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Abstract

We study the GIT-quotient of the
Cartesian power of projective space
modulo the projective orthogonal
group. A classical isomorphism of this
group with the inversive group of
birational transformations of the
projective space of one dimension
less allows us to interpret these
spaces as configuration spaces of
complex or real spheres.
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To Rob Lazarsfeld on the occasion
of his 60th birthday

1 Introduction

In this paper we study the moduli
space of configurations of points in
complex projective space with respect
to the group of projective
transformations leaving invariant a
nondegenerate quadric. More
precisely, if  denotes the
projective space of lines in a linear
complex space V equipped with a
non-degenerate symmetric form 
, we study the GIT-quotient

If  then generic
point configurations have 0-
dimensional isotropy subgroups in 

, and since  we
expect that  when 

.
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Let

It is a finitely generated graded
algebra with graded part  of
degree d equal to . After
polarization,  becomes
isomorphic to the linear space 
of -invariant polynomials on 
which are homogeneous of degree d
in each vector variable. The first
fundamental theorem (FFT) of
invariant theory for the orthogonal
group [19, Chapter 2, Section 9]
asserts that  is generated by
the bracket functions 

. Using this
theorem, our first result is the
following:

Theorem 1.1 Let  be the space
of symmetric matrices of size m with
the torus 

acting by scaling each ith row and ith
column by . Let  be the toric
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variety . Then  is
isomorphic to a closed subvariety of 

 defined by the rank condition 
.

For example, when , we
obtain that  is a toric variety of
dimension .

The varieties  are special since
the connected component of the
identity of  is isomorphic to 

. This implies that  admits
a double cover isomorphic to a toric
variety . We compare this
variety with the toric variety 
associated with the root system of
type  (see [2, 15]). The variety 

 admits a natural involution
defined by the standard Cremona
transformation of  and the
quotient by this involution is a
generalized Cayley 4-nodal cubic
surface  (equal to the Cayley
cubic surface if ). We prove
that  is isomorphic to  for
odd m and equal to some blow-down
of  when m is even.
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The main geometric motivation for
our work is the study of configuration
spaces of complex and real spheres.
It has been known since F. Klein and
S. Lie that the inversive group1

defining the geometry of spheres in
dimension n is isomorphic to the
projective orthogonal group 
(see, e.g., [8, Section 25]). Thus any
problem about configurations of m
spheres in  is equivalent to the
same problem about configurations of
m points in  with respect to 

. The last two sections of this
paper give some applications to the
geometry of spheres.

2 The first fundamental
theorem of invariant

theory

Let V be an -dimensional vector
quadratic space, i.e., a vector space
together with a nondegenerate
symmetric bilinear form whose values
we denote by . Let  be
the orthogonal group of V and 
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. Consider the
diagonal action of G on . The first
fundamental theorem of invariant
theory for the orthogonal group (see
[14, Chapter 11, 2.1; 19, Chapter 2,
Section 9]) asserts that any G-
invariant polynomial function on 
is a polynomial in the bracket
functions

The algebra of G-invariant
polynomial functions  has a
natural multi-grading by  with
homogeneous part  equal to
the linear space of polynomials which
are homogeneous of degree  in each
ith vector variable. This grading
corresponds to the natural action of
the torus  by scaling the vectors
in each factor. The -graded ring 

 in which we are interested is
the subring . We have

where 
.
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Let  denote the linear space
of complex symmetric 
matrices. If we view  as the space
of linear functions , then we
can define a quadratic map

by composing

where the middle map is defined by
the symmetric bilinear form b
associated with q. It is easy to see
that, considering the domain and the
range of Φ as affine spaces over ,
the image of ϕ is the closed
subvariety  of
symmetric matrices of rank .
Passing to the rings of regular
functions, we get a homomorphism of
rings

(2.1)

The map Φ is obviously T-equivariant
if we make  act by
multiplying the entry  of a
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symmetric matrix by . By passing
to invariants, we obtain a
homomorphism of graded rings

(2.2)

The FTT can be restated by saying
that the image of this homomorphism
is equal to the ring .

We identify  with the
polynomial ring in entries  of a
general symmetric matrix  of
size . Note that the action of 

 on a symmetric
matrix  is by multiplying each
entry  by . The graded part 

 of  consists of
functions which under this action are
multiplied by . They are
obviously contained in  and
define the grading of the ring 
. The homomorphism  is a
homomorphism of graded rings from 

 to .

