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Integral Models and Torsors of Inseparable Forms of Ga

Igor Dolgachev

To Gopal Prasad

Abstract. After recalling some basic facts about F -wound commu-
tative unipotent algebraic groups over an imperfect field F , we study
their regular integral models over Dedekind schemes of positive char-
acteristic and compute the group of isomorphism classes of torsors of
one-dimensional groups.

0. Introduction

In this paper we study integral models of unipotent commutative algebraic groups
over the field K of rational function of a Dedekind scheme S over an algebraically
closed field k of positive characteristic. The interest in unipotent groups over im-
perfect fields is related to the study of pseudo-reductive algebraic groups [6] and
quasi-elliptic fibrations on smooth projective surfaces [4; 7]. The general theory
of such groups was started by Tits [34]. Its earlier appearance in algebraic ge-
ometry goes back to the work of Rosenlicht [28]. A one-dimensional unipotent
group over K not isomorphic to the additive group Ga,K admits a regular (but
not smooth) compactification and, via the theory of relative minimal models of
two-dimensional schemes, can be realized as the generic fiber of a flat morphism
f : X → S of regular schemes. In the special case when the genus of a regular
compactification is equal to one and S is a proper smooth curve over k, this leads
to quasi-elliptic algebraic surfaces that play an important role in the classification
of algebraic surfaces over fields of positive characteristic. Their appearance in the
theory of Enriques and K3 surfaces in small characteristic is the main motivation
for writing this paper.

The most notorious example of a commutative unipotent algebraic group over
a field F is a vector group, a finite-dimensional vector space over F equipped with
a structure of an algebraic group over F isomorphic to a direct sum of the additive
group Ga over F . Over any base scheme S, one can consider its form in Zariski
topology, a vector group scheme V(E) over a base scheme S associated to a lo-
cally free sheaf E of OS -modules. Its value on any scheme a : T → S is the group
of global sections of the dual of the sheaf a∗E . One can also consider forms of
V(E) in étale or flat Grothendieck topology. It is known that there are no nontrivial
forms of a vector group in étale topology; however, there are forms in flat topology
if F is not a perfect field. A nontrivial form of Ga,F is an example of an F -wound
unipotent group as defined by Tits [34]: a unipotent algebraic group which does
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not contain any subgroups isomorphic to Ga,F . A commutative connected unipo-
tent group UK of dimension r killed by multiplication by the characteristic p of F

can be embedded in a vector group G
r+1
a,F as the zero locus of a p-polynomial � in

r + 1 variables, a sum of monomials in one variable of degree power of p. After
adjoining to the field some pk-power roots of the coefficients, one obtains a group
isomorphic to a vector group, so it becomes a purely inseparable form of a vector
group. In the case when UK is one-dimensional, one can choose � to be a Rus-
sell polynomial, a p-polynomial of the form � = upn + v + a1v

p + · · ·+ amvpm
.

The minimal extension F ′/F such that the group becomes isomorphic to Ga,F ′

is equal to F(a
1/pn

1 , . . . , a
1/pn

m ). By giving appropriate weights to the variables
u,v one can homogenize the affine curve given by equation �(u,v) = 0 in A

2
F

to obtain a weighted homogenous compactification U of degree pmax{m,n} in
the weighted homogenous projective plane P(1,1,pmin{m,n}). If the polynomial
upn − amvpm

is irreducible in F , the compactification U is a regular projective
curve of arithmetic genus 1

2 (pmin{m,n} − 1)(pmax{m,n} − 2). If this is not the case,
one takes a normalization of this curve to arrive at a regular compactification of
smaller arithmetic genus.

We will be mostly interested in the case when the field F = K . In this case one
can study integral models U of a one-dimensional K-wound unipotent group UK

over schemes S obtained by localizations or completions of a smooth algebraic
curve C over k. The theory of relative minimal models allows us to realize U as an
open subscheme in a regular projective scheme X → S whose generic fiber XK

is a regular compactification of a K-wound unipotent group UK over K of some
genus g. If g > 0, the group scheme U is the Néron model of UK , and it is also
isomorphic to a closed group subscheme of the Néron model J of the Jacobian
variety Jac(XK) of XK [5, 9.5, Theorem 4]. We say that a K-wound unipotent
group UK is of genus g if the arithmetic genus of XK is equal to g. In the case
g = 1, UK coincides with its Jacobian variety and an integral model X → S is an
example of a Jacobian quasi-elliptic fibration on a surface. The surfaces admitting
such fibration were first studied by Bombieri and Mumford in [4].

The theory of Néron models of elliptic curves and, more generally, abelian
varieties has an old history and was extensively studied in algebraic geometry
and number theory. It is an important tool in the study of principal homogeneous
spaces (torsors) of abelian varieties. The isomorphism classes of torsors of an
abelian variety A over K form a commutative group, the Weil–Châtelet group
WC(A,K) isomorphic to the group of Galois cohomology H 1(K,A) identified
with the group of étale cohomology over Spec(K) of the abelian sheaf repre-
sented by A. The usual local-to-global study of this group splits into three parts:
the study of the group of torsors over a local field Kv obtained from K by a
formal completion with respect to a discrete valuation v of K , the study of the
subgroup of WC(A,K) of isomorphism classes of torsors which are trivial for all
valuations v of K , the Tate–Shafarevich group Ш(A,K), and finally the study
of the group of obstructions for reconstructing the isomorphism class of a torsor
from its localizations. The group Ш(A,K) admits a realization as the group of
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étale cohomology H 1
et(C,A), where A is the Néron model of A over C consid-

ered as an abelian sheaf in étale topology. The group of obstructions is the group
of étale cohomology H 2

et(C,A). The existence of Néron models of commutative
K-wound unipotent groups allows one to use the same approach to the study of
their torsors over K . In the case of one-dimensional groups over fields K of char-
acteristic p = 3, this study was first initiated by Lang [17] and has been extended
to characteristic 2 in [7]. In this paper we treat the case of arbitrary genus g.

Here is the content of the paper.
In Section 1 we remind some known general facts about commutative unipo-

tent groups over imperfect fields. Here we introduce their weighted homogenous
compactifications and compute their canonical sheaves.

In Section 2, we specialize to the case of one-dimensional groups and introduce
the notion of a unipotent algebraic group U of genus g. We discuss a known
classification of Russell equations defining groups of genus 0 and 1. As we have
already mentioned earlier, the Jacobian variety of a regular compactification of a
genus g > 0 curve is a commutative F -wound unipotent group of dimension g.
Although U is a p-torsion group, the group Jac(X) is a ps -torsion, where s is the
smallest positive integer such that UK splits over K1/ps

or becomes of genus 0
[1]. An interesting question for which we do not have an answer is whether U
coincides with the p-torsion part of Jac(X).

In Section 3 we study minimal models of a unipotent group of genus g over a
Dedekind scheme over a field of characteristic p > 0. We give an explicit descrip-
tion of such a model over a global base as a closed subscheme of a group scheme
locally isomorphic to a vector group scheme over the base.

In Section 4, we study integral models of regular compactifications of rational
K-wound one-dimensional unipotent groups over the field K of rational functions
of a smooth projective curve C. They are isomorphic to minimal ruled surfaces
X → C with an inseparable bisection as the boundary of an integral model of the
group. For example, if C ∼= P

1, then X ∼= F1 and the boundary is the pre-image of
the strange conic in the plane with the pole at the center of the blow-up.

In Section 5 we begin the study of torsors of unipotent groups of genus g by
considering the local case where the ground field is the field of formal power se-
ries over an algebraically closed field k of characteristic p. The Weil–Châtelet
group in this case is the quotient group K/�(K ⊕ K), where � is the p-
polynomial defining the group. In spite of this simple realization the group is very
difficult to compute, and we succeeded to do this only in the case g = 0, where
it is trivial, and in the case g = 1, where it was computed in the case p = 3 by
W. Lang. An integral model X → Spec(R) of this group over the ring of integers
R = k[[t]] is a genus one fibration with the closed fiber of multiplicity p. The
important invariant of this fibration is the length l(T ) of the torsion part T of the
R-module H 1(X,OX). A torsor is tame (resp. wild) when T = 0 (resp. T �= 0).
An open problem which we have been unable to solve is to compute this invariant
in terms of the Russell equation of the model and compare it with the computation
of this invariant in terms of the infinitesimal neighborhoods of the multiple fiber
given by Raynaud in his unpublished work (see [7, 4.2]).
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In Section 6 we treat the case of global fields, we compute the Tate–
Shafarevich group H 1

et(C,U) and the obstruction group H 2
et(C,U) of the Néron

model U of UK over a complete smooth curve C with the field of rational func-
tions K . We also discuss here a mysterious relationship between the rank of the
elementary abelian group of global sections U(C) and the p-rank of some hyper-
elliptic curves in characteristic p > 2.

1. Commutative Unipotent Algebraic Groups over Nonperfect Fields

Throughout this paper F denotes a field of characteristic p > 0. In this section
we review some basic facts about commutative unipotent algebraic groups over
F with emphasis on the case when F is imperfect. There are several sources to
refer to, for example, [6, Appendix B], [15; 24; 34]. Recall that a linear algebraic
group U over a field F is called unipotent if it is isomorphic to a subgroup of
the algebraic group of upper triangular matrices over F with 1 at the diagonal.
We will be interested only in commutative unipotent algebraic groups. There is
a classification of commutative connected unipotent algebraic groups over a per-
fect field F [8, Chapter 5, §1]. No classification is known in the case when F is
imperfect.

Each commutative unipotent algebraic group over F is a pn-torsion group. It
admits a composition series with p-torsion quotients. A p-torsion group is iso-
morphic to a codimension one subgroup of a vector group G

r+1
a,F defined as the

zero locus of a p-polynomial

�(x1, . . . , xr+1) =
r+1∑
i=1

( ki∑
j=0

c
(i)
j x

pj

i

)
, c

(i)
ki

�= 0, (1.1)

(see [6, Proposition B1.1.13]). The polynomial �pp := ∑r+1
i=1 c

(i)
ki

x
pki

i is called the

principal part of �. We assume that at least one of the coefficients c
(1)
0 , . . . , cr+1

0
is not zero. If this condition is satisfied, then we say that � is a separable p-
polynomial. This condition guarantees that the closed subscheme V (�) of Ar+1

F

is smooth, and hence U is a smooth affine group scheme.
If, for example, c

(i)
0 �= 0, then the restriction to U = V (�) of the projection

G
r+1
a,F to G

r
a,F given by (x1, . . . , xr+1) → (x1, . . . , xi−1, xi+1, . . . , xr+1) is an

étale isogeny of degree pki .

