ENRIQUES SURFACES: WHAT IS LEFT?

IGorR DOLGACHEV *

Abstract. In this talk I would like to comment on some open problems in
the theory of Enriques surfaces. I am not assuming that the ground field k
is the field of complex numbers. One of my main problems is to get rid of
the trascendental techniques in the study of Enriques surfaces.

1. WHAT IS KNOWN?

The main references here are [B-P-vdV], [C-D 3], [Ba], [Pe]. The full account
is not expected. Only highlights are discussed.

Recall that an Enriques surface is a nonsingular minimal projective surface with
numerically trivial canonical class and the second Betti number equal to 10. To-
gether with K 3- surfaces , abelian surfaces and hyperelliptic surfaces, they occupy
the class of algebraic surfaces of Kodaira dimension zero. If p = char(k) # 2,
an Enriques surface F can be characterized equivalently by the conditions that
. 0, 2K ~ 0. The unramified cover corresponding to the torsion element
K inthe Picard groupof F isa K3- surface, called the K3- cover of F'. Con-
versely, every K 3- surface with a fixed-point-free involution is isomorphic to the
K 3- cover of an Enriques surface. So, if p # 2 , the theory of Enriques surfaces
becomes a part of the theory of K 3- surfaces.

a) « Very old» results. The first construction of a surface with p, = 0 but 2K =0
was given by Federigo Enriques in 1896 [En 3]. Together with another example of
Guido Castelnuovo, given in the same year (this time 2K > 0), these were
the first examples of non-rational surfaces with p, = 0 . Other constructions and
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properties of Enriques surfaces were later presented in Enriques’s book [En 3]. For
instance, one finds there that every such surface contains an elliptic pencil with two
double multiple fibres and that it admits a rational map of degree 2 onto the projec-
tive plane. Enriques found the ramification curve of this double cover and showed
that it may degenerate if the surface contains a smooth rational curve intersecting a
general member of some elliptic pencil at 2 points (a special Enriques surface). He
showed that a generic surface admits a birational model isomorphic to a surface of
degree 6 passing doubly through the edges of the coordinate tetrahedron. Again,
as was first noticed by Castelnuovo, it may degenerate. Another observation is the
fact that an Enriques surface can be obtained as the quotient of a K 3- surface (a
regular surface with trivial canonical class) by a fixed-point-free involution. Fi-
nally he indicated a proof that every generic Enriques surface has infinitely many
automorphisms and raised a question about the existence of one with only finitely
many automorphisms [En 2].

In 1901 Gino Fano [Fa 1] discovered a model of an Enriques surface as a surface
of degree 10 in P° . He showed that the Reye congruence of lines in P? (the
variety of lines contained in a subpencil of a generic web of quadrics) is an Enriques
surface. In the Pliicker embedding it is represented by certain surface of degree
10 in P° . These surfaces depend on 9 parameters, one less than the number of
moduli for Enriques surfaces. Much later Fano proved that a generic surface can be
embedded into P° as a surface of degree 10 not necessarily lying on a quadric [Fa
3]. In 1910 Fano answered a question of Enriques by constructing a first example
of an Enriques surface with finitcly many automorphisms [Fa 2].

b) «Old» results. During the sixties, when the theory of algebraic surfaces was
brought to the light of modern mathematics, Enriques’s results were reconstructed,
by using modemn techniques, in the thesis of Michael Artin [Ar 1] at M.I.T. and Boris
Averbukh [AS], Chapter IX, [Av], at Moscow. In the seventies, while extending
Enriques’s classification of surfaces to the case of characteristic p > 0, Enrico
Bombieri and David Mumford studied Enriques surfaces in characteristic 2 (first
giving the right definition) [B-M]. They showed that Enriques surfaces are divided
into 3 classes according to the structure of their Picard scheme. The 7- part of
the latter is a group scheme of order 2, and as such, is isomorphic to p, , «, , or
Z /2 . Thus we speak now about u, - surfaces, a,- surfaces and Z /2 - surfaces .
For every Z /2 - surface, p, = 0, H'(F,&@) = 0 and 2Ky ~ 0, asin the
case p ¥ 2. For this reason, they are called classical Enriques surfaces. For
surfaces from the remaining two classes H'(F,@) = k and Ky ~ 0. The
double cover of an Enriques surface corresponding to the 7- part of the Picard
scheme is a principal cover with respect to the dual group p, * ¥ Z /2, a, * &
a,, (Z/2)* ¥ p, . Only for u,- surfaces the double cover is unramified and
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is isomorphic to a K 3- surface . In the remaining two cases, the cover is purely
inseparable, the corresponding surface is singular, and birationally isomorphic to
either a K 3- surface or a rational surface. Bombieri and Mumford proved also
‘that every Enriques surface contains a genus 1 fibration (elliptic or quasi-elliptic
ifp=2).