Let
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be the determinant of X. The
monomials  will be
called the determinantal terms. Note
that the number  of different
determinantal terms is less than .
It was known since the 19th century
[16, p. 46] that the generating
function for the numbers  is equal
to

For example, 

Each permutation σ decomposes
into disjoint oriented cycles. Consider
the directed graph on m vertices
which consists of the oriented cycles
in σ; i.e., we take a directed edge 

 for each vertex i. Suppose
there is a cycle τ in σ of length .
Write , and define 

. Since our matrix is
symmetric, the determinantal term 

 corresponding to  has the same
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value as , and furthermore  has
the same sign as σ (so there is no
canceling), and so we may drop the
orientation on each cycle. We may
therefore envision the determinantal
terms as 2-regular undirected graphs
on m vertices (where 2-cycles and
loops are admitted). Thus for each 2-
regular graph having k cycles of
length , there correspond 
determinantal terms.

Proposition 2.1 The ring 
is generated by the determinantal
terms.

Proof A monomial  belongs
to  if and only if

for any . This happens if
and only if each occurs
exactly d times among 

. Consider the graph
with set of vertices equal to 
and an edge from i to j if  enters
into the monomial. The above
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property is equivalent to the graph
being a regular graph of valency d.
The multiplication of monomials
corresponds to the operation of
adding graphs (in the sense that we
add the sets of the edges). It remains
to use the fact that any regular graph
of valency  is equal to the union of
regular graphs of valency 2 (this is
sometimes called a “2-factorization”
or Petersen’s factorization theorem)
[13, Section 9].  

Corollary 2.2 A set  is
semi-stable for the action of  on 

 if and only if there exists 
such that  is not
equal to zero.

We can make it more explicit.

Proposition 2.3 A point set 
 is unstable if and only if

there exists  such that 
 and  for all 

 and .
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Proof Since  is generated
by determinantal terms, we obtain
that a matrix  has all
determinantal terms equal to zero if
and only if it represents an unstable
point in  with respect to the
torus action. Now the assertion
becomes a simple consequence of the
Hilbert–Mumford numerical criterion
of stability.

It is obvious that if such subsets I
and J exist then all determinantal
terms vanish. So we are left with
proving the existence of the subsets I
and J if we have an unstable matrix.

Let  be a nontrivial
1-parameter subgroup of the torus T.
Permuting the points, we may
assume that . We
also have . We claim
that there exist i, j such that 

 and . If not, then
each of , , …, 

 is strictly positive, which
contradicts .
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Since our symmetric matrix 
is unstable, by the Hilbert–Mumford
criterion there must exist r such that 

. Permute the
points if necessary so that 

. Let ,  be
such that  and .
We may assume that  since the
above condition is symmetric in .
Now, since the entries of r are
increasing, we have that  for
all  and . Hence  for
all  and . Now let 

and .  

Similarly, we can prove the
following:

Proposition 2.4 A point set 
 is semi-stable but not

stable if and only if

Proof Suppose that . Let

Suppose that A is semi-stable but
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not stable. Since A is not unstable,
we know by the prior proposition that

. So we are left with showing
that .

Since A is not stable, there is a 1-
parameter subgroup 
such that  whenever .
We shall reorder the points so that 

. Recall also that 
. Since some , we know

that . We claim there is
some i, j such that  and 

. Otherwise, each of 
, ,…, 

would be non-negative. This implies
that . But since 

, we have that , a
contradiction. Hence, the claim is
true. Now, take  such that 

 and . Now, we
must have that  for all  and

. Let  and 
. Then , 

, and  for all , 
. Thus .

Conversely, suppose that 
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. Then A is not unstable (if A were
unstable, Proposition 2.3 implies that 

). Let ,
such that , and  for
all , . Reorder points if
necessary so that  and 

. Let  be
defined as follows. Let  for 

, let  for , and let
 otherwise. The sum  is zero

and not all  are zero, so this defines
a 1-parameter subgroup of the torus
T. Also, if  and , then 

 and , which implies that 
. Thus  whenever .

Hence A is not stable.  

The second fundamental theorem
(SFT) of invariant theory for the
group  describes the kernel of the
homomorphism  (see [14, p. 407;
19, Chapter 2, Section 17]).

Consider the ideal  in 
generated by the Gram functions
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where 

are subsets of . We set .