Proposition 1.1. Let G be a connected subgroup of Gr+1
a,F , r ≥ 1, given by a

separable p-polynomial �. There exists a radical extension F ′ of F such that
GF ′ ∼= G

r
a,F ′ ,

Proof. Without loss of generality, we may assume that c
(1)
0 = 1. Replacing x1

with x1 + c
(2)
0 x2 + · · · + c

(r+1)
0 xr+1, we may write � = x1 + �1, where �1 is a

p-polynomial with no monomials of degree 1. Adding to F all pj -roots of the
coefficients c

(i)
j of �1, we obtain a finite purely inseparable extension F ′ of F
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such that � = x1 + �2(x1, . . . , xr+1)
ps

, where �2 is a separable p-polynomial
over F ′. Let G → Ga,F ′ be a homomorphism of algebraic groups over F ′ given by
(x1, . . . , xr+1) → �2(x1, . . . , xr+1). Since �2 is separable, the homomorphism
is surjective. Its kernel is isomorphic to V (�2(0, x2, . . . , xr+1)) ⊂ G

r
a,F ′ . If r =

1, then it is an étale cover of Ga and hence is isomorphic to Ga,F ′ . If r > 1,
then we apply induction on r to obtain that G is an extension of Gr−1

a and Ga

(after replacing F ′ with some finite radical extension). Since G is a connected
p-torsion algebraic group, it must be isomorphic to a vector group G

r
a (see [6,

Lemma B1.10]). �

We say that G is split over an extension F ′ if GF ′ ∼= Ga,F ′ . Such F ′ is called a
splitting extension.

It follows that any smooth connected unipotent p-torsion algebraic group is a
purely inseparable form of Gr

a . There are no nontrivial separable forms [15, § 2].
Note that for r > 1 this fact does not follow from the usual Galois cohomology
argument because Aut(Gr

a) is strictly larger than GLF (r).
It is well known that over a perfect field F every connected commutative

unipotent group is isomorphic, as an F -scheme, to affine space A
n
F . In particular,

it admits a nonconstant morphism of algebraic varieties A1
F → U.

Definition 1.2. A smooth connected unipotent F -group U over F is called F -
wound if every F -morphism of F -schemes A1

F → U is constant.

It is known that a smooth unipotent group is F -wound if and only if it does not
contain closed subgroups isomorphic to Ga,F [15, Theorem 4.3.1], [6, Corol-
lary B.2.6].

For example, any nontrivial inseparable form of Ga,F is F -wound.
We refer for the proof of the following lemma to [6, Lemma B.1.7].

Lemma 1.3. The group U given by the zero scheme of a p-polynomial � in G
r+1
a,F

is an F -wound group if the principal part �pp of � has no zeros in F r+1 \ {0}.
Remark 1.4. For any separable extension F ′/F , the group UF ′ is an F ′-wound
group. However, it may be still F ′-wound after an inseparable extension F ′/F .
For example, if U is given by equation u2 + v + av2 + bv4 = 0, a1/2 /∈ F , then it
is F -wound and F ′-wound under extension F ′ = F(b1/4). Under this extension
the group is isomorphic to a wound group given by equation y2 + v + av2 = 0.

Another remark is that the converse of Lemma 1.3 is wrong. For example,
applying an automorphism (x, y) �→ (x + xp, y) to an F -wound group yp + x +
axp = 0, we obtain that the principal part has zero in F 2 \ {0}.
The following theorem is Corollary B.2.5 from [6].

Theorem 1.5. Every smooth connected unipotent p-torsion commutative alge-
braic group over F is a direct product of U = V × U′, where V ∼= G

s
a,F and U′ is

a smooth connected F -wound unipotent group.
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We know that G = G
r
a,F admits the projective space P

r
F as a G-equivariant reg-

ular projective compactification G of G. It is minimal in the sense that G acts
trivially on the complement G \ G.

Definition 1.6. Let G be a connected commutative algebraic group over F .
A minimal compactification of G is a projective F -scheme G such that G admits
a G-equivariant closed embedding in G and G acts trivially on the complement
G \ G.

The following theorem can be found in [5, 10.2, Proposition 11].

Theorem 1.7. Every smooth connected commutative unipotent p-torsion alge-
braic group U over F admits a minimal compactification G ↪→ G. The group is
F -wound if and only if the complement U \ U does not have a rational point over
F .

Proof. By Theorem 1.5, we may assume that U is F -wound. We know that U is
isomorphic to the zero scheme V (�) of a separable p-polynomial in G

r+1
a,F . Let

� be as in equation (1.1) with

k1 ≥ · · · ≥ kr+1

and

� =
r+1∑
i=1

( ki∑
j=0

c
(j)
i t

pki−j

0 t
pj

i

)
(1.2)

be a weighted homogenization of �. We view � = 0 as a hypersurface X = U of
degree pr in the weighted projective space

P(q0, q1, . . . , qr+1) = P(1,1,pk1−k2,pk1−k3 , . . . , pk1−kr+1).

We call such a compactification a weighted homogeneous compactification.
It is immediate to see that the complement U \ U is equal to V (�pp) in the

hyperplane V (t0). The group U acts on U by translations

(a1, . . . , ar+1) : (t0, t1, . . . , tr+1) �→ (t0, t1 + a1t0, . . . , tr+1 + ar+1tr+1).

The action is identical on the complement, and also, by Lemma 1.3, the comple-
ment has no rational points over F if and only if U is an F -wound group.

Note that X = U is not smooth. The singular locus of X⊗F F is the hyperplane
section V (t0). �

Proposition 1.8. The weighted homogenous compactification X from above is
normal over F if and only if the principal part �pp of � is reduced over F .

Proof. By Serre’s criterion of normality, we have to check that X is regular at
infinity. We know that the hyperplane t0 = 0 cuts out the hypersurface along the
hypersurface V (�pp).
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Let P be the polynomial obtained from � by dehomogenization with re-

spect to the variable t1, that is, dividing by t
pk1

1 and using the new vari-

ables z1 = t0/t1, z2 = t2/t
pk1−k2

1 , . . . , zr = tr+1/t
pk1−kr+1

1 . We can write P =
�̃pp(1, z2, . . . , zr ) + z

p

1 B(z1, . . . , zr ), where �̃pp is the dehomogenization with
respect to t1 of the weighted homogeneous polynomial �pp of degree pk1 in vari-
ables t1, . . . , tr+1. The quotient of the ring F [z1, . . . , zr ]/(P ) by the ideal (z1)

is isomorphic to F [z2, . . . , zr ]/(�̃pp). Thus the ideal (z1) is prime if and only if
�̃pp is irreducible over F or, equivalently, �pp is irreducible over F . So, �pp is
irreducible over F if and only if the boundary is defined by a principal prime ideal
and hence if and only if X is regular. �

Let X = U be given as in the proof of the previous theorem. A well-known for-
mula for the canonical sheaf of a hypersurface in a weighted projective space
gives

ωX
∼= OX

(
pk1 − 2 −

r+1∑
i=2

pk1−ki

)
. (1.3)

For example, if p = k1 = k2 = k3 = r = 2, then X is a quartic surface in P
3. If we

choose the equation in order X is normal and all its singular points are rational
double points, then its minimal resolution of singularities is a K3 surface.

2. Inseparable Forms of Ga

Specializing to the case r = 1, we see that any F -wound one-dimensional unipo-
tent group (automatically commutative) is a subgroup of G2

a,F given by an equa-
tion

upm + am−1u
pm−1 + · · · + a0u + bnv

pn + bn−1v
pn−1 + · · · + b0v = 0,

where n ≤ m and b
p−n

n /∈ F .
In fact, we have the following theorem of Russell [29].

Theorem 2.1. Each smooth connected one-dimensional unipotent group U is iso-
morphic to a subgroup of G2

a,F given by a p-polynomial of the form

�(u,v) = upn + v + a1v
p · · · + amvpm = 0 (2.1)

[29]. The smallest purely inseparable extension F ′/F that splits U is equal to

F ′ = F(a
p−1/n

1 , . . . , a
p−1/n

m ).

The number n is called the height of U.
The polynomial �(u,v) is obviously not unique. For example, if n ≤ m, then

we can also add to am any pnth power of an element from K without changing
the isomorphism class. Proposition 2.3 from loc.cit. gives a precise relationship
between two polynomials defining isomorphic groups.
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We refer to (2.1) as a Russell equation. The projections π1 : U → Ga,F ,

(u, v) �→ u, and π2 : U →Ga,F , (u, v) �→ v make the Cartesian square

U
π2

π1

Ga,F

τ

Ga,F
Fr

Ga,F

,

where F : Ga,F → Ga,F is the Frobenius homomorphism and τ is given by the
p-polynomial v + vp + · · · + amvpm

.

• In this section U always denotes a smooth connected F -wound unipotent one-
dimensional algebraic group over F .

Proposition 2.2. Any compactification X of U is unibranched.

Proof. It is rather obvious. Let F ′ be a splitting field of U, then XF ′ is a compact-
ification of Ga,F ′ . Its normalization X̃ is isomorphic to P

1
F ′ and has one point as

the complement. Thus X̃ and XF ′ are homeomorphic, and since F ′/F is purely
inseparable, XF ′ is homeomorphic to X and has only one point at infinity. �

Proposition 2.3. A regular compactification X of U is a minimal compactifica-
tion and the boundary consists of one point.

Proof. This immediately follows from the fact that the action of U on itself ex-
tends to an action of U on X that acts trivially on the boundary [19, Lemma 2.14].
Let F ′/F be a purely inseparable splitting extension of U. Then XF ′ is a compact-
ification of Ga,F ′ and its normalization is a regular compactification of Ga,F ′ . It
must be isomorphic to P

1
F ′ with the boundary consisting of one point. Thus XF ′

has one unibranched singular point and P
1
F ′ is homeomorphic to X′. Since F ′/F

is purely inseparable, XF ′ is homeomorphic to X. Thus the boundary of X con-
sists of one point. �

Although a regular compactification of U is unique, there are many nonregular
compactification.

Specializing equation (1.2) to the case of a one-dimensional group, we get a
compactification of U to be a curve of degree pmax{m,n} in the weighted homoge-
neous plane P(1,1,pmax{m,n}−min{m,n}) given by equation

t
pn

2 + t
pm

0 t1 + · · · + am−1t
p

0 t
pm−1

1 + amt
pm

1 = 0 (2.2)

if n ≤ m and

t
pn

2 + t
pm−1
0 t1 + · · · + am−1t

pm−pm−1

0 t
pm−1

1 + amt
pm

1 = 0 (2.3)

if m ≤ n.
It contains U as the complement of the hyperplane at infinity V (t0).
Specializing formula (1.3), we obtain

ωX
∼= OX(−2 − pmax{m,n}−min{m,n} + pmax{m,n})
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and

pa(X) = 1

2
(pmin{m,n} − 1)(pmax{m,n} − 2) (2.4)

(see also [1, Theorem 1.25]).
The curve has a unique unibranched nonsmooth point with coordinates

(x0, y0,0) ∈ X(F), where y
pn

0 + amx
pm

0 = 0. It is regular if and only if upn +
amvpm

is reduced over F , equivalently, am is not a pth-power in F . The residue
field of the boundary point is F(a

1/pn

m ). It is a subextension of the splitting field
of U.

