Q : E X E - ~ C  such that 
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Let f: X§ S be a proper smooth morphism of algebraic varieties over the complex number 
field C. We assume that a polarization is given on X, namely, the class of very ample in- 
vertible sheaves LX/S. Then, on each geometric fiber in the space of primitive classes of 
homologies Hk(xs, C) there is defined a polarized Hodge structure of weight k, and, as Grif- 
fiths showed, there is defined a map of periods ~k:S-+Mk(Xo), where X0=~-1(s0) is some fixed 

fiber over s0GS, Mh(%0) is the space of k-dimensional periods of variety Xo. It is defined 

in the following way. Let Dk be the space of all polarized Hodge structures of weight k on 

E=H~(X0, C)0 with a fixed collection of numbers (p, q), a Z-lattice of primitive integral 

cohomologies, and a form Q [this is some open subset in the algebraic variety of (incomplete) 
flags in E]. Then D k is a homogeneous complex space relative to a real Lie group G = O(E, R) 
of linear real automorphisms E preserving form Q, and the stationary subgroup HcG is com- 
pact (H is not necessarily a maximal compact subgroup). The space Mk(Xo) is the factor 
space of the homogeneous complex variety D k by a discrete group of Z-automorphisms E preserv- 
ing Q. 

The fundamental aim of Griffiths' work [381-383, 385-387] is the study of the period 
spaces Mk(Xo) and of the map of periods. The space Mk(Xo) is called the moduli space of the 
Hodge structure; for each 0 < k<dimXo such a space is determined by k-dimensional primitive 
cohomology classes. 

Griffiths [382] discovered that for varieties of dimension n~2 and for k> 0, besides 
the Riemann--Hodge conditions (included in the definition of the Hodge structure), there exist 
some more local conditions on the period map ~. Let K be a maximal compact subgroup con- 
taining H in G and R=K \ G be the corresponding symmetric Riemann space~ Then in the 
fibering 

D~--H\O 

R~--K\G 

there exists a unique G-invariant connection 

Ta(D~)=Vd| dEDk, 

separating in the tangent space T s a vertical (tangential to the fiber) subspace V d and a 
horizontal one H d. The local conditions are that the period map is always horizontal. Group 
K differs from H, for example, if two numbers O~p~<p2~<k/2, exist such that h$1.~k-P1~0, 

h~,.k-m:~O. For a smooth bundle Griffiths' local conditions are expressed also (see [21, 

385]) in terms of the Gauss-Manin connection arising from the natural action of the funda- 
mental group ~I(S, So) in the cohomologies Hk(Xo, C). 

In the study of period maps there arise the following fundamental problems which are 
discussed in detail in Griffiths' survey [21, 385]. 

i) A circle of problems connected with the generalization of Torelli's theorem~ ~ne 
local Torelli problem consists in the following: when the Hodge structure on H*(Xo, C) sep- 
arates the points in the local moduli space (the Kuranishi space) of variety Xo. The global 
Torelli problem: when the polarized Hodge" structure on H*(Xs, C) completely determines the 
polarized algebraic variety X s- 

As Griffiths [21, 383, 385] noted, the local Tore!li theorem is valid in many cases: 
for curves, hypersurfaces in pn (except cubic surfaces), hypersurfaces in Abe!Jan varieties, 
and in varieties with a trivial canonic sheaf. 

Kii [40] showed that it is true for varieties which are cyclic coverings of pn and 
possess positive canonic divisor classes. 

The global Torel!i theorem (as far as the authors know) has been proved only in the fol- 
lowing cases (besides the usual Torelli theorem for curves): 

for polarized surfaces of type K3 by Pyatetskii-Shapiro and Shafarevich [96]; 
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for a nonsingular cubic hypersurface in IP~(C) by Tyurin [106, 107] and by Clemens and 
Griffiths [41, 205]; 

for a nonsingular intersection of two quadrics in PN(c) in Rid's dissertation (in press); 
for N = 4 this was established in [643] as well. 

Interesting global Torelli theorems have been obtained for the moduli varieties of sta- 
ble vector bundles in [109, II0, 592]. 

2) Problems connected with compactification and with the behavior of the periods at in- 
finity. Let 

X~X 

f r  r 
s o s  

be the compactification of a smooth morphism f; here X, S are smooth complete varieties, 
-- X and S -- S are divisors with normal intersections. Let ~:$-+Mk(%0) be a period map. 

Does a reasonable compactification ~k(X0) exist and, if it does, can the map ~k be con- 

tinued upto the map ~k:S-+~Ik(X0)? An affirmative answer to this question has been obtained 

only for curves and partially for a certain class of surfaces (see Griffiths [21, 385]). In- 
teresting profound results on that score exist in Schmid [681]. 

3) Other problems and results connected with local and global monodromies (see w as 
well as with the theory of uniformization and with automorphic forms for monodromy groups. 