The pre-image of this ideal in 
 is the determinant

ideal  of matrices of rank 
. The SFT asserts that it is the

kernel of the homomorphism (2.1).
Then

and it is finitely generated by
polynomials of the form , where
m is a monomial in  of degree 

 for some .

Our naive hope was that  is
generated only by polynomials of the
form , for m having degree 

. This is not true
even if we restrict it to the open
subset of semi-stable points in 
with respect to the torus action. The
symmetric matrix
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has rank 4, but for any  the
product  (where  is the
complementary minor) is equal to
zero. Thus our naive relations make it
appear that A has rank 3. Also, 

, so the matrix
represents a semi-stable point. It can
be shown that no counterexample
exists with .

The following T-invariant
polynomial vanishes on rank 3
matrices and is nonzero when
evaluated on the matrix A above:

Hence we need to consider higher-
degree relations. We can at least give
a bound on the degree of such
relations, again appealing to
Petersen’s factorization theorem.

Proposition 2.5 The ideal  is
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generated by polynomials of the form
, for m having degree at most 

.

Proof It is clear that  is
generated by relations of the form 

 where m is a monomial of
degree , for
arbitrary k. Suppose that .
The monomial m corresponds to the
multigraph  with edges ij for each 

 dividing m, counting multiplicity.
Choose any term from ; similarly
this term corresponds to a multigraph

. The graph  has exactly 
edges.

The union  is a -
regular graph. By Petersen’s
factorization theorem, we know that Γ
completely factors into k disjoint 2-
factors. Since , at least one
of these 2-factors is disjoint from .
Hence, this 2-factor must be a factor
of . This means that the monomial
m is divisible by the T-invariant
monomial  corresponding to the
2-factor of :
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Hence, the relation  is equal to 
, where  has

smaller degree.  

Conjecture 2.6 A recent conjecture of
Andrew Snowden (informal
communication) implies that there is
a bound  such that  is
generated in degree  for all m.
Further, after choosing a minimal set
of generators (each of degree ),
his conjecture also implies that there
is a bound  such that the ideal of
relations is generated in degree 

 for all m. His conjecture
applies to all GIT quotients of the
form , where G is linearly
reductive and X is a G-polarized
projective variety.

One of our goals was to prove (or
perhaps disprove) his conjecture for
this case of . We were
not able to do so. However, we have
shown that the second Veronese
subring is generated in lowest degree,
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providing small evidence of the first
part of his conjecture. Furthermore,
Proposition 2.5 is a small step toward
proving an m-independent degree
bound on the generating set of the
ideal (again for the second Veronese
subring only).

3 A toric variety

The variety 
is a toric variety of dimension 

. We identify the character
lattice of  with . We have 

, where  is an
eigenvector with the character .
The lattice M of characters of the
torus  acting on  is equal
to the kernel of the homomorphism 

 It is defined by
the matrix A with -spot in a kth
row equal:

Let
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be the graded semigroup. Then

In other words, the toric variety  is
equal to the toric space , where 
is the convex polytope in 

 spanned by
the vectors  such that  is
equal to the number of edges from i
to j in the regular graph
corresponding to the determinantal
term . For example, if , 

 defines the  with 
 and  otherwise.

Thus the number of lattice points in
the polytope Δ is equal to the number

 of determinantal terms in a
general symmetric matrix.

Proposition 3.1

Proof This follows easily from
Proposition 2.1.  

4 Examples
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Example 4.1 Let  and .
We are interested in the moduli space
of 3-points in  modulo the group of
projective transformations leaving
invariant a nonsingular conic. The
group  is a 3-dimensional
group. So, we expect a 3-dimensional
variety of configurations.

We have five determinantal terms
given by the following graphs:

Let  be generators
of the ring  corresponding,
respectively, to the triangle, to the
three graphs of the second type, and
the one graph of the third type. We
have the cubic relation

Thus our variety is a cubic threefold
in . Its singular locus consists of
three lines
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Let  be the hyperplane section of
the cubic by the coordinate
hyperplane . Then

: point sets with two points
conjugate with respect to the
fundamental conic.  is the union
of three planes 

.
: one of the points lies on the

fundamental conic. It is the union
of three planes 

.
 is the union of two planes 

and .
 is a singular line on , the

locus of point sets where one point
is the intersection point of the
polar lines of two other points.

: two points are on the
fundamental conic.

: two points are conjugate,
the third point is on the conic.