¢) New results. It is difficult to trace out the reason for the sudden explosion in the
research on Enriques surfaces during the eighties. My feeling is that the follow-
ing three papers have played some important role in this. The first is the epochal
paper of Ilia Piatetski-Shapiro and Igor Shafarevich [PS-S] on the periods of K3-
surfaces. This paper gave us a very important tool for the study of moduli and auto-
morphisms of complex Enriques surfaces and demonstrated the importance of ap-
plications of the arithmetic of integral quadratic forms to the study of K3 - surfaces
(though the latter can be traced back to Francesco Severi, see for example [Se]).
Using these methods Eiji Horikawa and Slava Nikulin described the moduli of En-
riques surfaces by means of the periods of the corresponding K 3- covers [Ho], [Ni
3]. Nikulin, and independently, Wolf Barth and Chris Peters were able to compute
the automorphism group of a generic Enriques surface. In fact, Nikulin showed
how to compute the automorphism group of any Enriques surface in terms of the
period point of the corresponding K 3- cover [Ni 3]. They revealed the impor-
tance of an isomorphism between the Picard lattice of a complex Enriques surface
modulo the torsion part and the lattice E,, , an even unimodular lattice of signa-
ture (1,9). The latter is isomorphic to the direct sum of the root lattice of type Ejg
(with minus sign) and the standard hyperbolic plane H . It can also be described
by the Dynkin diagram of type E,, (or T} ;) , whose importance in the theory
of surface singularities was earlier noted in the works of many people.

The second paper is by Benard Saint-Donat [SD], it contains a systematic study
of linear systems on K 3- surfaces. Afterwards similar results in the case of an En-
riques surface were obtained by Francois Cossec [Co 1], [Co 2]. He was the first to
realize that the arithmetic of the lattice E,, can also be applied to the study of lin-
ear systems. For the first time the word «generic» was excluded from the statement
of many classical theorems on projective models of Enriques surfaces. For exam-
ple, Cossec proved (first in the case p # 2 ), that every nodal Enriques surface (i.e.
a surface with a smooth rational cutve, called a nodal curve) is special in the sense
of Enriques. Nevertheless, even a nodal surface admits a non-degenerate model as
a double cover, or as a surface of degree 6 passing doubly through the edges of a
tetrahedron, or as a quotient of a K 3- surface of degree 8 in P° , or as a surface
of degree 10 in P° with at most rational double points. Later these results were
extended to characteristic 2 and presented in [C-D 3].

Finally, the third crucial paper is by Artin [Ar 2]. It develops the theory of
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periods of supersingular K3- surfaces in positive characteristic. It excited the
interest of Shafarevich in the study of K3- surfaces in characteristic p. Thus,
he and Alexci Rudakov proved the absence of non-trivial regular vector fields on
K3-surfaces [R-S 1] and later the unirationality of supersingular K 3- surfaces
in characteristic 2 [R-S 2]. This provoked a similar study of Enriques surfaces in
characteristic 2 [B1], [Cr], [Ek], [11], [Ka], [La 1], [La 2].

Much work was done on automorphisms of Eniques surfaces. We have already
mentioned the work of Barth, Peters, and Nikulin. A purely geometric computa-
tion of the automorphism group of a generic nodal Enriques surface over a ficld of
characteristic > 17 was given in [C-D 2]. In [Do 1] I gave an example of an En-
riques surface with only finitely many automorphisms, believing that it is the first
one until I discovered the existence of Fano’s example. Using the period descrip-
tion of Enriques surfaces, all Enriques surfaces with finitcly many automorphisms
were later classified by Nikulin [Ni 3]. Finally, S. Kondo [Ko6] obtained this classi-
fication from a purely geometric point of view. An explicit construction of each of
the seven possible families (one of them was first omitted by Nikulin) was given.
Genus 1 fibrations (elliptic and quasi-elliptic) on Enriques surfaces were studied
in detail in [C-D 3]. We know all possible types of degenerate fibres, the number
of the orbits of the automorphism group in the set of elliptic fibrations on generic
complex Enriques surfaces [B-P] and generic nodal Enriques surfaces (p = 0 or
p>17)[C-D1].