Let q : X̃ → X be the normalization of X over F . Recall that the annihilator
ideal I of q∗OX̃

/OX can be considered as an ideal sheaf on X̃. The closed sub-
scheme c of X̃ defined by this ideal is called the conductor of the normalization
(the same name applies to the closed subscheme of X defined by the ideal I).
A curve X is unibranched if the support of c over each singular point consists of
one point. It is semi-normal if c is reduced (e.g. has only ordinary double points
as its singularities).

It is easy to see that a semi-normal unibranched curve over an algebraically
closed field is regular.

Let X be a regular compactification of U and P∞ be its boundary point. One
can construct a semi-normal unibranched compactification X′ by “pinching” the
boundary point. This means that X is a normalization of X′ and the conductor
is equal to P∞ (see [10]). The residue field of the boundary point of X′ is an
extension of F that is contained in the splitting extension of U. Conversely, each
such extension can be realized as the residue field of the boundary point of some
semi-normal compactification of U [19].

Definition 2.4. U is said to be of arithmetic genus g if it admits a minimal
regular compactification of arithmetic genus g. We say that U is quasi-rational
(resp. quasi-elliptic) if its arithmetic genus is equal to 0 (resp. 1).

Since a regular model is unique, up to isomorphism, the arithmetic genus is a
birational invariant of a one-dimensional F -wound unipotent group.

The genus formula (2.4) suggests that there must be a bound on p for a fixed
g. In fact, it is known that the arithmetical genus of a regular curve can drop under
an inseparable extension of the ground field only if

p ≤ 2g + 1

[33] (see also a nice proof in [31, Lemma 9]). For example, genus 1 unipotent
group may exist only if p = 2,3.

The following Proposition was first proven by Rosenlicht [28].

Proposition 2.5. A F -wound one-dimensional unipotent group is quasi-rational
if and only if it is isomorphic to a subgroup of G2

a,F given by equation

u2 + v + av2 = 0, (2.5)
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where a is not a square in F . In particular, a quasi-rational F -wound unipotent
group exists only if p = 2.

Proof. Any regular curve of genus 0 over F that has a rational point in F is iso-
morphic to P

1
F . We know that the action of U on itself extends to an action on P

1

fixing the point P∞ = P
1 \ U. We assume that the image of 0 ∈ U has homoge-

nous coordinates (t0 : t1) equal to (0 : 1). Thus there is a nontrivial transformation
T : (t0 : t1) → (αt1 + βt0 : γ t1 + δt0) that fixes P∞. But the residue field of any
fixed point of T is of degree ≤ 2 over F . Since U is F -wound, P∞ is not a rational
point (in this case the complement is A1

F ). Thus U is the complement of a point of
degree 2. Since it is inseparable, p = 2. The linear system |P∞| maps P1

F isomor-
phically to a conic in P

2
F , and there exists a line defined over F that intersects the

conic at one point equal to the image of P∞. We choose projective coordinates
(t0 : t1 : t2) in the plane such that the equation of the line is t0 = 0 and the image
of P∞ is the point (0 : 0 : 1). It is easy to see that the equation of the conic can be
reduced to the form t2

1 + t0t2 + at2
2 = 0. In affine coordinates u = t1/t0, v = t2/t0,

we obtain the asserted equation of U. �

We can also find an explicit formula for the group law on a quasi-rational unipo-
tent group. Let (u, v) = (s/(1+as2), s2/(1+as2)) be a rational parameterization
of U. Then the group law is given in terms of the parameter s by the formula

s1 ⊕ s2 = s1 + s2

1 + as1s2
. (2.6)

The group is isomorphic to Ga only if a is a square in F .
Let us now find equations of quasi-elliptic curves. The following proposition

is due to Queen [25].

Proposition 2.6. A unipotent group is quasi-elliptic if and only if its Russell
equation is one of the following:

(1) p = 2
(a) u2 + v + a1v

2 + a2v
4 = 0, a

1/2
2 /∈ F, [F(a

1/2
1 , a

1/2
2 ) : F ] = 2;

(b) u4 + v + av2 = 0, [F(a1/2) : F ] = 2;
(c) u4 + v + av2 + b2v4 = 0, [F(a1/2, b1/2) : F ] = 4.

(2) p = 3
u3 + v + av3 = 0, [F(a1/3) : F ] = 3.

Proof. All these equations are Russell equations, so we can use the weighted ho-
mogeneous compactification to check the genus. The genus formula gives that
pa(X) is indeed equal to 1 except in case 1(c), where it is equal to 3. Since
am is not a pth power in case pa(X) = 1, the compactification is regular, hence
the genus is 1. In case 1(c), am is a pth power, and the compactification is not
regular. We use its equation from (2.2) with n = m = 4. In affine coordinates
x = t0/t2.y = t1/t2, the equation is y4 + x3 + a1x

2 + c2 = 0. Let t = (y2 + c)/x.
Then t2 = x+a1 shows that t belongs to the integral closure of the coordinate ring
of the affine curve in its field of fractions. Substituting x = t2 +a1 in the equation,
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we obtain equation y2 + t3 + a1t + c = 0. This shows that the normalization of X

is a regular plane cubic curve of arithmetic genus 1 with equation

t0t
2
2 + t3

1 + at1t
2
0 + ct3

0 = 0.

It contains U as an open subset D(t2
1 + a1). The residue field of the boundary

is F(a
1/2
1 , c1/2). If a is a square, the change u �→ u + av + bv2 transforms the

equation to u2 + v = 0, so the genus is zero. If b1/2 ∈ F(a1/2), then b = aα2 +β2

for some α,β ∈ F . Replacing y with y + β , we may assume that β = 0. Then
setting v′ = a/(x2 + a),u′ = (x + α2)/(y + αx), we obtain an equation v′2 +
v′ + au′4 which is reduced to case 1(b) after multiplying it by a−1 and replacing
v′ with a−1v′.

We refer to [25] for proving that starting from a Weierstrass equation t2
2 t0 +

t3
1 + at2

0 t2
1 + bt3

0 = 0 of a regular genus one curve, if p = 2, one can reduce it
to case 1(a) and a is a square, to case 1(b) if a is not square but [F(a1/2, b1/2) :
F ] = 2, and to case 1(c) if [F(a1/2, b1/2) : F ] = 4. If p = 3, then a = 0 and, using
affine coordinates u = t0/t2, v = t1/t2, we obtain case 2. �

Remark 2.7. The notion of genus is not conserved under inseparable extensions.
In case 1 (c) from the previous proposition, the genus of U is equal to one. How-
ever, after we adjoin a

1/2
2 , the group becomes of genus 0.

Let X be a regular proper geometrically reduced and geometrically irreducible
curve of genus g > 0 over a field F . The (generalized) Jacobian Jac(X) is the
connected component of the identity Pic◦

X/F of the Picard scheme PicX/F of X.
It is a connected commutative algebraic group of dimension g. It is an abelian
variety if and only if X is smooth. If X is not smooth, then Jac(X) contains neither
Ga,F nor Gm,F [5, 9.2, Proposition 4]. If XF is a unibranched rational curve, then
Jac(X) is an F -wound unipotent group [1, 4.1]. If the geometric genus of XF is
positive, then it could be a pseudo-abelian variety [35, Example 3.1].

In particular, if X = U is a regular compactification of an F -wound unipotent
group U of genus g, then Jac(X) is an F -wound unipotent group of dimension g

that contains U [1].
The degree homomorphism deg : PicX/F → (Z)F of group schemes over F

is surjective because X has a rational point. The restriction homomorphism r :
PicX/F → PicU/F is also surjective because X is regular. The kernel of r is an
infinite cyclic group generated by the invertible sheaf OX(P∞). Its image under
the homomorphism deg is a cyclic subgroup of (Z)F generated by pk , where
pk = deg(P∞) equals the minimal degree of the splitting extension of U. This
leads to an exact sequence

0 → Pic0
X/F → PicU/F → (Z/pk

Z)F → 0

of algebraic groups [15, Theorem 6.10.1].
Let n′ be the smallest positive integer such that U

F−pn′ is isomorphic to Ga or
a unipotent group of genus 0. We call it the pre-height of U. Obviously, n′ ≤ n.

The following theorem is proved in [1, Theorem 4.4].
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Theorem 2.8. Jac(X) = Pic0(X) is a pn′
-torsion F -wound unipotent group,

where n is the pre-height of U.

Note that the theorem agrees with our classification of quasi-elliptic unipotent
groups. Indeed, in this case the pre-height n′ is always equal to 1.

Recall from [6, Definition B.3.1] that the cckp-kernel of a smooth connected
unipotent group over F is its maximal smooth connected p-torsion central sub-
group. We do not know whether the cckp-kernel of Jac(X) coincides with U.

3. Integral Models over a Dedekind Scheme

From now on, C will denote a Dedekind scheme over an algebraically closed
field k of characteristic p > 0 obtained by localization, henselization, or comple-
tion from a complete smooth curve C over k. Let K denote the field of rational
functions of C, that is, the residue field of its generic point. We say that C is local
if C is the spectrum of a local ring R.

Definition 3.1. Let GK be a smooth connected algebraic group over K . An
integral C-model of GK is a smooth flat group scheme C-scheme G with general
fiber isomorphic to GK . It is called a minimal integral model if, for any integral
model G′ of GK , any morphism G′

K → GK extends to a morphism of group
schemes G′ → G.

Proposition 3.2. An integral C-model G of a smooth affine commutative alge-
braic group GK is a commutative affine group scheme over C.

Proof. To prove the assertions, we may assume that C = Spec(R), where R is
a discrete valuation ring. The affine property is proven in [2, Proposition 2.3.1].
The commutativity is proven in [36, Theorem 1.2]. �

Example 3.3. Let UK be a quasi-elliptic unipotent group over K and UK be
its minimal regular compactification of arithmetic genus one. It follows from the
theory of relative minimal models of two-dimensional schemes that there exists
a smooth projective flat scheme f : J → C over C such that its generic fiber JK

is isomorphic to UK and any birational morphism to any such C-scheme is an
isomorphism. The closure of the cusp P∞ of UK is a regular closed subscheme C

of J such that the restriction of f to C is an inseparable finite morphism of degree
p = 2,3.

Let
J � = {x ∈ J : f is smooth at x}.

In particular, UK = J
�
K and C ⊂ J \J �. It follows from [5, 1.5, Proposition 1] that

J � → C is the Néron model of UK .

Example 3.4. Let U be an F -wound unipotent group over F given by a Russell
equation (2.1). Assume that F is the field K of fractions of a discrete valuation
ring R with local parameter π . Then, replacing u with uπps

and v with vπpsn
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with sufficiently large s, we may assume that ai ∈ R. This gives an integral model
of U.