In [382] Griffiths introduces the very important concept of an intermediate Jacobian. 
Let X be an n-dimensional projective variety over C. For any O~q~ we set f-I~+I(X)= 

H2q+1,~ q(P O. Then the factor space 

Tq(X) -~ H~+'(X) \ II2q+~(X, C)/H~q+'(X, Z) 

is a complex torus and is called the intermediate Jacobian of Oriffiths. As Oriffiths showed 
[382], this torus can be holomorphically varied under a ho!omorphic variation of variety X. 
It is not always an Abelian variety, in contrast with the intermediate Jacobian of Weil. 
The latter does not possess the property of holomorphicity under variations. Griffiths' 
Jacobians Tq(X) play an important role in ~he theory of algebraic cycles on variety X (see 
w When q = 0 the torus To(X) is the Picard variety of variety X; when q = n--l, T~-I(X) 
is the Albanese variety. 

3. Hodge--Deligne Theory. In [25, 209, 210] Deligne develops a certain algebraic analog 
of Hodge theory for nonsingular and not necessarily complete algebraic varieties over C. 
This, as Deligne named it, is a mixed Hodge theory. Let X be a smooth quasiprojective al- 
gebraic variety over C. According to Hironaka's results on the resolution of singularities 
there exists a smooth compactification X of variety X, being a projective variety over C, 
and Y = X--X is a union of smooth divisors with normal intersections. By ~ < Y ) we denote 

the sheaf of differential p-forms on X having no more than "logarithmic singularities" on 
Y (i.e., poles of no h~her than first order) and not having singularities on X. Let ~*~<Y) 

be the corresponding d~ Rham logarithmic complex and H*(X,~% < Y >)be hypercohomology. Delig- 
X 

ne shows that the isom~ ~phism 

H*(x, c)~*(~, ~ < r > ) 
X 

holds and defines two J .itrations on ~ < Y > : an increasing filtration of weights Wn~ 2 < Y >) 

and the Hodge filtration F k. These filtrations generate two spectral sequences, converging 
to H*(X, C), and induce on the cohomologies a mixed Hodge structure consisting of a choice 

of the lattice H----H*(X, Z)c/-/*(X, C), a filtration W n on H| and a filtration F on H| 

not depending upon the choice of the compactification of variety X. 
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If X is a complete smooth variety, then the mixed structure reduces to the usual Hodge 

structure on H*(X, C) in which Wn(f-f*(X , C))=Hn(X, C). 

Now let f: X§ be a projective smooth morphism over C; then, as was shown in [207], the 
Leray spectral sequence 

E~' q = HP( S, Rq f ,Q)---~[-[p+q(x, Q) 

degenerates (i.e., Ea = E~). This fact is generalized in [210] to the case when f is not 
necessarily projective, but only proper, and S is a smooth separable scheme of finite type 
over C. 

From this result and from the mixed Hodge theory on H*(X, C) Deligne derives a theorem 
on the complete reducibility of a global monodromy group, Griffiths T theorem [383] on the 
preservation of type (p, q) of the Hodge component under variations, Grothendieck's rigidity 
for Abelian schemes, and others. 

Deligne's theory of weight filtration and of mixed Hodge structures proved to be very 
useful in the study of the compactification of the period space and of the period maps at 
infinity in Griffiths' theory. In [21] Griffiths gives a precise formulation of Deligne's 
conjecture on this score, concluding, roughly speaking, that on the boundary the mixed Hodge 
structure on cohomologies is the limit of the usual Hodge structure on the cohomologies of 
nonsingular fibers. The latter is directly connected with the monodromy transformation 
around the components of the boundary. Deligne's conjecture has been verified in certain 
special cases (see [21, 681]). 

w Geometry of Algebraic Curves 

The fundamental results in the geometric theory of algebraic curves were obtained as far 
back as the past century in the works of the German mathematicians Riemann, M. Noether, A. 
Brill, as well as of Italian geometers. The reorganization of the fundamentals of algebraic 
geometry also affected the theory of algebraic curves. Many classical results were re-proved 
by modern means, while a part of them were significantly strengthened. See [257, 697] for 
new textbooks on the theory of algebraic curves. 

i. Special Divisors. One of the important questions inthe geometry of algebraic curves 
is that of the existence of a complete linear system IDI of divisors of a given degree d > 0 
with dim[D]>r>0 on a smooth complete curve of genus g. A very weak statement on that score 

is the Riemann--Roch theorem asserting that dim IDl = dim IK--DI +d--g+ I. It gives a necessary con- 

dition for an affirmative answer to the preceding question: r--d+g~O. If a divisor D is not spe- 

cial (i.e., ]K--D I = Z ; for example, d>2g--2), then the preceding inequality turns into an 

equality and, consequently, when r>d--g there can be an affirmative answer only for a spe- 

cial divisor D. Riemann discovered that the answer is in the affirmative if T = (r + l)(d-- 
r)--rg~ 0; in addition, the set of such divisors must depend upon T + r parameters. T. Meis 
and Gunning [404] gave an analytic proof of this statement for the case r = I. An algebraic 
proof (true for an arbitrary algebraically closed ground field) was given by Kempf [481] in 
the general case and independently by Kleiman and Laksov [491]. Both these proofs use the 
Porteous formula (see [640]) defining the nlass of rational equivalence of a certain deter- 
minant Jacobian subvariety of the variety of the curve. The technique used is based chiefly 
on the papers of Mattuck [563] and Schwarzenberger [683]. Paper [728] is devoted to a survey 
of this work. 