: one point is on the
conic, and another point lies on the
tangent to the conic at this point.

 is the point
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representing the orbit of ordered
self-conjugate triangles.

 is the point
representing the orbit of ordered
sets of points on the fundamental
conic.

The singular point 
 represents

the orbit of ordered self-polar
triangles. Recall that unordered self-
conjugate triangles are parameterized
by the homogeneous space .
It admits a smooth compactification
isomorphic to the Fano threefold of
degree 5 and index 2 [11, Theorem
(2.1) and Lemma (3.3)] (see also [1,
2.1.3]).

Example 4.2 Let us look at the
variety . It is isomorphic to the
subvariety of  representing collinear
triples of points. The equation of the
determinant of the Gram matrix of
three points is

(4.1)
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It is a hyperplane section of 
isomorphic to a cubic surface S in 
with equation

(4.2)

The surface is projectively isomorphic
to the 4-nodal Cayley cubic surface
given by the equation

Its singular points are 

. Since the surface is irreducible, and
all collinear sets of points satisfy
(4.1), we obtain that the surface
represents the locus of collinear point
sets. It is also isomorphic to the
variety  of 3-points on . The
additional singular point  not
inherited from the singular locus of 
is the orbit of three collinear points 

 such that the
determinantal terms of the Gram
matrix  are all equal. This is
equivalent to all principal minors
being equal to zero and the squares
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of the discriminant terms  and 
 being equal. This gives two

possible points 
. We check that the point 
does not satisfy (4.2). Thus the point 

 is determined by the
condition that the principal minors of
the Gram matrix  are equal
to zero. This implies that 

. It follows from the
stability criterion that this point is not
one of the two isotropic points.

It is immediate that  is
freely generated by two
determinantal terms and hence .
The three projections  to  are a
regular map. If we realize  as the
image of the anticanonical system of
the blow-up of six vertices of a
complete quadrilateral in the plane,
then the three maps are defined by
the linear system of conics through
three subsets of four vertices, no
three lying on one side of the
quadrilateral. We can show that these
are the only regular maps from  to 

.
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Finally, observe that we can use
the conic to identify the plane with its
dual plane. In this interpretation a
triple of points becomes a triple of
lines, the polar lines of the points
with respect to the conic. Intersecting
each line with the conic, we obtain
three ordered pairs of points on a
conic.

Note that a set of six distinct
points on a nonsingular conic can be
viewed as the set of Weierstrass
points of a hyperelliptic curve C of
genus 2. An order on this set defines
a symplectic basis of the -
symplectic space  of 2-torsion
points of its Jacobian variety .
The GIT-quotient of the subvariety of 

 of ordered points on a conic by
the group  is isomorphic to the
Igusa quartic in  (see [3, Chapter 1,
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Example 3]). A partition of the set of
Weierstrass points in three pairs
defines a maximal isotropic subspace
in . An order of the three pairs
chooses a basis in this space. The
moduli space of principally polarized
abelian surfaces A equipped with a
symplectic basis in  is isomorphic
to the quotient of the Siegel space 

 by the group 
. The

moduli space of principally polarized
abelian surfaces, together with a
choice of a basis in a maximal
isotropic subspace of 2-torsion points,
is isomorphic to the quotient of  by
the group . Thus,
we obtain that our variety  is
naturally birationally isomorphic to
the quotient  and this variety
is isomorphic to the quotient of 
by the group . The
Satake compactification of  is
isomorphic to the Igusa quartic. In
[12], Mukai shows that the Satake
compactification of  is
isomorphic to the double cover of 
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branched along the union of 4-
coordinate hyperplanes. It is easy to
see that it is birationally isomorphic
to the cubic hypersurface defining .
A remarkable result of Mukai is that
the Satake compactifications of 

 and  are isomorphic.

Remark 4.3 Assume . Fix a
volume form on V and use it to
identify the linear spaces  and 
. This identification is equivariant with
respect to the action of  on V and

, where the orthogonal group of 
 is with respect to the dual

quadratic form on . Passing to the
configuration spaces, we obtain a
natural birational involution 

. If G is the Gram matrix
of vectors , then the
Gram matrix  of the vectors 

is equal to the adjugate matrix of G
(see [1, Lemma 10.3.2]). In the case 

, the birational involution
corresponds to the involution defined
by conjugate triangles (see [1,
2.1.4]). Using the modular
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interpretation of  from the previous
example, the involution F corresponds
to the Fricke (or Richelot) involution
of  (see [12, Theorem 2]).