It follows from the previous example that an integral model is not unique. As-
sume that C is local, and let GK be any affine algebraic group over K and
G → Spec(R) be its integral model over C = Spec(R). For any proper subgroup
H of the closed fiber Gt of G defined by an ideal I in the coordinate ring R[G]
of G, we consider the blow-up GH of H defined to be the spectrum of the sub-
algebra R[m−1I ] of K[G] = R[G] ⊗R K . It is an integral model of G and any
integral model of GK that is mapped to G with the image of the closed fiber equal
to H . Any integral model of G is obtained as the composition of the blow-ups and
their inverses [37].

A minimal model of an abelian variety is its Néron model.

Definition 3.5. Let GK be a smooth group scheme of finite type over K .
A Néron model of GK is a C-model G of GK which is smooth and of finite
type satisfying the following universality property (the Néronian property):

For each smooth C-scheme Y and each K-morphism u :: YK → GK , there is
a unique C-morphism ũ : Y → G extending U.

It follows from [5, 1.2, Criterion 9] that it is enough to check the weak Néronian
property: for each point c ∈ C and an étale OC,c-algebra R′ with field of fractions
K ′, the canonical map G(R′) → GK(K ′) is surjective.

Proposition 3.6. Let S be an excellent Dedekind scheme and GK be a smooth
commutative algebraic group over the field K of rational functions of S. Assume
that GK admits a regular compactification over K and does not contain nontrivial
subgroups unirational over K . Then GK admits a Néron model over S. If S is a
regular algebraic curve over a field F , then the latter condition is necessary for
the existence of a Néron model of GK .

This is [5, 10.3, Theorem 5]. It follows that any K-wound unipotent group that
admits a regular compactification over K admits a Néron model over S. It is
conjectured that the condition for the existence of a regular compactification can
be dropped.

Corollary 3.7. Let XK be a regular geometrically reduced and irreducible
proper curve of arithmetic genus g > 0 over K . Then the Néron model over C

of its Jacobian Jac(XK) exists.

In fact, in an earlier influential paper [26] Raynaud proves that the Néron model of
Jac(XK) represents the maximal separated quotient of the relative Picard functor
PX/S by an abelian subsheaf E with fibers at closed points isomorphic to (Zrt )t ,
where rt is the number of irreducible components of Xt (see also [5, 9.5, Theo-
rem 4]).
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Theorem 3.8. The groups scheme U = J � from Example 3.3 is a Néron model of
the quasi-elliptic unipotent group UK .

Proof. It suffices to assume that C = Spec(R) is local. Each connected compo-
nent of an étale scheme YK over K is isomorphic to Spec(L), where L is a separa-
ble field extension of K . Since the residue field k of the unique closed point of C

is algebraically closed, the normalization R′ of R in L has the same residue field.
Thus we can apply [5, 7.2, Theorem 1] and assume that R is henselian. Then any
separable irreducible K-point is isomorphic to Spec(K), that is, defines a rational
K-point of UK . Since J is projective over R, it defines a section of Spec(R) → J .
The usual properties of the intersection theory of Cartier divisors show that it in-
tersects the closed fiber at a smooth point. Hence its defines a section of J �. This
proves that J � → C is a Néron model of UK . �

Remark 3.9. The group GK = Ga,K admits a trivial integral model Ga,C . How-
ever, it is not a Néron model. In fact, assume that C = Spec(R) is local with a
local parameter u, the zero point of GK = Spec(K[T ]) defined by T = 1/u has
schematic closure defined by the ideal (uT −1) and hence does not extend to a R-
point of Ga,R . By Theorem 2.1 from loc.cit., any model of Ga,K with connected
fibers is isomorphic to Ga,R .

The quasi-rational group UK does not admit a Néron model over a local C =
Spec(R). Any local integral model over R is given by u2 + v + av2 = 0, where
a belongs to the maximal ideal m of R [37, Theorem 2.1]. Any K-rational point
(u, v) = (s/(1 + as2), s2/(1 + as2)) �= (0,0) extends to an integral point (s0s1 :
s2

1 : s2
0 + as2

1) of the projectivization y2 + xz+ ax2 = 0. However, it has the point
(0 : 1 : 0) at infinity lying in the closed fiber. So, it does not extend to a section of
the open subset z �= 0 isomorphic to the integral model of UK .

Definition 3.10. A flat group scheme of finite type over a base scheme S

is called unipotent if its fibers are unipotent algebraic group schemes over the
residue fields of the points.

Let us recall the relationship between the relative Picard sheaf PX/C (in étale
topology) and the Néron model J of Jac(XK) (see [26] and [5, 9.5]).

Let P0
X/C be the connected component of identity of PX/C . It is a subsheaf

of PX/C which consists of elements whose restriction to all fibers belongs to
the identity component of the Picard scheme of the fiber. Although PX/C is not
representable in general, P0

X/C is representable by a separated scheme if X → C

has a section. In fact, it coincides in this case with the identity component J◦ of
the Néron scheme of Jac(XK). The Néron scheme J coincides with the maximal
separated quotient of the subsheaf P ′

X/C equal to the kernel of the total degree
homomorphism deg : PX/C → (Z)C .

Theorem 3.11. Let XK be a regular completion of a unipotent group of genus
g > 0 over K . Then the Néron model J of Jac(X) is a unipotent group scheme
over C.
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Proof. We may assume that C = Spec(R), where R is a complete discrete val-
uation ring. It suffices to prove that J◦ is a connected unipotent group. Since
Jac(XK)(K) �= ∅, the set X(C) is also nonempty, and hence by above J◦ repre-
sents P0

X/C . Since there is a section, the degree homomorphism deg is surjective.
We also have an exact sequence

0 → P0
X/C → P ′

X/C → (Zr−1)t → 0,

where r is the number of irreducible components of the closed fiber Xt and
(Zr−1)t is the skyscraper sheaf associated to the group Z

r−1. It follows that the
closed fiber J◦

t of J◦ is isomorphic to a subscheme of PicXt/k with quotient a free
abelian group.

Let rt : Pic(X) = PX/C(C) → Pic(Xt ) be the restriction homomorphism. It
is known that rt is surjective and its kernel is a group uniquely divisible by any
integer s prime to p [3, Proposition 2.1]. It follows that the s-torsion subgroup
sPic(Xt ) of Pic(Xt ) is isomorphic to the s-torsion subgroup sPic(X) of Pic(X).
Since sPic(Xt ) = sPic0

Xt/k
, it also coincides with sJ◦

t (where, as always, we iden-
tify a smooth algebraic group over an algebraically closed field k with its group
of k-points).

Let rK : Pic(X) → Pic(XK) be the restriction homomorphism to the generic
fiber. Its kernel is a free abelian group Z

r generated by irreducible components
of Xt . By Theorem 2.8, Pic(XK)0 = Jac(XK)(K) is a pn′

-torsion group. Let
Pic(X)0 = r−1

K (Pic(XK)0). It follows that sPic(X)0 = sPic(X) = sJ◦
t = {0}.

The only connected commutative algebraic group over an algebraically closed
field that has this property is a vector group. This proves that J◦ is a unipotent
group scheme over C. �

Let F be a quasi-coherent sheaf of OS -modules over a scheme S. The affine
S-scheme V(F) = Spec(Sym•F) has a structure of a commutative group affine
scheme over S. Its value on any S-scheme a : T → S is the group of global sec-
tions �(T ,a∗F∨), where F∨ is the dual sheaf of OS -modules. It is smooth if and
only if F is a locally free sheaf. In this case it is called a vector group scheme.
A homomorphism of vector group schemes V(E1) → V(E2) corresponds to ho-
momorphisms of locally free sheaves E2 → E1 or E∨

1 → E∨
2 . The closed embed-

dings correspond to surjective homomorphisms.
Let G be a commutative group scheme of finite type over a base S. Recall

that its identity component G◦ is the open group subscheme whose fibers are the
identity components of the fibers of G. We set

π0(G) = G/G◦

and call it the group of connected components. Its fiber over a closed point s ∈ S

is the group π0(Gs) of connected components of Gs .
We also recall the definition of the Lie algebra Lie(G) [8; 21]. For any

affine scheme scheme T = Spec(A), let Tε = Spec(A[ε]/(ε2)) with canonical
projection Tε → T defined by a �→ a and a canonical section T → Tε de-
fined by a + bε �→ a. For any group S-scheme G, let Lie(G) be the sheaf of
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abelian groups defined on the category of affine S-schemes by Lie(G)(A) =
Ker(G(Tε) → G(T )). If Spec(R) is affine and G = Spec(O[G]) is affine, then
we have Lie(G)(A) = DerR(O[G],A). The sheaf Lie(G) has a natural structure
of an OS -module defined by r · (a + bε) = a + rbε. We denote this OS -module
by Lie(G). If e : S → G is the zero section of G, then

Lie(G)∨ ∼= e∗�1
G/S. (3.1)

For example, for any locally free sheaf E of OS -modules, we have �1
V(E)/S

∼= a∗E ,

where a :V(E) → S is the natural projection, and hence e∗(�1
V(E)/S

) = E so that

Lie(V(E)) = E∨.

The formation G → Lie(G) is a covariant functor on the category of group
schemes over S. It is left exact.

Theorem 3.12. Let C be a local or global base, UK be a genus g > 0 unipotent
group over K , and U be its Néron model. Then U◦ is isomorphic to a closed sub-
group of a smooth group scheme V locally isomorphic to a vector group scheme
(not necessary a vector group scheme).

Proof. Localizing at a closed point t ∈ C, we get a unipotent group of genus
g over the field of fractions Kt of a discrete valuation ring R = OC,t . We use
Russell’s equation (2.1) for UKt . If π is a local parameter in R, then we re-
place (u, v) with (πps

u,πpsnv) for sufficiently large integer s, and canceling by
πpsn

, we may assume that all ai ∈ R. It follows from [37, Theorem 2.8] that
all smooth integral connected models of UKt over R are given by such an equa-
tion. In particular, the identity component U◦

R of the Néron model UR is given
by such an equation. By the Néronian property, it is a minimal integral model
over R. The equation allows one to embed U◦

R into the vector group scheme
G

2
a,R = V(O⊕2

R ).
Now assume that C is global. Let V = (Vi)i∈I be a finite open affine cover of

C such that the restriction U◦
i of U◦

C to each Vi ∈V is given by a Russell equation
with coefficients in OC(Vi)

�i(ui, vi) = u
pn

i + vi + a
(i)
1 v

p
i + · · · + a(i)

m v
pm

i = 0.

Since any derivation of O(Vi)[ui, vi]/(�i) is a derivation of O(Vi)[ui, vi] van-
ishing on vi , the O(Vi)-module Lie(Ui ) = Lie(U◦

i ) is generated by ∂
∂ui

.
For brevity of notation, let L be the invertible sheaf on C equal to Lie(UC).

Let (cij ) be the transition functions of L, so that ui = c−1
ij uj .