Mayer [565] gave a rigorous proof of the following statement of Riemann: Let O be a 
Poincar~ divisor on the Jacobian variety J of a curve X of genus g, representing: complete 
linear systems of degree g -- 1 on X. Then the projective dimension of the corresponding 

system is one less than the multiplicity of the corresponding point on O ~ In particular, 

if O~ denotes the set of points on J, corresponding to complete linear systems of degree 

n and of projective dimension>r, then a corollary of this statement is the fact that the 
I 

points of ~g_tare all singular points of the Poincar~ divisor O=O~_~. According to a 
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result of Weil, for any n<g--i, O% is the set of singularities of the subvariety O~ for a 

general (in the sense of the moduli variety) curve X. Using the results in [248], Martens 

[549] showed that the presence of singular points in n\ O, for n<g--I is special in the 

sense of moduli theory. This same paper gives a rigorous proof of the well-known Clifford 

theorem: If deg (O)<g--I and d # 0, then l(O) =dimlDl+l<(deg(O)+l)/2. 

By generalizing Riemann's result, Kempf determined in [482] an ideal giving the tangent 

cone at a singular point of variety O~ (n<g--l). For n = g -- 1 this result was obtained by 

Mumford (unpublished). 

The theory of special divisors is closely connected with the theory of theta functions. 

The variety O~-i above is a shift of the divisor of the zeros of the theta-function O , 
0 

while the equation of the tangent cone at the point o~Og_l is the principal term in the ex- 

pansion of O in a power series at point ~. See Fay's book [251] in regard to this connec- 

tion. 

2. Automorphisms of Curves. The classical Schwartz--Wiman theorem states that the auto- 
morphism group of a curve X of genus g > 1 is finite. In case g < 1 this group is infinite; 
for g = 1 it is described in the theory of elliptic curves; the case g = 0 is trivial. 
Hurwitz's theorem gives a bound for the order of the group Aut(X) of a curve X of genus g> I: 

IAut(X) l<84(g--l). From the proof of this theorem (see [120], for example) it follows easily 

that the bound is achieved only for curves X such that X/Aut(X)~P I, while the natural projec- 

tion X-+P I is a Galois covering with a branching scheme (2,3,7). An example of such curves 

is the Klein curve of genus 3 (whose canonic model is given by the equation Xo3Xl+xlSx2+x23Xo = 

0) and the Macbeath curve of genus 7 [240, 539], as well as their maximal Abelian unramified 
coverings of genus m2g(g -- i) +I (g = 3 or 7). 

A lower bound for the maximal order ~(g) of the automorphism group of a curve of genus 
g was given by Maclachlan [540] and Accola [131]. They showed that ~(g) ~ 8(g + i) and that 
this bound is exact for infinitely many values of g. See [483] for a refinement of these 
results. 

Interesting examples of curves with computed automorphism groups have been pointed out 
by Edge [241, 242]. Modular curves furnish many examples of a computed automorphism group. 

The possible orders of the elements of the automorphism group of a curve were indicated 

in [415 ]. 

It is very well known that nonhyperelliptic curves of genus g > 0 with a nontrivial auto- 
morphism group are the singular points of the corresponding moduli variety Mg of curves of 
genus g. Interesting results connected with this fact have been obtained by Popp [634-636] 
and Rauch [649]. Let Tg be a Torelli space of curves of genus g [649], g be the discrete 
automorphism group of Tg, anti-isomorphic to group Sp(2g, Z), ~(1) be its principal con- 
gruence-subgroup of level I. For I~3 the factor Mg(l)=TJ~(1) is a smooth quasiprojective 

algebraic variety of dimension 3g--3 on which the finite group G =~/~(1) acts. The factor 

Mg(1)/G=Tg/~ is the "crude" moduli variety Mg. For any point x 6Mg the inertia group I(x') 

of any point x' lying over x under the canonic projection Mg(1)'-~Mg, is isomorphic with the 

automorphism group of an appropriate curve. In particular, for a given g there exists only 
a finite number of automorphisms of curves of genus g [since they are all subgroups of the 

finite group G=~/~(1) ]. The whole variety is divided into a finite number of nonintersect- 

ing smooth locally closed subvarieties W F consisting of points representing curves with an 
automorphism group isomorphic with a given group F. When a curve X belongs to a zero-dimen- 
sional subvariety W F, we say that X has many automorphisms. When g ~4 the corresponding 
points in Mg are isolated singular points. The Klein and the Macbeath curves are examples 
of curves with many automorphisms [635]. 
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3. Projective Immersions of Curves. The Riemann-Roch theorem on a smooth complete al- 

gebraic curve X shows that any invertib!e sheaf ~ on X of positive degree is amp!e~ If 

X~P I, then it is very ample; if X is an elliptic curve, then ~| is always very ample. 