Example 4.4 Now let us consider the
variety  of 4-points in  modulo 

. It is another
threefold. First we get the 5-
dimensional toric variety of
symmetric matrices of size 4. The
coordinate ring is generated by 17
(3+4+6+3+1) determinantal terms:

Let 

be the variables. We have additional
equations expressing the condition
that the rank of matrices is less than
or equal to 2. We can show that the
equations are all linear:

Their number is equal to 10 but there
are three linear dependencies found
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by expanding the determinant
expression along columns.

We may also consider the spaces 
, where 

 is the special
orthogonal group. Note that 

 if  is odd. Thus
we will be interested only in the case
when  is even. In this case 

 is a subgroup of index 2 in 
, so the variety  is a double

cover of . We have

where . There
are more invariants now. The
additional invariants in  are
the Plücker brackets

where we have fixed a volume form
on V. There are additional basic
relations (see [19, Chapter 2, Section
17])

(4.3)
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(4.4)

The graded part  is spanned
by the monomials  

, where each index 
appears exactly d times. Using the
first relation in (4.3), we may assume
that at most one Plücker coordinate 

 appears. Also, we see that the
product of any two elements in 

 belongs to .

5 Points in  and
generalized Cayley cubics

The group  is isomorphic to the
1-dimensional complex torus . We
choose projective coordinates in  to
identify a quadric in  with the set 

so that  acts by 
. The points on Q

are the fixed points of . The
group  is generated by  and
the transformation .

Recall that there is a Chow
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quotient  defined by the
quotient fan of the toric variety 
(see [6]).

Lemma 5.1 Consider  as a toric
variety, the Cartesian product of the
toric varieties . Then the Chow
quotient  is isomorphic to
the toric variety  associated
with the root system of type 
defined by the fan in the dual lattice
of the root lattice of type  formed
by the Weyl chambers.

Proof The toric variety  is defined
by the complete fan Σ in the lattice 

 with 1-skeleton formed by the
rays  and . The
action of  on the torus 

 is defined by the surjection
of the lattices  given by the
map . Thus the
lattice M of characters of the torus 

 acting on  can be
identified with the sublattice of 
spanned by the vectors 

. This is the root lattice of type .
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The dual lattice N is the lattice ,
where . The
quotient fan is defined as follows. For
any coset , one
considers the set

A coset  is called
admissible if . Two admissible
cosets  and  are called
equivalent if . The closure
of each equivalence class of
admissible cosets is a rational
polyhedral convex cone in  and the
set of such cones defines a fan  in 

 which is the quotient fan.

In our case, Σ consists of open
faces  of the  m-dimensional
cones

where I, J are subsets of  such
that  and  is a delta-
function of a subset K of . The
cones of maximal dimension
correspond to pairs of complementary
subsets I, J. The k-dimensional cones

https://proquest-safaribooksonline-com.proxy.lib.umich.edu/9781316190265/x1_10008_html
https://proquest-safaribooksonline-com.proxy.lib.umich.edu/9781316190265/0018_chapter10_html


correspond to the pairs I, J with 
.

Let  with 
 and let  be a unique

permutation such that 
. Then 

intersects  if and only if 
 for some  or 

and . Since  has only
one orbit on the set of pairs of
complementary subsets of , we
see that the interiors of maximal
cones in the quotient fan are obtained
from the image of the subset

in . This is exactly one of the Weyl
chambers in . All other cones in
the quotient fan are translates of the
faces of the closure of this chamber.
This proves the assertion.  

It is known that the toric variety 
 is isomorphic to the blow-up

of  of the faces of the coordinate
simplex (see, e.g., [2, Lemma 5.1]).
Let
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be the standard Cremona
transformation of . The variety 

 is isomorphic to a minimal
resolution of indeterminacy points of
the standard involution (see [1,
Example 7.2.5]). Equivalently, 
is isomorphic to the closure of the
graph of  in . It is
given by the -minors of the
matrix

where . It follows
from this formula that the standard
involution  of  is induced
by the switching involution ι of the
factors of . The image of
composition of the embedding 
in  and the Segre
embedding  is equal
to the intersection of the Segre
variety with the linear subspace of
dimension  defined by

(5.1)
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where we use the coordinates 
 in . So  is

isomorphic to a closed smooth
subvariety of  of degree .