The transition functions for UC from (vi, ui) to (vj , uj ) must be p-
polynomials with coefficients in OC(Vi ∩ Vj ). Suppose n ≤ m. Then

vi = c
−pn

ij vj , (3.2)

ui = c−1
ij uj + c

−pn

ij α
(1)
ij vj + · · · + c

−pm

ij α
(m)
ij v

pm−n

j , (3.3)
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and

a
(i)
k = c

pn+k−pn

ij a
(j)
k − (α

(k)
ij )−pn

, (3.4)

where α
(k)
ij = 0 for k < n. If n > m, then α

(k)
ij are all zeros.

We can view (1, a
(i)
1 , . . . , a

(i)
m ) as a section of a vector bundle A of rank m + 1

given as an extension

0 → OC → A → L⊗pn−pn+1 ⊕ · · · ⊕L⊗pn−pm+n → 0 (3.5)

with transition functions inverse to the transition functions (3.4).
We will use that the étale cohomology of a vector group scheme V(E) is iso-

morphic to the abelian group of the Zariski cohomology of E∨ [22, Chapter III,
Proposition 3.7].

Let V be the group scheme locally isomorphic to G
2
a with transition functions

defined before. The group scheme V fits into an extension of commutative group
schemes

0 →V(L⊗−pn

) → V → V(L⊗−1) → 0 (3.6)

given by the projection (u, v) → u. It induces an exact cohomology se-
quence

0 → H 0(C,L⊗pn

) → V(C) → H 0(C,L)

→ H 1
et(C,L⊗pn

) → H 1
et(C,V) → H 1(C,L) → 0.

In the case n > m, exact sequence (3.6) splits and we get

Hi
et(C,V) ∼= Hi(C,L) ⊕ Hi(C,L⊗pn

).

The local embedding of U◦
i into G

2
a,Vi

glues together to obtain an exact se-
quence

0 → U◦ → V
μ→ V(L⊗−pn

) → 0. (3.7)
�

Remark 3.13. Note that V is a vector group only if m = n. In this case the tran-
sition matrices are (

c
pn

ij −αij c
p
ij

0 cij

)
.

The vector group scheme V is equal to V(E∨), where E fits in an extension

0 → L⊗pn → E → L → 0.

It always splits, that is, we may assume that αij = 0, if H 1(C,L⊗1−pn
) = 0. For

example, this happens if (1 − pn)deg(L) > 2g(C) − 2. If E splits, then we take
α

(k)
ij = 0, and hence A also splits.
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4. Global Integral Models of a Quasi-Rational Unipotent Group

Let UK be a quasi-rational unipotent group over the field of rational functions
K of a complete smooth algebraic curve C over an algebraically closed field k.
Its regular compactification is isomorphic to P

1
K . A regular relatively minimal

model of P1
K over C is a minimal ruled surface f : X → C, where X = P(E) is a

projective line bundle. This shows that we can try to construct an integral affine
connected model U of UK over C as an open subset of X whose complement is
equal to the closure C of the point P∞ on the generic fiber. The intersection of C
with each closed fiber consists of one point taken with multiplicity 2, that is, C is
an inseparable bisection of X. In fact, starting from an inseparable point P∞ of
degree 2, we take any minimal ruled surface f : X → C, throw away the closure
of P∞, and the complement will be an integral affine connected model of UK . We
call such a model an affine minimal ruled surface.

Let us remind some general facts about minimal ruled surfaces P(E) [14, Chap-
ter V, §2]. For any invertible sheaf N , we have P(E) ∼= P(E ⊗ N ). One can nor-
malize E by tensoring it with an appropriate N such that H 0(C,E) �= {0} but, for
any invertible sheaf N of negative degree on C, one has H 0(C,E ⊗ N ) = {0}.
Assume that E is normalized. The inclusion OC → E defined by a section is a
saturated subsheaf of E , that is, the quotient sheaf has no torsion, and defines an
extension of locally free sheaves

0 →OC → E → L0 → 0. (4.1)

Any surjection α : E → N onto an invertible sheaf N defines a section sα :
C ∼= Proj(Sym•N ) → X = Proj(Sym•E), and conversely any section arises in
this way. The sheaf s∗

α(Ker(α) ⊗ N⊗−1) is isomorphic to the conormal sheaf
OE(−E), where E = sα(C) ⊂ X.

Let s0 : C → P(E) be the section corresponding to the surjection E → L0. We
will often identify it with its image E0 in X. It is called the exceptional section.
We have

OE0(E0) ∼= L0. (4.2)

In particular,
e := −E2

0 = deg(L0) = deg(E).

Lemma 4.1. For any section of s : C → E ⊂ P(E),

E2 ≥ E2
0 .

If E �= E0, then the equality happens only in the case where the projective bundle
is trivial, that is, E ∼= OC ⊕OC .

Proof. Let α : E → N be a surjection corresponding to E. Then either the re-
striction of α to the subsheaf OC of E is the zero map, or it is an injection. In the
former case, α factors through an isomorphism L0 → N and hence defines the
same section. In the latter case, degN ≥ 0 and the kernel of α is mapped isomor-
phically onto L0. Hence exact sequence (4.1) splits and E ∼= OC ⊕ L0. We also
have degE = degL0 + degN gives degN = 0 and, since it has a section, we get
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N ∼= OC . The conormal bundle of the section E defined by N is isomorphic to
L0, hence E2 = −E2

0 . Since E2 ≥ E2
0 , we get E2

0 = E2 = 0, and hence L0 ∼= OC .
This proves that E ∼= O⊕2

C . �

Proposition 4.2. Let U be a quasi-rational unipotent group and P∞ ∈ P 1
K be its

boundary point. There exists a unique (up to isomorphism) integral affine minimal
ruled model f : P(E) → C such that the zero section is the exceptional section,
the closure of P∞ is disjoint from the zero section, and the restriction of f to it is
isomorphic to the Frobenius cover C(2) → C.

Proof. Recall that an elementary transformation elmx with center at a closed point
x ∈ P(E) consists of blowing up the point x followed by blowing down the proper
transform of the fiber Xt where t = f (x). If x does not lie on the special section
O, the image of O has self-intersection equal to O2 + 1. The new projective line
bundle is isomorphic to P(Ker(φx)), where φx is the surjective map from E to the
sky-scrapper sheaf (k)t defined by the point x. The normalized locally free sheaf
E ′ is an extension

0 → OC → E ′ → L0 → 0

with degE ′ = degE + 1. Suppose that C is not smooth. After a sequence of el-
ementary transformations, we arrive at a new minimal model f ′ : X′ → C of U
with smooth closure C′ of P∞.

Note that, if we localize X at a closed point t ∈ C, in other words, replace C

with a local base R = Spec(OC,t ), we obtain an integral model of UQ(R) isomor-
phic to the affine surface u2 + v + av2 = 0 and the localized X is its projective
closure y2 + zx + ax2 = 0 in P

1
R . The localized bisection Cc is the closed sub-

scheme V (z). It is smooth if and only if as generates the maximal ideal of R. So,
in the global equation of U discussed in the previous section, the differentials dai

of local coefficients ai glue together to a differential

da ∈ H 0(C,L⊗−2 ⊗ �1
C/k)

of a section of L⊗−2 which does not vanish anywhere. In particular, we obtain

L⊗2 = Lie(U)⊗2 ∼= ωC/k. (4.3)

We know that the zero section O of U is disjoint from the curve at infinity C.
Suppose that we have another section E with this property. Since their restrictions
to the generic fiber are linearly equivalent, we have

O ∼ E0 + f ∗(D) (4.4)

for some divisor class D on C of some degree m. In particular, O2 = E2
0 + 2m

shows that m ≥ 0. Intersecting both sides of (4.4) with C, we obtain 0 = C · E0 +
2m, hence m = 0 and C · E0 = 0. Thus E0 is also disjoint from C. On the other
hand, E0 and O are two sections of the group scheme U, hence they must differ
by a translation automorphism. Changing the zero section, we may assume that

E0 = O, L = L0.
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Applying Lemma 4.1, we obtain

U(C) = {0}, (4.5)

unless the fibration X ∼= C × P
1 → C is trivial. However, in this case we have a

base-point free pencil |O| of sections linearly equivalent to O, so they all intersect
the curve C, a contradiction.

We can also find the divisor class of the curve C. Since the restrictions of C
and 2O to the generic fiber are linearly equivalent, we have

C ∼ 2O + f ∗(D)

for some divisor D on C. Since C and O are disjoint, restricting to O, we obtain

OC(D) ∼= L⊗−2 ∼= ω⊗−1
C .

Thus
C ∼ 2O − f ∗(KC). (4.6)

Comparing it with the formula for the canonical class [14, Chapter V, §2,
Lemma 2.10]

ωX
∼= OX(−2O) ⊗ f ∗(ωC ⊗L), (4.7)

we find
OX(C) ∼= ω−1

X ⊗ f ∗(L). (4.8)

It remains to prove the uniqueness statement. Recall that the map C is isomor-
phic to the Frobenius map. We have an exact sequence

0 → OC → f∗OC →N → 0

for some invertible sheaf N . By applying the direct image functor to an exact
sequence

0 →OX(−C) →OX → OC → 0,

using (4.8) and the relative duality f∗ωX/C
∼= (R1f∗OX)∨ = 0 and R1f∗ωX/C

∼=
(f∗OX)∨ = OX , we obtain that

N ∼= ωC/k ⊗L⊗−1 ∼= L⊗−1.

This shows that the isomorphism class of the invertible sheaf L is uniquely de-
termined by C. In fact it is isomorphic to the sheaf B1

C/k
equal to the image of

d : F∗OC → F∗ωC/k. Thus L and hence P(E) is uniquely determined by the base
curve C. �

Example 4.3. Assume C = P1. A minimal ruled surface over P1 is isomorphic to
one of the surfaces Fn = P(OP1 ⊕OP1(−n)), n ≥ 0. We have Lie(U) = OP1(−n)

and deg Lie(U) = −n. It follows from (4.6) that C ∈ |2nf + 2e|, where f is the
divisor class of a fiber and e is the divisor class of the special section O with
self-intersection −n. The canonical class of Fn is equal to −(n + 2)f − 2e. The
adjunction formula shows that degωC = 2n − 4 that agrees with the formula for
the canonical class of C from above. Since C is smooth, it is of genus g(C) = 0.
The cover C → C is just the Frobenius morphism. The canonical class formula
shows that n = 1 and X = F1.
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The surface F1 is obtained by blowing up one point p0 in the projective plane.
The projection f : P(E) → C is given by the pencil of lines through the point
p0. Choose projective coordinates (x0 : x1 : x2) such that p0 = (1 : 0 : 0) and
consider a conic Q with equation x1x2 + x2

0 = 0. Then any line from the pencil
is tangent to the conic, hence the pre-image of Q in F1 defines an inseparable
bisection and its complement is the Néron model of a quasi-rational curve UK .
Let t be the parameter of the pencil of lines so that x2 + tx1 = 0. Then the generic
fiber of the pencil is isomorphic to Proj(k(t)[t0, t1]) and the complement of its
intersection with the conic is equal to the open subset D+(tx2

1 + x2
0). It is equal to

the affine spectrum of the homogeneous localization of the graded ring k(t)[t0, t1]
with respect to f = tx2

1 +x2
0 . The ring is generated by u = x0x1/f, v = x2

1/f,w =
x2

0/f with relations tv + w = 1 and vw + u2 = 0. This gives the equation u2 +
v + tv2 = 0 of UK that agrees with a general equation (2.5) of a quasi-rational
unipotent group.