For a curve X of genus g > i the sheaf ~ with degree deg(~)>2g~-1 is very ample. Here the 

image of X relative to a complete linear system defined by sheaf ~, can always be given by 

equations of second or third degree [675, 676]. The condition deg (~)~2g~-I is not, it is 

clear, necessary for very ampleness. For example, if X is a nonhyperelliptic curve, then 
the canonic sheaf mX of degree 2g -- 2 is very ample; for an elliptic curve ~2 is very 

ample). The image of X relative to the canonic embedding, with explicitly listed exceptions, 
can be given by second-degree equations. This classical Enriques-Noether--Petri assertion 
was re-proved by modern techniques by Shokurov [127] and Saint-Donat [677]. 

A curious fact is that each curve with g<8 can be immersed into some K3-surface (see 
[566], for example). Tyurin states (unpublished) that this is so for g ~ ii. Hence follows 
the unirationaiity of the moduli variety of curves of genus g ~ ii (see ~5) o 

4. One-Half of the Canonic Class. Simple arguments in the theory of algebraic curves 
show that the set of divisors D on a curve X of genus g > O, such that 2D~Kx, forms a prin- 
cipal homogeneous space S(X) relative to the group J= of second-order points on the Jacobian 
variety J of curve X. In particular, S(X) consists of 22g elements (called, in the classical 
literature, the "theta-characteristics" of curve X). The fundamental classical results on 
S(X), going back to Riemann and Wirtinger and based on the theory of theta functions, have 
beefi re-proved and generalized recently by Atiyah [145] (for case k = C) and by Mumford [588] 
(chark# 2). 

Using the general theory of spinor varieties, the first one of them proves the follow- 
ing statement of Riemann: If D t is a holomorphic family of theta-characteristics on a family 
of curves Xt, then dim[DtI is constant modulo 2. The function ~:S{X)-+F2, defined by the 

equality ~(O) =dim IDl +I, is a quadratic form corresponding to the bilinear form which is 

the ~-product on the space of cohomo!ogies H~(X, Z/2), The number of zeros of this function 

equals 22g-I + 2g -I (hence follows, for example, such a beautiful fact: The number of bi- 
tangents to a flat nonsingular quartic equals 28). The connection with spinor varieties is 
explained by the fact that the set of theta-characteristics is found to be in bijective cor- 
respondence with the set of spinor structures on an appropriate Riemann surface. 

In [588] Mumford generalizes the concept of theta-characteristics to bundles of arbi- 

trary rank, by examining the bundles E possessing the quadratic form E| For families 

of such bundles he proves that dimP(X, Et) is constant modulo 2. Using the results in [583], 
he carries over the rest of Riemann's statements to the case of characteristic # 2. Here the 

group of cohomologies HI(X, Z/2) is replaced by the group of ~tale cohomologies H1(Xet, ~2)~ 

w Geometry of Algebraic Surfaces 

The reorganization, beginning in the Fifties, of the foundations of algebraic geometry 
on the basis of modern techniques of homologicai and commutative algebra necessitated a cri- 
tical reconsideration of the majority of the classical results in the theory of surfaces. A 
part of them, relating to the foundations of the theory, were generalized to varieties of 
higher dimension(Riemann--Rochtheorem, Picard varieties, etc.). Many results, specific to 
the case of surfaces, were re-proved anew with the use of new ideas and methods, being here 
partially revised and supplemented. However, we must remark that the influence of the old 
ideas and methods was obvious in many papers. See [2, 49, 581, 756, 757] for monographs and 
surveys on the theory of surfaces. 

I. Classification of Algebraic Surfaces. One of the most brilliant achievements of the 
Italian school of geometers is the classification of aigebraic surfaces, obtained mainly by 
Enriques. According to his results, every nonsingular projective algebraic surface over the 
complex number field belongs to one of the following six classes which are characterized by 
the values of the numerical invariants of the surfaces occurring in them: 
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i) Rational surfaces (birationally isomorphic with the projective plane p2): Pa = P2 =0~ 

2) Ruled surfaces (birationally isomorphic with the product PIXC , where C is an al- 

gebraic curve of genus g> 0): P12 = 0. 

3) Elliptic surfaces (possessing a pencil of elliptic curves) whose minimal models 
(other than p2) are characterized by the condition: (K 2) = 0 and P12 > i or pg = 0 and P~2 = 
i. 

4) Two-dimensional Abelian varieties: K = 0 and Pa = --i. 

5) K3-surfaces (birationally isomorphic to a surface with K = 0, Pa = i). 

6) Surfaces of fundamental type (with • ; see w whose minimal models are charac- 

terized by the condition (K 2) >0, P2~2. 