Consider the embedding of 
 in  given by the

linear system of symmetric divisors of
type . Its image is equal to the
secant variety of the Veronese variety

 isomorphic to the symmetric
square  of . The image of 

 in  is equal to the
intersection of the secant variety with
a linear subspace L of codimension 

 given by (5.1). It is known that
the singular locus of the secant
variety is equal to the Veronese
variety. The singular locus of the
embedded  is equal to
the intersection of L with the
Veronese subvariety  and
consists of  points. We have 

 and . So 
 embeds into  as a

subvariety of degree  with 
singular points locally isomorphic to
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the singular point of the cone over
the Veronese variety . We call it
the generalized Cayley cubic and
denote it by .

It follows from above that  is
isomorphic to the subvariety of the
projective space of symmetric 

 matrices with the conditions
that the rank is equal to 2 and the
diagonal elements are equal.

In the case when , the
variety  is a del Pezzo surface of
degree 6, the blow-up of three non-
collinear points in , and  is
isomorphic to the Cayley 4-nodal
cubic surface in . The variety  is
a 3-dimensional subvariety of  of
degree 10 with eight singular points
locally isomorphic to the cone over
the Veronese surface.

It is known that the Chow quotient
birationally dominates all the GIT-
quotients [7, Theorem (0.4.3)]. So
we have a -equivariant birational
morphism
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which, after dividing by the involution
, defines a -equivariant

birational morphism

For example, take . The variety
 is the Cayley 4-nodal cubic, the

morphism  is an isomorphism.
Take . We know from
Proposition 2.4 that the variety 
has six singular points corresponding
to strictly semi-stable points defined
by vanishing of two complementary
principal matrices of the Gram matrix.
They are represented by the point
sets of the form , where 

. The morphism  resolves
these points with the exceptional
divisors equal to the exceptional
divisors of  over the edges of
the coordinate tetrahedron. The
morphism  resolves three singular
points of  and leaves unresolved the
eight singular points coming from the
fixed points of . Altogether, the
variety  has 11 singular points:
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eight points locally isomorphic to the
cones of the Veronese surface and
three conical double points. The latter
three singular points correspond to
strictly semi-stable orbits.

It is known that  is
isomorphic to the closure of a general
maximal torus orbit in ,
where B is a Borel subgroup [9,
Theorem 1]. Let P be a parabolic
subgroup containing B defined by a
subset S of the set of simple roots,
and  be the subgroup of the Weil
group  generated by simple roots
in S. Let  be
the natural projection. The image of 

 in  is a toric variety 
 defined by the fan whose

maximal cones are -translates of
the cone , where σ is a
fundamental chamber ([4, Theorem
1]). The morphism 

 is a birational
morphism which is easy to describe.

We believe, but could not find a
proof, that for odd m, the morphism 
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 and  are isomorphisms. If m is
even, then the morphism  is equal
to the morphism , where S is the
complement of the central vertex of
the Dynkin diagram of type .

6 Rational functions

First we shall prove the rationality of
our moduli spaces.

Theorem 6.1 The varieties  are
rational varieties.

Proof The assertion is trivial when 
 because in this case the

variety is isomorphic to the toric
variety . If , a general
point set spans , where W is a
subspace of  of dimension m.
Since  acts transitively on a
dense orbit of the Grassmannian 

 (the subspaces containing an
orthogonal basis), we may transform
a general set to a subset of a fixed 

. This shows that the varieties 
and  are birationally isomorphic.
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If , we use the projection
map  onto the first 
factors. It is a rational map with
general fiber isomorphic to . Its
geometric generic fiber is isomorphic
to the projective space over the
algebraic closure of the field K of
rational functions of . In other
words, the generic fiber is a Severi–
Brauer variety over K (see [17,
Chapter X, Section 6]). The rational
map has a rational section 

. Thus
the generic fiber is a Severi–Brauer
variety with a rational point, hence
isomorphic to the projective space
over K (see [17, Exercise 1]). Thus
the field of rational functions on  is
a purely transcendental extension of
K, and by induction on m, we obtain
that  is rational.  

We know that the ring  is
generated by determinantal terms 
of the Gram matrix of m points. If we
take σ to be a transposition , then
the ratio  is equal to
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(6.1)

More generally, for any cyclic
permutation  we can do
the same to obtain the rational
invariant function

(6.2)

Writing any permutation as a product
of cycles, we see that the field of
rational functions on  is generated
by functions . Note that

We do not know whether a
transcendental basis of the field can
be chosen among the functions 
or their ratios.