Example 4.4. If g(C) = 1, then L ∼= OC or L⊗2 ∼= OC . In the former case, taking
cohomology in an exact sequence

0 → OC → F∗OC → L⊗−1 → 0,

we obtain that F : H 1(C,OC) → H 1(C,OC) is the zero map, hence C is super-
singular. The ruled surface is a well-known elliptic ruled surface defined by the
nonsplit exact sequence

0 → OC → E → OC → 0

with the extension class 1 ∈ H 1(C,OC) ∼= k. In the latter case, we have

E ∼= OC ⊕L.

and C is an ordinary elliptic curve. If g(C) > 1, degL = g − 1 ≥ 0 and tensoring
by L⊗−1, we see that the exact sequence cannot split (otherwise E is not normal-
ized).

5. Torsors of Unipotent Groups of Genus g: Local Case

Recall that isomorphism classes of separable torsors (=principal homogeneous
spaces) of any algebraic group G over a field F form a group isomorphic to the
pro-finite Galois cohomology group H 1(Gal(F sep/F ),G(F sep)), where F sep is
the separable closure of F . If we view G as an abelian sheaf that it represents in
étale topology, then

H 1(Gal(F sep/F ),G(F sep)) = H 1
et(F,G).

In this way we can consider torsors of any group scheme over K where we re-
place the étale topology with the fpqc-topology (flat topology for short). If G is a
smooth group scheme, then the flat cohomology coincides with étale cohomology
[22, Chapter III, Theorem 3.9].

We have already mentioned in Section 2 that the unipotent group G
r
a,F does

not have nontrivial torsors. However, an F -wound unipotent group may have.
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Let UK be given by a separable p-polynomial �(x1, . . . , xr+1). We have an
exact sequence of abelian sheaves in étale topology

0 → UK → G
r+1
a,F

�→ Ga,F → 0. (5.1)

Passing to cohomology, we get an isomorphism of abelian groups

H 1(F,UK) ∼= Ga(F )/�(Ga(F )r+1) = F/�(F⊕r+1).

Explicitly, if UK is given by a p-polynomial �, an equation of a torsor is

�(x1, . . . , xr+1) + f = 0,

where f ∈ F . The torsor is trivial (i.e. has a rational point in F ) if and only if
f ∈ �(F⊕r+1).

In this section we will study a special case when UK is a genus g unipotent
group and F = K is strictly local, that is, K = k((t)) is the quotient ring of R =
k[[t]] and k is algebraically closed. We denote by ν : K \ {0} → Z the discrete
valuation of K .

We start with the following.

Proposition 5.1. Let U be a quasi-rational unipotent group over a strictly local
field K . Then its any torsor is trivial.

Proof. Of course, this immediately follows from the fact that the field K is a C1-
field [30]; however, we give a proof that serves as a warm-up for our study of
cases g > 0. We choose a minimal model of UK defined by the equation

u2 + v + av2 = 0, a ∈ R \ R2.

Replacing u with t su + c and v with t2s , we may assume that a = t .
Let f ∈ K represent a nonzero element from K/�(K ⊕ K). By taking

�((x,0)), we may assume that f is not a square. By Hensel’s lemma, the equa-
tion h(v) = v + tv2 = f can be solved for any f ∈ R. Thus f can be represented
by a negative Laurent polynomial f = ∑n

k=0 ckt
−2k−1. Since

h(ct−i ) = ct−i + c2t−2i ,

we see that any t−2k−1 belongs to Im(�). Thus there are no nontrivial torsors. �

If UK is a quasi-elliptic unipotent group over strictly local K of characteristic 3,
then a set of unique representatives of K/�(K ⊕ K) was found by W. Lang [17,
Theorem 2.1].

Proposition 5.2. Assume p = 3. Let X be a nontrivial torsor of a quasi-elliptic
unipotent group UK . Then X is isomorphic to an affine curve over K given by one
of the following equations:

u3 + v + tkv3 + t−kqn(t
−3),

where k = 1,2,4,5 and qn(T ) is a polynomial of some degree n.

The case p = 2 turns out to be more complicated [7, 4.8]. We have the following.
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Proposition 5.3. Assume p = 2. Let X be a nontrivial torsor of a quasi-elliptic
unipotent group UK . Then X is isomorphic to an affine curve over K given by one
of the following equations:

(1) u2 + v + tv4 + t−1qn(t
−4) = 0,

(2) u2 + v + t3v4 + t−3qn(t
−4) = 0,

(3) u2 + v + t5v4 + t−5qn(t
−4) = 0,

(4) u2 + v + t2s+1ε2v2 + tv4 + t−1qn(t
−4) = 0,

(5) u2 + v + t2s+1ε2v2 + t2k+1v4 + t−5qn(t
−4) = 0, k = 1,2,

(6) u4 + v + (ε4 + tε4
2 + t2ε4

3 + t3ε4
3)v

2 + t−1qn(t
−4) = 0,

(7) u4 + v + tv2 + t−2qn(t
−4) = 0,

(8) u4 + v + t2(ε4 + tε4
2 + t2ε4

3 + t3ε4
3)v

2 + t−3qn(t
−2),

(9) u4 + v + t3v2 + t−6qn(t
−4) = 0,

where qn(T ) is a polynomial of some degree n, and εn are some units.

Here the representatives are determined uniquely from the equation of UK only
in cases (1), (2), (3), (7), and (9).

Remark 5.4. Let Xt be the closed fiber of a relatively minimal model of a nontriv-
ial torsor over R. Considered as a Cartier divisor on regular scheme X, it is equal
to pXt for some divisor Xt contained in Xt . A fiber is called tame if f : X → C

is cohomologically flat [26] or, equivalently, the normal sheaf OXt
(Xt ) is an el-

ement of order p in Pic(Xt ). It is conjectured by W. Lang that Xt is tame if and
only n = 0. The number n is conjecturally related to the length of the torsion
subgroup of H 1(X,OX).

6. Torsors of Unipotent Groups of Genus g: Global Case

In this section we assume that C is a smooth complete curve over an algebraically
closed field of characteristic p > 0. Let K = k(C) be its field of rational functions.
Let UK be a genus g unipotent group over K considered as an abelian sheaf in
the étale topology of K .

Let us first get rid of the case g = 0. Let XK be a torsor of UK . Since XK and
UK become isomorphic after a separable extension of K , a regular compactifica-
tion XK is a genus 0 curve and hence isomorphic to a conic over K . By Tsen’s
theorem the global field K is a C1-field, hence every separable torsor is trivial
[30]. This also follows from the fact that Br(K) = {0}.

From now on we assume that g > 0. We denote by U its Néron model. We also
consider U as an abelian sheaf in the étale topology of C.

Let
ι : η = Spec(K) ↪→ C

be the inclusion morphism of the generic point η of C. The Leray spectral se-
quence for the morphism ι and the sheaf UK gives an exact sequence

0 → H 1
et(C, ι∗UK) → H 1(K,UK) → H 0(C,R1ι∗UK)

→ H 2(C, ι∗UK) → H 2(K,UK). (6.1)
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By the definition of Néron model, the sheaf ι∗UK is represented by the Néron
model U of UK . The fiber (R1ι∗U)(t) of R1ι∗U at a closed point t ∈ C is isomor-
phic to H 1(Kt ,UKt ). The homomorphism

loct : H 1(K,UK) → H 0(C,R1ι∗U) → (R1ι∗U)(t) = H 1(Kt ,UKt )

assigns to an isomorphism class [X] of a torsor X of UK the isomorphism class of
the torsor XKt of UKt . Since each torsor X splits over some separable extension
L of K , loct ([X]) = 0 for any point t which is not ramified in L/K . Let R̂t be the
formal completion of Rt and K̂t be its field of fractions. We have an isomorphism

H 1(Kt ,UKt )
∼= H 1(K̂t ,U

K̂t
)

[9], so we are in a situation from the previous section. Passing to cohomology in
exact sequence (5.1), we obtain H 2(K,U) = 0 [22]. So, we get an exact sequence

0 → H 1
et(C, ι∗U) → H 1(K,UK)

→
⊕
t∈C

H 1(K̂t ,U
K̂t

) → H 2
et(C, ι∗U) → 0. (6.2)

The group Ш(U,K) := H 1
et(C,U) is an analog of the Tate–Shafarevich group of

an abelian variety. The group H 2
et(C,U) is the group of obstructions to define a

global torsor in terms of local torsors.

Theorem 6.1. Let C be a complete curve over k, UK be a genus g unipotent
group over K , and XK be its regular compactification. Then Jac(XK)(K) is a
finite group killed by pn′

, where n′ is the pre-height of UK (see Section 3).

Proof. Let f : X → C be a regular relatively minimal model of XK . Here X is a
smooth projective surface over k. Its Picard variety Pic0

X/k is an abelian variety.
Since k is algebraically closed, we may identify any variety over k with its set of
k-points. Let Pic0(X) = Pic0

X/k(k). It is a subgroup of PicX/k(k) = Pic(X) and

the quotient NS(X) = Pic(X)/Pic0(X) is the Néron–Severi group of the surface
X. It known to be a finitely generated abelian group. The pull-back morphism

f ∗ : Jac(C) = Pic0
C/k → Pic0

X/k

is a homomorphism of abelian varieties. By the Poincaré reducibility theorem (see
[23], Chapter 4, §19), there exists an abelian variety A over k and an isogeny

A × Jac(C) → Pic0
X/k.

Since Jac(XK) is an affine algebraic group, the image of A under the restric-
tion morphism rK : Pic0

X/k → Pic0
XK/K = Jac(XK) is equal to zero. However, the

kernel of rη is generated by f ∗Jac(C) and the subgroup of divisor classes of irre-
ducible components of fibers of f . The latter group is finitely generated abelian
group, and hence A = 0. We have f ∗Jac(X) ⊂ Pic0(X), and hence Jac(XK)(K)

is a finite generated abelian group. On the other hand, by Theorem 2.8, Jac(XK)

is killed by pn′
. This proves the assertion. �
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Corollary 6.2. Let UK be a unipotent group of genus g > 0 over the field K of
rational function of an irreducible algebraic curve over an algebraically closed
field. Then U(K) is an elementary p-group.