Here (and everywhere in what follows) for any smooth projective surface X over C the 
invariants Pa, Pg, Pn are defined as in w 

A characterization of rational surfaces (a rationality criterion) was obtained already 
in 1955 by Kodaira (see [707]). At the start of the Sixties a complete restoration of the 
Enriques classification was made in the papers of Kodaira [501-510] at the seminars of Sha- 
farevich in Moscow [2] and of Zariski at Harvard. Here the greater part of the proofs were 
essentially algebraic and used individual results carried over to the case of an arbitrary 
field of characteristic zero. Zariski [760] carried the rationality criterion to the case 
of arbitrary characteristic. 

Certain results in the direction of a general classification of algebraic surfaces over 
fields of positive characteristic were obtained by Mumford. He noted that the list of pos- 
sible classes must be enlarged (for example, the class of quasielliptic surfaces exists). 
Most difficult, it seems, is the proof of an analog of the ruledness criterion: P=4 = 0 
(this formulation was suggested by Shafarevich). 

A more detailed study of each of the classes of algebraic surfaces was made by many 
authors. Thus, minimal models of ruled surfaces were investigated by Nagata [83, 84, 598, 
599]. A classification of elliptic surfaces was carried out by Shafarevich using the theory, 
created by him (and independently by Ogg [621]), of smooth homogeneous spaces of algebraic 
varieties over functional fields (see [2, 121]). An analytic variant of this theory was ob- 
tained independently by Kodaira [503, 504]. Some of the results obtained here were pre- 
dicted (often not exactly) by Enriques. Kodaira [505], Tyurina [2, 114], Andreotti, Wei! 
(cf. [505]) studied the moduli variety and the topology of surfaces of type K3. Shafarevich 
and Pyatetskii-Shapiro [96] proved a global Torelli theorem (see w for such surfaces. 
They [95] (and, independently, Deligne [220]) verified the Riemann conjecture for this class 
of surfaces (although the main result of these papers overlaps a recent proof by Deligne of 
the Riemann-Weil conjecture in the general case, the methods developed in them are of in- 
dependent interest). Saint-Donat (preprint) has shown that besides the explicitly listed 
cases, K3-surfaces can be given by equations of second degree. Special K3-surfaces (i.e., 
having hyperelliptic curves) were studied in [i, 32]. In particular, the explicit equations 
were indicated, yielding a special K3-surface in the form of a double plane. The geometry 
of Kumer surfaces is studied in [96]. 

For surfaces of fundamental type Moishezon has shown that 19KI determines a birational 
morphism in a projective space. Later Kodaira [499, 500] strengthened this result -- the 
same is true for 16KI. The definitive result in this direction is due to Bombieri [170, 
171]: 15KI always yields a birational morphism and surfaces exist for which 14K! does not 
possess this property [for such surfaces necessarily (K =) = i]. 

There exist distinguished classes of surfaces, different from those indicated in the 
Enriques classification. For example, the class of hyperelliptic surfaces (surfaces rep- 
resentable in the form of a factor of a two-dimensional Abelian variety) is interesting. A 
part of such surfaces fall into the class of elliptic surfaces, while the rest are either 
K3-surfaces or ruled surfaces. A portion of the extensive Enriques--Severi memoir [244], 
relating to elliptic hyperelliptic surfaces, has been reproduced recently in Suwa [725, 726]. 

The Enriques surface, characterized by the conditions Pa = Pg = 0, 2K = O, has been well 
studied (see [i, 2]). In case the ground field is of characteristic zero all such surfaces 
are elliptic [2]. The authors do not know if this is true in the general case. 
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2. Constructions of Surfaces. The problem of the existence of an algebraic surface of 
given type with specified numerical (or other) invariants remains one of the most interest- 
ing unsolved problems in the theory of surfaces. Besides the equality l+Pa = [(K2) + c2]/12 
(Noether's formula), no other necessary relations whatsoever are known between the arithmetic 
genus and the Chern classes of the surface's minimal model. For example, the question of the 
existence of simply connected algebraic surfaces of fundamental type with Pa = 0 remains open~ 
Irrational elliptic surfaces with such a property were constructed in [28]. A result was an- 
nounced in [274] (there are gaps in the proof) that such surfaces do not exist if (K 2) > i 
and the bioanonic system is irreducible. Regular surfaces of fundamental type with 3<(K2)< 
8Pa+ 7 were constructed by Burniat [190] (there are a number of incomprehensible places in 
the proof). Interesting and important necessary relations between (K 2) and c= were given by 

Van de Ven [744]. The bound {K2)<max [8c2, 2c2] was proved. 

The inequality l+pa ~ (i/2)(K=) +3 is always fulfilled for surfaces of fundamental 
type (see [171]). 

A large number of explicit constructions of surfaces with specified concrete invariants 
were given by Godeaux [272-322] (also see [741-745]). 

Some general methods for an explicit construction of surfaces are known. One of them 
is the method of constructing the surface in the form of a ramified covering of some known 
surface (for example, in the form of a double plane). The invariants of such a surface are com- 
puted in terms of the invariants of the branching curve (see [462], for example). Another 
method is, in a certain sense, the opposite of the first. The desired surface is constructed 
in the form of a nonsingu!ar model of the factor of some known surface by a finite (for ex- 
ample, cyclic) automorphism group. Many papers [269, 308-312] of Godeaux were based on this 
method. As an instance, one of the first examples of surfaces of general type with Pa = 
pg = 0 (a Godeaux surface; see [170]) was constructed by this method. 