7 Complex spheres

An -dimensional sphere is given
by an equation in  of the form
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After homogenizing, we get the
equation in :

(7.1)

The hyperplane section  is a
sphere in  with equation

(7.2)

The quadric has no real points, and
for this reason it is called the
imaginary sphere. Now we abandon
the real space and replace with .
Equation (7.1) defines a complex
sphere. A coordinate-free definition of
a complex sphere is a nonsingular
quadric hypersurface Q in 
intersecting a fixed hyperplane 
along a fixed nonsingular quadric 
in . In the real case, we
additionally assume that . If
we choose coordinates such that  is
given by equation (7.2), then a
quadric in  containing the
imaginary sphere has an equation
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If , we may assume that 
and rewrite the equation in the form

so it is a complex sphere. Consider
the rational map given by the linear
system of quadrics in  containing
the fixed quadric  with equation
(7.2). We can choose a basis formed
by the quadric  and the quadrics 

. This defines a
rational map  given by the
formulas

The image of this map is a
nonsingular quadric in  given by
the equation , where

(7.3)

We call  the fundamental quadric.
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The quadratic form q defines a
symmetric bilinear form on V whose
value on vectors  is denoted
by . The pre-image of a
hyperplane section  is a
complex sphere, or its degeneration.
For example, the sphere
corresponding to a hyperplane which
is tangent to the quadric has zero
radius, and hence it is defined by a
singular quadric.

The idea of replacing a quadratic
equation of a sphere by a linear
equation goes back to Moebius and
Chasles in 1850, but was developed
by Klein and Lie 20 years later. The
spherical geometry, as it is
understood in Klein’s Erlangen
program, becomes isomorphic to the
orthogonal geometry. More precisely,
the inversive group of birational
transformations of  sending
spheres to spheres or their
degenerations is isomorphic to the
projective orthogonal group .

Let us use the quadric  to define
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a polarity duality between points and
hyperplanes in . If we use the
equation of  to define a symmetric
bilinear form in , the polarity is
just the orthogonality of lines and
hyperplanes with respect to this form.
Under the polarity, hyperplanes
become points, and hence spheres in 

 can be identified with points in 
.

Explicitly, a point 
 defines the

sphere

(7.4)

By definition, its center is the point 
, its radius square 

 is defined by the formula

(7.5)

Computing the discriminant D of
the quadratic form in (7.4), we find
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(7.6)

This proves the following:

Proposition 7.1 A complex sphere 
 is singular if and only if its

radius-square is equal to zero, or,
equivalently, the point  lies on
the fundamental quadric . The
center of a singular complex sphere is
its unique singular point.

Remark 7.2 Spheres of radius zero
are points on the fundamental
quadric. Thus the spaces  contain
as its closed subsets the moduli space
of m points on the fundamental
quadric modulo the automorphism
group of the quadric. For example,
when , this is the moduli space 

 studied intensively in
many papers (see, e.g., [3, 5]).

Many geometrically mutual
properties of complex spheres are
expressed by vanishing of some
orthogonal invariant of point sets in 
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. We give here only some simple
examples.

We define two complex spheres in 
 to be orthogonal to each other if

the corresponding points in  are
conjugate in the sense that one point
lies on the polar hyperplane to
another point.

Proposition 7.3 Two real spheres in 
 are orthogonal to each other (i.e.,

the radius-vectors at their
intersection points are orthogonal) if
and only if the corresponding complex
spheres are orthogonal in the sense
of the previous definition.

Proof Let

be two orthogonal spheres. Let 
 be their intersection point.

Then we have
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This gives the equality

It gives a necessary and sufficient
condition that two spheres intersect
orthogonally. It is clear that the
condition does not depend on the
choice of intersection point. The
corresponding complex spheres
correspond to points 

 and 
. The condition that

two points  and 
 are conjugate is

So we see that the two conditions
agree.  

For convenience of notation, we
denote  by . We use
the symmetric form  in V defined
by the fundamental quadric.
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We have learnt the statements of
the following two propositions from
[10].