Let f : X → C be a regular relatively minimal model of XK over C. By defini-
tion, it does not contain (−1)-curves in fibers. If g(C) > 0, then it also does not
contain other (−1)-curves because they cannot map surjectively onto C. This X

is a minimal smooth algebraic surface over k. If g = 1, then it is a quasi-elliptic
surface of Kodaira dimension ≤ 1. If g > 1, then it is a surface of general type.

Let C be the closure of the boundary point P∞ in XK . It is a purely inseparable
cover of C of degree pk , where pk is the minimal degree of the splitting field of
UK . Let

X� = {x ∈ X : f is smooth at x}.
The generic fiber X

�
K is equal to UK . Since X \ X� is closed, the closure C of P∞

is contained in the complement X \ X�.
Let X

�
0 be the open subset of X� obtained by throwing away the irreducible

components of fibers that do not intersect the zero section O. The restriction of
α to X

�
0 defines a quasi-finite birational morphism of smooth affine schemes α0 :

X
�
0 → U◦. Applying the Zariski main theorem, we infer that u0 is an isomorphism.

Thus we can consider U◦ as an open subscheme of X� whose complement consists
of irreducible components of fibers that do not intersect O.

We know that the Neron model J of Jac(XK) is a maximal separated quotient
of PX/C′ by a discrete subsheaf supported at the points t with reducible fiber Xt .
In particular its Lie algebra Lie(U) is isomorphic to the Lie algebra functor of
P ′

X/C that, in its turn, is isomorphic to R1f∗OX [21, Proposition 1.3]. The closed
embedding UK ↪→ Jac(XK) defines a morphism U → J, and hence an injective
homomorphism of the Lie algebras sheaves

Lie(U) ↪→ Lie(J) ∼= R1f∗OX. (6.3)

Proposition 6.3. Let f : X → C be a relatively minimal model of XK of genus
g > 0 over a smooth projective curve C over k. Suppose that the Picard scheme
of X is reduced. Then

H 0(C,Lie(U)) = {0}.
Proof. Since the generic fiber is geometrically irreducible, f∗OX

∼= OC . The
Leray spectral sequence for f : X → C and the sheaf OX gives an exact sequence

0 → H 1(C,OC) → H 1(X,OX)

→ H 0(C,R1f∗OX) → H 2(C,OC) = 0. (6.4)

The linear spaces H 1(C,OC) and H 1(X,OX) are identified with the Lie algebras
of the Picard schemes Pic0

C/k and Pic0
X/k. Although the former scheme is always

reduced, the latter one may not be reduced if pg(X) > 0. The map between these
spaces corresponds to the pull-back morphism of abelian varieties f ∗ : Pic0

C/k →
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Pic0
X/k. As in the proof of Theorem 6.1, using the Poincaré reducibility theorem,

we show that f ∗ must be an isogeny, hence H 0(C,R1f∗OX) = 0.
Now the assertion follows from the fact that U◦ ⊂ J, hence Lie(U) ⊂

Lie(J). �

Example 6.4. If X is a quasi-hyperelliptic surface, that is, quasi-elliptic surface
with no reducible fibers, then C is an elliptic curve and degL = degR1f∗OX = 0.
In fact L⊗4 ∼= OC if p = 2 and L⊗6 ∼= OC if p = 3 [4]. In particular, it may occur
that L ∼= OC , in which case H 0(C,L) = k.

Since Rif∗OX = 0, i > 0, the Leray spectral sequence degenerates at page E2
and gives an isomorphism

H 1(C,R1f∗OX) ∼= H 2(X,OX), (6.5)

and the equality

χ(X,OX) = −degR1f∗OX. (6.6)

If g > 1, the surface X is of general type, and a recent work of Yi Gu shows
that χ(X,OX) > 0 [12; 13] (eliminating a few possible cases where it may be
not true from [31]). Thus in this case, degR1f∗OX < 0. However, this does not
imply that degL < 0 since R1f∗OX is not necessary a semi-stable vector bundle.
In fact, it may occur that H 0(C,L) �= {0} and is isomorphic to the Lie algebra
H 0(X,�X/k) of regular vector fields on X [18, Theorem 4.1]. This happens for
some Raynaud surfaces, which we will discuss in the next example.

Example 6.5. Assume that UK of genus g > 0 has the Russell equation upn +
v + avpn = 0. We can compactify the group in the usual way by homogenizing
the equation ypn + zpn−1x + axpn = 0. In the open set x �= 0, the affine equation
is Ypn + Zpn−1 + a = 0. Its singular points are the zeroes of the differential
ω = zpn−2dz + da. Thus a singular point has coordinate z equal to zero and da

must vanish at this point. To get a smooth compactification f : X → C would
require to blow up this point that will force the fiber passing through the singular
point to be reducible.

Suppose that f : X → C has no reducible fibers. Formula (3.4) implies that da

is well defined as a section

da ∈ H 0(C,L⊗−pn(p−1) ⊗ ωC/k)

that does not vanish anywhere. In this case, we also see that the closure C of P∞
is locally given by equation Z = 0, and it has a smooth point in each fiber. Thus
C is smooth and f : C → C is the iterated Frobenius map Fn : C → C. We have

Lpn(p−1) ∼= ωC/k.

It implies that

degL = 2g(C) − 2

pn(p − 1)
,

which is positive if g(C) > 1.
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If g = 1, then we see that L⊗4 ∼= OC if p = 2 (resp. L⊗6 ∼= OC if p = 3) and
C in an elliptic curve. This agrees with the classification of quasi-elliptic surfaces
with no reducible fibers from [4]. If L ∼= OC , then PicX/k is not reduced and
dimk H 0(C,L) = 1.

Assume n = 1. The injection OC → F∗OC corresponds to the inclusion Op
C →

OC upstairs. Taking the differential d : OC → B1
C/k

with values in the sheaf of
locally exact regular 1-forms on C, we obtain an exact sequence

0 → OC → F∗OC → B → 0,

where B = F∗B1
C/k

is a locally free sheaf of rank p−1. The sheaf L⊗p is equal to

F∗L and the section da defines an injection L⊗p−1 → B. The curve C admitting
an invertible subsheaf N such that N⊗p ∼= ωC/k is called a Tango curve, and one
says that the sheaf N defines a Tango structure on C [32]. Thus we see that L⊗p−1

defines a Tango structure on C. The surface X → C is an example of a Raynaud
surface. These surfaces provide counter-examples in characteristic p > 0 to the
Kodaira vanishing theorem [27] as well as examples of surfaces of general type
with of nonzero regular vector fields [18].

Recall that a smooth projective surface X over k is called supersingular in the
sense of Shioda if its second Betti number b2(X) computed in étale topology
coincides with the Picard number ρ(X), the rank of the N’eron–Severi group
NS(X). It is known that a Shioda-supersingular surface is supersingular in the
sense of Artin, which means that the formal completion of its Brauer group Br(X)

is isomorphic to the formal completion of the vector group G
r
a . The number r is

equal to dimk H 2(X,OX) = pg(X). The converse is true for Artin-supersingular
K3 surfaces (which conjecturally are all unirational) but is not known for surfaces
of general type.

Since our surface X is uniruled, it is Shioda-supersingular [20, Theorem 7.3].

Lemma 6.6. The torsion group Tors(NS(X)) of the Néron–Severi lattice of X is
a finite p-group. It is trivial if g = 1 and χ(X,OX) > 0.

Proof. For any commutative finite flat group scheme G, there is a natural isomor-
phism H 1

fl (X,G) ∼= Hom(GD,PicX/k), where Hfl stands for the flat cohomology
and GD is the Cartier dual group scheme [26, Proposition 6.2.1]. A nontrivial
invertible sheaf L of finite order n in Pic(X) defines an embedding of the con-
stant group scheme (Z/nZ)X into PicX/C . It corresponds to an element α in
H 1

fl (X,μn,X), where μn,X is the kernel of x �→ xn for the multiplicative group
scheme Gm,X . In its turn, the cohomology class α defines an isomorphism class
of μn,X-torsor Yα on X in the flat topology. Since each irreducible fiber Xt of f

is homeomorphic to P
1, the étale cohomology of μn,Xt is trivial for (n,p) = 1.

Thus the restriction of Yα to an open subset of X containing the generic fiber XK

is trivial. Hence the restriction of L to XK is trivial, and therefore L ∼= OX(D) for
some divisor D contained in fibers of f . It is known that a divisor class that inter-
sects with zero each irreducible component of a closed fiber is linearly equivalent
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to a rational linear combination of the divisor classes Xt . Since f has a section,
no fiber is multiple, and hence D is an integer linear combination of the classes
of fibers, hence comes as the pull-back of a divisor class in Pic0(C). Such a class
belongs to Pic0(X).

To prove the second assertion we use Riemann–Roch theorem and Serre’s du-
ality theorem on X, which gives that ωX ⊗ L⊗−1 has a section defined by an
effective divisor D′ ∼ KX − D, where L ∼= OX(D). The restriction of KX and D

to each irreducible component of a fiber is of degree 0, hence D′ is a linear com-
bination of fibers, and therefore D′ = f ∗(d ′) for some effective divisor class on
C. Since KJ = f ∗(k) for some divisor class on C, we obtain that D = f ∗(k − d)

where k − d is a torsion divisor class on C. Hence D ∈ f ∗Jac(C), and thus it is
algebraically equivalent to zero. �

Theorem 6.7. Let f : X → C be a regular relatively minimal model of a regular
compactification U of a unipotent group of genus g > 0 and J be the Néron model
of Jac(XK). Then there is an isomorphism of abelian groups

H 1
et(C,J) ∼= k

pg(X) ⊕ Tors(NS(X)),

where pg(X) = dimk H 2(X,OX).

Proof. It is known that H 1(C,J) is isomorphic to the Brauer group Br(X) of X

that coincides with the cohomological Brauer group H 2
et(X,Gm) [11]. Since the

general fiber of f : X → C is geometrically rational curve, the surface X is a uni-
rational surface, hence its second Betti number computed in �-adic cohomology
coincides with the rank of the Picard group. The computation of the Brauer group
of a smooth surface gives an isomorphism of abelian groups

Br(X) ∼= k
pg(X) ⊕ Tors(NS(X))

(see [7, 0.10]). �
We use the notations from the proof of Theorem 3.12. We denote by μ the restric-
tion of the homomorphism of group V → V(L⊗−pn

) to the subgroup V(L⊗−pn
).

The homomorphism μ is surjective in étale topology. Let

G = Ker(μ).

Now everything is ready to prove our main theorem.

Theorem 6.8. Let U be the Néron model of a unipotent group UK of genus g > 0.
Assume H 0(C,Lie(U)) = {0}. Then

(i) U◦(C) = H 0
et(C,U◦) ∼= H 0

et(C,G) = G(C).
(ii) There is an exact sequence

0 → H 1
et(C,G) → H 1

et(C,U◦) → H 1(C,L) → 0.