A number of interesting examples of algebraic surfaces is connected with the theory of 
automorphic functions (see [424-427, 718, 719]). 

3. Automorphisms of Algebraic Surface ~. The group Aut(X) of a smooth complete algebraic 
surface X has the structure of the scheme of groups of locally finite type, whose connected 
component of unity Aut(X) ~ is an algebraic group. It was studied individually in each of 
the six classes in the Enriques classification. Here, obviously, we can take it that the 
surface is a minimal model. 

In the case of rational and ruled surfaces the group Aut(X) ~ is an algebraic group con- 
taining a linear projective group (see [551]). 

If X is an elliptic surface, then Aut(X) ~ can be nontrivial (in this case this is an 
Abelian variety and the Jacobian surface for X is a trivial bundle). The group of connected 
components of Aut(X)/Aut(X) ~ can be both a finite as well as an infinite groupo These facts 
and more detailed information on Aut(X) can be obtained from Shafarevich's classification 
of elliptic surfaces (see [2]). 

The automorphism group of an Abelian surface is described on the basis of the general 
theory of Abelian varieties (see [50]). 

The problem of computing the automorphism group of a K3-surface is of interest, in 
case k m C the general results in this direction were obtained by Shafarevich and Pyatetskii- 
Shapiro in [96]. The group Aut(X) ~ is always trivial, while Aut(X) is isomorphic to within 
a finite group to the factor group of the automorphism group of an integral quadratic form 
defined on NS(X) by the intersection index, by the subgroup generated by the maps. Examples 
exist (some of them were known at the beginning of the century) of surfaces withboth an in- 
finite as well as a finite automorphism group (see [96, 320]). The automorphism group of 
special K3-surfaces has been computed by Doigachev (unpublished). Of interest is the prob- 
lem of extending the Shafarevich--Pyatetskii-Shapiro theorem to the case of a ground field 
of arbitrary characteristic (the triviality of Aut(X) ~ is obvious in the general case). 

The automorphism group of surfaces of fundamental type is always finite. In contrast 
to the case of algebraic curves (see w there are apparently no known general assertions 
whatsoever on its construction (the authors do not even know of any nontrivial examples of 
its computation). A very excessive bound exists for its order in terms of the numerical. 
invariants of the surface [A. Andreotti, Rend. Mat. e Appl~, 9, No. 314, 255-280 (1950)]. 
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Shafarevich's paper [716], in which the automorphism group of an affine plane was com- 
puted, serves as the start of the investigations of the automorphism group of affine sur- 
faces. Danilov [24] has proved the nonsimplicity of its unimodular subgroup. An affine 
plane is homogeneous relative to its own automorphism group. A cycle of papers [16-20] by 
Gizatullin was devoted to the classification of smooth affine surfaces quasihomogeneous 
(i.e., homogeneous outside of a finite set of points) relative to their own automorphism 
groups. A part of them are quasihomogeneous already for a certain algebraic automorphism 
group [19]. The latter surfaces (not necessarily smooth) were found by Popov [90, 91] on 
the basis of the theory of algebraic transformation groups. 

4. Zero-Dimensional Cycles. One of the old unsolved problems in the theory of surfaces 
is the following problem of Severi. Is it true that rational surfaces are characterized by 
the condition that each zero-dimensional cycle of degree zero is rationally equivalent to 
zero? A number of papers by Severi himself, devoted to the study of the class group Ao(X) 
of zero-dimensional cycles, remain incomprehensible to this day and, as Mumford [56] showed, 
a part of them are erroneous. For example, Severi's assertion that Ao(X) implies the sim- 
ple-connectedness of X and the equality to zero of pa(X) has not been proved till now. In 
contrast to what Severi expected there do exist irrational surfaces with such a property 
[28]. Mumford [56] proved that if pg> 0 the group Ao(X) is in some sense of infinite type. 
This result was generalized to higher-dimensional varieties by Roitman [97, 98]. 

w Vector Bundles 

The concept of a vector bundle arrived into algebraic geometry via topology and analytic 
geometry of varieties in the Fifties of our century [119]. It was used to clear up the con- 
cept of characteristic classes and to profoundly generalize the Riemann--Roch theorem in the 
papers of Hirzebruch and Grothendieck (see w It lies at the base of Grothendieck K-theory 
and plays an important role in algebra thanks to the connection Serre established between 
it and the concept of a projective module, and in the arithmetic of algebraic varieties. 

Below we shall go into only the geometric side of the theory of vector bundles, a cen- 
tral place in which is occupied by the natural problem of classifying vector bundles on al- 

gebraic varieties. 