Proposition 7.4 Two complex
spheres  and  are tangent
at some point if and only if

Proof Let  be a 1-dimensional
space of quadratic forms in V and 

 be the corresponding
pencil of quadrics in . We assume
that it contains a nonsingular quadric.
Then the equation 
is a homogeneous form of degree 

 whose zeros define singular
quadrics in the pencil. The quadrics 

 and  are tangent at some
point p if and only if p is a singular
point of some member of the pencil.
It is well known that the
corresponding root  of the
discriminant equation is of higher
multiplicity. If  and 

 are nonsingular complex
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spheres, then the pencil 
corresponds to the line  in 
spanned by the points x and y. A
point  on the line defines a
singular quadric if and only if

Our condition for quadrics  and 
 to be tangent to each other is

that the equation  has a
double root. We have

Thus the condition becomes

 

Proposition 7.5  complex
spheres  in  have a common
point if and only if

where  are the vectors of
coordinates of the polar hyperplane of

.
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Proof We use the following known
identity in the theory of determinants
(see, e.g., [1, Lemma 10.3.2]). Let 

 be two matrices of
sizes  and  with .
Let 

be maximal minors of A and B. Then

(7.7)

Let  be the polar
hyperplanes of the complex spheres.
We may assume that they are linearly
independent, i.e., the vectors  are
linearly independent in V. Otherwise
the determinant is obviously equal to
zero. Thus the hyperplanes intersect
at one point. The spheres have a
common point if and only if the
intersection point of the hyperplanes 

 lies on the fundamental quadric.
Let X be the matrix with rows equal
to vectors . The
intersection point has projective
coordinates ,
where  is the maximal minor
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obtained from X by deleting the jth
column. Let G be the symmetric
matrix defining the fundamental
quadric. We take in the above formula

. Then the product 
 is equal to the LHS of the

formula in the assertion of the
proposition. The RHS is equal to 

. It is equal to zero if
and only if the intersection point lies
on the fundamental quadric.  

We refer to [18] for many other
mutual geometrical properties of
circles expressed in terms of
invariants of the orthogonal group 

.

8 Real points

We choose V to be a real vector space
equipped with a positive definite inner
product . A real point in  is
represented by a nonzero vector 

. Since , we obtain
from Propositions 2.3 and 2.4 that all
real point sets  are stable
points. Another nice feature of real
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point sets is the criterion for
vanishing of the Gram functions: 

 if and only if 
 are linear dependent

vectors in V.

It follows from the FFT and SFT
that the varieties  are defined over 

. In particular, we may speak about
the set  of their real points.

Theorem 8.1 Let V be a real inner-
product space. Consider the open
subset U of linear independent point
sets  in . Then the
map

is injective.

Proof To show the injectivity of the
map, it suffices to show that

(8.1)

for  implies that 
 for some 
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. Choose an orthonormal
basis in V to identify V with the
Euclidean real space . The
transformation g is represented by a
complex orthogonal matrix. If (8.1)
holds, we can find some
representatives  and  of points 

, respectively, and a matrix 
 such that 

. This is an
inhomogeneous system of linear
equations in the entries of A. Since
the rank of the matrix  with
columns  is maximal, there is a
unique solution for A and it is real.
Thus g is represented by a
transformation from .  

Let us look at the rational
invariants . Let 
denote the angles between basis
vectors of the lines .
Obviously,

is well defined and does not depend
on the choice of the bases. Also,
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are well defined too. Applying the
previous theorem, we see that the
cyclic products of the cosines
determine uniquely the orbit of a
linearly independent point set.

Finally, let us discuss configuration
spaces of real spheres. For this we
have to choose  to be a real
space with quadratic form  of
signature  defined in (7.3). A real
sphere with nonzero radius is defined
by formula (7.4), where the
coefficients  belong to the
set . It consists of two
connected components corresponding
to the choice of the sign of .
Choose the component  where 

. The image  of  in the
projective space  is, by
definition, the hyperbolic space .
Each point in  can be uniquely
represented by a unique vector 

 with
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Each  defines the orthogonal
hyperplane

The cosine of the angle between the
hyperplanes  and  is defined by

If , the hyperplanes are
divergent, i.e., they do not intersect
in the hyperbolic space. In this case 

 is equal to the distance
between the two divergent
hyperplanes. If , the
hyperplanes are parallel. By
Proposition 2.1, the corresponding
real spheres  and  are tangent
to each other.
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1  Also called the inversion group or the
Laguerre group. It is a subgroup of the
Cremona group of  generated by the
projective affine orthogonal group 
and the inversion transformation 
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