(iii) There is an exact sequence

0 → π0(U)/U(C) → H 1
et(C,U◦) → H 1

et(C,U) → 0.

(iii) H 2
et(C,U) ∼= H 2

et(C,G).
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Proof. By assumption, H 0(C,L) = 0, thus Het(C,V) ∼= H 1(C,L⊗pn
), hence

Ker(H 0
et(C,V)

H 0(μ)−→ H 0(C,L⊗pn
)) coincides with H 0

et(C,G). Now the first as-
sertion follows immediately from exact sequence (3.7). Taking cohomology in
(3.7), we get an exact sequence

0 → H 1
et(C,U◦) → H 1

et(C,V) → H 1(C,L⊗pn

) → H 2
et(C,U◦) → 0. (6.7)

Let us look at the homomorphism H 1
et(C,V) → H 1(C,L⊗pn

). The group G is
the subgroup of V(L⊗−pn

) equal to the kernel of the projection U◦ →V(L). The
image of H 1

et(C,U◦) in H 1
et(C,V) is equal to an extension of H 1(C,L) with ker-

nel H 1
et(C,G). This is the kernel of H 1

et(C,V) → H 1(C,L⊗pn
). Thus we obtain

an exact sequence

0 → H 1
et(C,G) → H 1

et(C,U◦) → H 1(C,L) → 0 (6.8)

and an isomorphism

H 2
et(C,U◦) ∼= H 2

et(C,G).

Next we relate U◦ and U by means of the exact sequence coming from the defini-
tion of π0(U)

0 → U◦ → U → π0(U) → 0.

Here π0(U) = U/U◦ is supported at a finite set of points in C, and so it can be
identified with its group of sections. Applying cohomology, we find

H 2
et(C,U) = H 2

et(C,U◦) ∼= H 2
et(C,G),

as asserted. We also get an exact sequence

0 → π0(U)/U(C) → H 1
et(C,U◦) → H 1

et(C,U) → 0. (6.9)
�

Remark 6.9. Suppose H 0(C,L) �= {0}. This implies that {0} �= H 0(C,L⊗pn
) ⊂

H 0
et(C,V), but the kernel U◦(C) of the map α : H 0

et(C,V) → H 0(C,L⊗pn
) must

be a finite group. This happens, for example, if f : X → C is a quasi-hyperelliptic
surface and L ∼= OC . In this case

H 0
et(C,V) = Hi(C,L) = Hi(C,L⊗pn

) = Ga(k), i = 0,1,

and U(C) is a nontrivial finite group isomorphic to Tors(NS(X)). We know that
degL > 0 is possible, for example, for Raynaud surfaces from Example 6.5.

The following lemma is taken from [22, III, §4, Lemma 4.13] where one can also
find references to its proof.

Lemma 6.10. Let V be a finite-dimensional linear space of dimension d over k

and φ : V → V be a pk-linear map (i.e. φ(λx) = λpk
φ(x) for any λ ∈ k). Let

V = Vss ⊕ Vnil, where φ is bijective on Vss and φ is nilpotent on Vnil. Then φ − id
is surjective on V and the kernel of φ − id is a vector space over Fpk of dimension
equal to dimVss.
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Note that the dimension of Vss can be computed as follows. Choose a k-basis e of
V and let φ(e) = Ae for some matrix A. Then

dimk Vss = rank(A · A(p) · · · · · A(pd−1)), (6.10)

where A(pk) denotes raising the entries of A in pk th power and d = dimk V . The
number dimk Vss is called the stable rank of the matrix A.

Corollary 6.11. Let upn + v + a1v
p + · · · + amvpm = 0 be the equation of the

Néron model U of a unipotent group UK of genus g > 0. Suppose that a1 = · · · =
am−1 = 0. Let

α : L⊗pn → L⊗pn

be the map given by v �→ v + avpm
and

H 1(α) : H 1(C,L⊗pn

) → H 1(C,L⊗pn

)

be the corresponding map on cohomology. Then H 1(α) is surjective, and its ker-
nel is a vector space over Fpm of dimension equal to the stable rank r of the
pm-linear map φ = H 1(α) − id.

In particular,

H 1(C,G) ∼= (Z/pm
Z)r , H 2

et(C,U) = H 2(C,G) = 0.

Assume Tors(NS(X)) = {0}. The images of the divisor classes of a fiber of
f : X → C and of a section O generate a sublattice of NS(X) isomorphic to
the integral hyperbolic plane U. It splits as an orthogonal summand of NS(X).
Let NS0(X) be its orthogonal complement. The image of the restriction homo-
morphism NS0(X) → Pic(XK) is isomorphic to the group of sections U(C) and
its kernel is the sublattice NS0

fib(X) generated by components of fibers not inter-
section O. Let us consider a chain of lattices and the corresponding dual lattices

NS0
fib(X) ⊂ NS(X)0 ⊂ NS0(X)∨ ⊂ NS0

fib(X)∨.

The discriminant group NS0
fib(X)∨/NS0

fib(X) of the lattice NS0
fib(X) is isomorphic

to the group π0(U) [26, 8.1.2] and the discriminant group NS0(X)∨/NS0(X) of
the lattice NS0(X) is isomorphic to the discriminant group D(NS(X)) of NS(X).
This gives us a chain of finite abelian groups

U(C) ⊂ U(C)′ ⊂ π0(U)

with quotients U(C)′/U ∼= D(NS(X)) and π0(U)/U(C)′ ∼= U(C).
Comparing it with exact sequences (6.8) and (6.9), we dare to make the fol-

lowing conjecture.

Conjecture 6.12. The intersection H 1
et(C,G)0 of the subgroups H 1

et(C,G) and
π0(U)/U(C) of H 1

et(C,U◦) from assertions (ii) and (iii) of the theorem splits the
exact sequence

0 → D(NS(X)) → π0(U)/U(C) → U(C) → 0.
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The group H 1
et(C,U) is isomorphic to H 1(C,L) and fits in an extension

0 → H 1
et(C,G)/H 1

et(G,G)0 → H 1
et(C,U) → H 1(C,L) → 0.

Note that H 1(C,L) is a vector p-torsion group that may contain a finite elemen-
tary p-group with quotient isomorphic to H 1(C,L).

Example 6.13. Assume g = 1,C = P
1, and L ∼= OP1(−k). The linear space

H 1(C,L⊗p) ∼= H 1(C,OP1(−pk)) has a natural basis formed by negative Lau-
rent monomials ei = t−i

0 t
pk−i

1 , i = 1, . . . , pk − 1 [14, III,§5]. Assume p = 3
and let u3 + v + a6kv

3 = 0 be the equation of U, where a6k ∈ H 0(C,L⊗6) =
H 0(C,OP1(6k)) is a binary form of degree 6k. Write a6k = ∑6k

i=0 ci t
i
0t

6k−i
1 . Let

A = (cij ) be a matrix with entries defined by(
a6k(t0, t1)

t3i
0 t9k−3i

1

)′
=

3k−1∑
j=1

cij ej , i = 1, . . . ,3k − 1.

Here ()′ means that we eliminate from the Laurent polynomial all monomials t i0t
j

1
with nonnegative i or j . We compute the entries cij of A and obtain that

A =

⎛⎜⎜⎜⎝
c3−1 c6−1 · · · c3d−1
c3−2 c6−2 · · · c3d−2

...
...

...
...

c3−d c6−d · · · c3d−d

⎞⎟⎟⎟⎠ .

where cj = 0, j < 0, and d = 3k − 1. The group H 1(C,G) is isomorphic to
(Z/3Z)⊕r , where r is the stable rank of A (see (6.10)). The matrix A coincides
with the Hasse–Witt matrix that computes the p-rank of the hyperelliptic curve
H of genus d given by equation t2

2 + a6k(t0, t1) = 0 (i.e. the maximal r such
that (Z/pZ)r embeds in its Jacobian). Of course, in our case, the polynomial
a6k(t0, t1) may degenerate and does not define any hyperelliptic curve. Note that
the projection π : H → P

1 is a separable double cover ramified over V (a6) that
gives an exact sequence

0 → OP1 → π∗OH →OP1(−3k) → 0

and an isomorphism H 1(H,OH ) = H 1(P1,π∗OH ) ∼= H 1(P1,OP1(−3k)). The
matrix A describes the action of the Frobenius on the basis (e1, . . . , e3k−1) of
H 1(H,OH ).

Assume k = 1. The surface X is a rational quasi-elliptic surface with a sec-
tion. The classification of such surfaces is known, in particular, the group U(C) is
known in each case (see [7, 4.9] for exposition of this classification and the refer-
ences to the original results). The conjecture is checked in characteristic p = 2,3
by explicit computation of the group H 1(C,G) (see [7, 4.8]). Note that in this
case D(NS(X)) = {0} and H 1(C,L) = 0, so that the Tate–Shafarevich group
H 1

et(C,U) is trivial that agrees with Theorem 6.7.
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Under the same assumption, but taking L = OP1(−2), we get a quasi-elliptic
K3 surface f : X → P

1. In this case Theorem 6.7 gives that H 1
et(C,U) ∼=

H 1(C,L) ∼= Ga(k).
The following two examples were suggested to me by T. Katsura. It is known

that the Fermat quartic surface x4 + y4 + z4 + w4 = 0 in characteristic 3 is a
supersingular K3 surface with Artin invariant σ equal to 1. It admits a quasi-
elliptic fibration with Weierstrass equation y2 + x3 + t2

0 t2
1 (t8

0 + t8
1 ) = 0 [16]. The

Russell equation of U◦ is

u3 + v + t2
0 t2

1 (t8
0 + t8

1 )v3 = 0.

The quasi-elliptic fibration has 10 reducible fibers of Kodaira’s type IV with
π0(U) ∼= (Z/3Z)⊕10 and the Mordell–Weil group U(C) is isomorphic to
(Z/3Z)⊕4. The discriminant group D(NS(S)) is isomorphic to (Z/3Z)⊕2. We
compute the Hasse–Witt matrix A and find that H 1(C,G) ∼= (Z/3Z)⊕4 ∼= U(C).

However, if we take a K3 surface given by Weierstrass equation

y2 + x3 + t2
0 t10

1 + t5
0 t7

1 + t8
0 t4

1 + t10
0 t2

1 = 0,

we obtain that its Mordell–Weil group U(C) is an elementary 3-group of rank
2, the quasi-elliptic fibration contains 10 reducible fibers of type IV . Thus its
Artin invariant σ is equal to 3, so that D(NS(S)) is an elementary 3-group of
rank 6 and π0(U) is an elementary 3-group of rank 10. Computing the Hasse–
Witt matrix A, we find that its stable rank equals 4. Thus U(C) ∼= (Z/3Z)⊕2

is isomorphic to a proper subgroup of H 1
et(C,G) ∼= (Z/3Z)⊕4. Katsura finds an

explicit isomorphism from a certain subgroup H 1
et(C,G)′ of H 1

et(C,G) to U(C).
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