The comparison of a vector bundle E on X with the germ sheaf ~ of its sections realizes 
the equivalence of the category of vector bundles and the category of locally free sheaves 
of Ox-modules (with preservation of rank), so that instead of bundles we can talk about 
sheaves, and vice versa. All the most extended operations of linear spaces carry over to 
bundles: direct sums, tensor and exterior products, the taking of the dual, etc. The set 
of classes, to within the isomorphism of vector bundles of rank n on an algebraic variety 
X, can be interpreted cohomologically as HI[X, GLn(OX)], where GLn(O X) is the sheaf of germs 
of continuous maps of X into the general linear group GL n. For n = i this set is provided 
with the structure of a commutative group with the operation| and is called the Picard group 
Pic(X) of the classes of linear bundles or of invertible sheaves, and also the group of 
classes of Cartier divisors. If X is a complete variety, there holds the group extension 

O~Pic ~ (X)~Pic (X) ~NS (X)-~O, 

where Pic~ is the group of points of an Abelian variety (the Picard variety), while NS(X) 
is a finitely generated Abelian (Ngron--Severi) group. This yields a complete classification 

of linear bundles on X. 

Bundles of rank n >2 can be interpreted also as classes of matrices of Well divisors, 
introduced by him as long ago as 1938. 

For a variety'X over the complex number field C we can construct an algebraic vector 
bundle over X with respect to each representation of the fundamental group ~(X) § GL n. Such 
bundles are distinguished by the condition of existence of an integrable connection and are 

said to be flat (see [208]). 

i. Vector Bundles on Algebraic Curves. Let X be a complete smooth curve of genus g over 
a field k. Then, first of all, Pic~ is the group of k-points of the g-dimensional Jaco- 
bian variety J(X) of the curve, while NS(X) = Z; moreover, the homomorphism Pic(X) * Z is a 
comparison of L ~Pic (X) with its degree, i.e., the degree of the corresponding divisor. All 
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bundles of rank 1 of degree d form a g-dimensional variety, namely, a smooth homogeneous 
space of Jacobian J(X). If k = C, the bundle L of rank 1 is flat if and only if deg(L) = 0 
[85, 86]. 

The classification of vector bundles of rank n> 1 on complete curves has progressed suf- 
ficiently far mainly over the complex number field. Some facts remain true over any alge- 
braically closed field of characteristic 0 [712]. 0nly individual results are known in char- 
acteristic p > 0 [710, 712]. 

In 1957 Grothendieck gave a classification of vector bundles on the projective straight 

line pl c. He showed that any vector bundle of rank n is representable (moreover, uniquely) 

as a direct sum of linear bundles. Each linear bundle L in this case is uniquely determined 
by an integer, namely, its own degree. 

In that same year Atiyah classified all vector bundles on an elliptic curve X over C. 
Now, starting with this case, in view of the nontriviality of J(X), we should introduce an 
invariant, namely, the determinant of bundle E of rank n (the linear bundle det E= A E). The 
determinant's degree deg(det E) is called the degree of bundle E. Atiyah showed that on an 
elliptic curve X, for each n ~ 2 and linear bundle L there exists only a finite number of 
bundles E of rank n with determinant L, which cannot be represented as a sum of bundles of 
lower rank. They are all obtained from one of them by a tensor product on some linear bundle 

M with M | =0 

The most profound results in the direction of classifying vector bundles on curves of 
genus g~ 2 over C were obtained by Newstead [612-615] (also see Mumford and Newstead [592]), 
Tyurin [109-113], Narasimhan and Ramanan [603, 604], Narasimhan and Seshadri [605-607], 
Remanan [643, 644], and Seshadri [710-713]. A concept, introduced by Mumford in 1962, of a 
stable bundle, permitting the selection of a component of maximal dimension in the space of 
all classes, proved to be very useful here. A bundle E on a complete smooth curve of genus 
g >2 is said to be stable if the inequality 

d e g F  _ d e g E  

rkF ~ 

is fulfilled for any proper subbundleF~E. If the sign< here is replaced by the sign<, 
we obtain the definition of a semistable bundle, introduced by Seshadri [126, 711]. Mumford 
[578] and Seshadri [711] showed that the set (of classes to within isomorphism) of stable 
bundles S(X, n, d) on a curve X over C of rank n and degree d is provided with the structure 
of a smooth quasiprojective variety of dimension n2(g--l) + 1 and even of a smooth projective 
one if n and d are relatively prime. It is fibered in a natural fashion over the Jacobian, 
or rather, over its principal homogeneous space jd, and the variety SL(n , d) of stable bun- 
dles with a fixed determinant L is the fiber. Any others are obtained from stable ones by 
extensions. 

The map E-+E | where M is any one-dimensional bundle, establishes the isomorphism 

SL(n, d) ~ SL| , dq-ndegA/), 

therefore, SL(n , d) depends only on n and on the residue class of d modulo n. 

Let us note the most important properties of SL(n, d). 

i. If (n, d) = i, then a universal bundle exists on SL(n, d) x X (Seshadri [711], Rama- 
nan [643]); if (n, d) # i, then such a bundle does not exist (Newstead [612], Narasimhan and 
Ramanan [643]). In [612] it was shown that even topological obstructions exist. 

2. The variety SL(n , d) is unirational (Tyurin [I!i, 112], Newstead [613]) and even ra- 
tional (Newstead [613, preprint]). If g = 2, then SL(2 , i) is the intersection of two qua- 
drics in pS (Newstead [613]). 

3. If (n, d) # I, S(X, n, d) admits of a natural compactification. The corresponding 
projective normal variety S(X, n, d) consists of all the so-called S-equivalent semistable 
bundles (Seshadri [711]). Narasimhan and Ramanan [604] showed that the nonsingular point in 
S(X, n, d) correspond precisely to stable bundles, except the case g = 2, n = 2, d = 0. In 
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the latter case S(X, 2, 0) is nonsingular and is represented as a bundle over the Jacobian 
with fiber p3 Narasimhan and Seshadri [605-607] have shown that stable bundles of degree 
0 correspond to classes of equivalent irreducible representations of the fundamental group. 
Hence we can obtain a certain compactification of S(X, n, 0); having added the classes of 
reducible ones, it coincides with the preceding one. In case d # 0, representations of cer- 
tain groups of Fuks type are examined (Narasimhan and Ramanan [85]). 

4. If (n, d) = i, n ~ 2, then Pic[SL(n , d)] = Z and the canonic class of SL(n, d) 
equals --2u, where u6Pic is an ample generator [604]. There holds the isomorphism J3[SL(n , 
d)]~'J(X), where J3 is the three-dimensional intermediate Weil Jacobian [Narasimhan and Ra- 
manan (in press), Mumford and Newstead [952], Tyurin (in press)]. 

The group Aut[SL(n , d)] is finite. 

5. For a curve X there hold different analogs of Torelli's theorem, connected with bund- 
dles and rank n ~ 2 (Tyurin [ii0, iii], and also [592, 643]). The strongest of them is: e 
Curve X is uniquely determined by the variety S(X, n, d) if (n, d) = i; in particular, theiri 
moduli varieties are isomorphic [Narasimhan and Ramanan (in press), Tyurin (in press)]. 

Seshadri [710, 712] extended the existence theorem for the moduli variety of stable 
bundles to an algebraically closed field of any characteristic. 

Individual results on the properties of vector bundles on curves are in [268, 619, 731, 
735], in particular, for characteristic p > 0. 

2. Vector Bundles on Varieties of Dimension n ~2. Here as yet there is no single theo- 
ry whatever�9 Shafarevich [684-687] (slso see [688]) studies unfactorable vector bundles of 
rank 2 on the projective plane, and also on any projective surface. It is shown, in parti- 
cular, that with the aid of monoidal transformations any bundle on a surface can be repre- 
sented as a chain of extensions of linear bundles. As we have already mentioned (see w an 
analogous fact was proved by Hironaka [116] for any projective smooth varieties in charac- 
teristic O. We remark that on curves any bundle is always representable in such a form (see 
[109], for example). 

Hartshorne [411] introduced the concept of an ample bundle of any rank. See survey [31] 
regarding his results and also those connected with them. Properties of Chern classes for 
vector bundles are studied in [413, 414, 486, 755]; in particular, the relation 0 < c2< c~ 
for ample bundles on a nonsingular projective surface is established in [486]. 

Takemoto [729] introduces the concept of a stable vector bundle on an algebraic surface 
and proves, under certain restrictions, the existence of a moduli scheme of finite type for 
bundles of rank 2 with fixed Chern classes. 

Oda [620] studies vector bundles of rank 2 on a two-dimensional Abelian variety over C. 
It is shown that unfactorable bundles exist not representable as the direct image of one-di- 
mensional ones with isogenies of degree 2. From the vanishing of all Chern classes does not, 
in general, follow the existence of an algebraic or holomorphic connection. 

Weil's results on flat bundles are generalized to arbitrary algebraic complex varieties 
in [444]. 

Certain results connected with Serre's problem on vector bundles on affine spaces can 
be found in [595]. 

Papers [432, 433, 721, 740] are devoted to the study of vector bundles on P~. Horrocks, 

i n  p a r t i c u l a r ,  s t u d i e s  t h e  c o n t i n u a t i o n  o f  v e c t o r  b u n d l e s  w i t h  P o n t o  PC'  n ~ N .  An i n -  
4 t e r e s t i n g  e x a m p l e  o f  an  u n f a c t o r a b l e  b u n d l e  o f  r a n k  2 on PC was c o n s t r u c t e d  b y  H o r r o c k s  and  

�9 4 A c o n j e c t u r e  Mumford [435]  ThE z e r o s  o f  i t s  s e c t i o n s  y i e l d  a l l  t h e  A b e l i a n  s u r f a c e s  i n  PC" 

n f o r  s u f f i c i e n t l y  l a r g e  i s  made  t h a t  u n f a c t o r a b l e  t w o - d i m e n s i o n a l  b u n d l e s  do n o t  e x i s t  on PC 

n .  

l�9 
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