Special attention was given to a class of Enriques surfaces obtained as Reye
congruences [Co 3], [G-H] (see below). It is proven that every nodal Enriques
surface of degree 10 in P’ is isomorphic to a Reye congruence. Also the theory
of Reye congruences was extended to the case of characteristic 2 [C-D 4].

2. WHAT IS LEFT?

A. Moduli
1. Local moduli. A universal Kuranishi family of complex Enriques surfaces ex-
ists and is smooth of dimesnion 10 (see [B-P-vdV]).If p#2 ,or p=2 and F is
a u,- surface , the local deformation functor of an Enriques surface F' is prorep-
resentable by the ring k[[t,,...,t;0]] (see [La 1]). We do not know whether
classical or «, - surfaces have local moduli. For the latter surfaces there is a nice
construction of rigidified local moduli [Ek].
2. Polarized moduli. The existence of the moduli space of polarized Enriques sur-
faces is known only in a few cases (same as for K 3- surfaces, by the way)..
Ancelement h € Pic(F), h%? > 0, is called a polarizationif h is numerically
effective (nef) and the corresponding linear system is base-point-free. One can
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prove that the latter condition is satisficd if and only if h is numerically effective
and satisfies:

(%) |h - f| > 2for every isotropic vector f € Pic(F).

Forevery h' € Pic(F), h? > 0, satisfying (*) there exists a unique polarization
h such that o(h') = h for some automorphism o of the Picard group Pic(F)
which preserves the intersection form. Also it is known that every h can be repre-
sented by a sum of classes of irreducible curves of arithinetic genus 1 or 0. We
say that h is non-special if h can be represented by a sum of irreducible curves of
arithmetic genus 1 only, we say that h is special otherwise. A polarized Enriques
surface is a pair (F,h) consisting of an Enriques surface and a polarization h .
Two polarized surfaces (F,h) and (F,h') are isomorphic if there exists an iso-
morphism of surfaces f : F — F' such that f*(h’) = h. One defines naturally a
family of polarized Enriques surfaces, defines the corresponding functor, and asks
about the existence of the correspondint coarse moduli scheme.

Let 7 : X — S be a family of polarized Enriques surfaces. Since R'%.G,,
is locally constant, we can identify the Picard groups of all surfaces X, with the
fixed quadratic group P = E,y @& Z /2 (we assume here that p # 2 ). Clearly
the polarization classes h, € Pic(X,) belongto the same orbit with respect to the
action of the orthogonal group O( P) of P(¥ (Z/2) 10 %0(Eyp)) -

PROBLEM 1. Is it true that for every positive integer k there exists a non-special
polarization h of F with h* =2k >4 ?

Note that special polarizations of degree > 4 always exist and there are no
polarizations h with h? =2 .

PROBLEM 2. Does the coarse moduli variety A% of Enriques surfaces with
non-special polarization of degree 2k exist?

PROBLEM 3. Is it true that the number of irreducible components of A %), is
equal to the number of orbits in the sct of polarizations of degree 2k with respect
to the group O(P) ? :

We will discuss the cases d =2k=4,...,10.
d =4 . There is only onc orbit of polarization vectors h of degree 4 . Each

non-special polarization can be represented by a divisor of type Ey + E, , where
|2E,| is a genus 1 pencil, and E, - E, = 2. Every Enriques surface admits
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such a polarization [C-D 3]. The complete linear system |h| defines a morphism
of degree 4 onto P? . If p % 2, the branch curve of this map was described by
A. Verra [Ve 1]. We do not know the answer to Problem 2 in this case.

Notc that the inverse image of h inthe K3- cover X defines a linear system
which maps X birationally onto a complete intersection of three quadrics in P°
with at most double rational points as singularities [Co 1], [Ve 2].

d = 6 . There is only one orbit of polarization vectors h of degree 6 . Each non-
special polarization can be represented by a divisor of type E, + E, + E; , where
|2E;| is a genus 1 pencil, and E, - E; = 1, i # j. Every Enriques surface
(p # 2) admits such a polarization [C-D 3]. Assume

(%) |E; + E; — E;| = @ for all distinct 1, j and k.

Then the complete linear system |k| defines a birational morphism onto a sur-
face F of degree 6 in P2 . If h satisfies (*), then F isan Enriques sextic, i.e. a
surface of degree 6 with double lines along the edges of the coordinate tetrahedron.
Certainly, this is always true for unnodal Enriques surfaces. If h does not satisfy
(*), |h| maps F onto a symmetric cubic surface in IP? . In this case the polar-
ization h + Kp satisfies (*¥), and |h + K| maps F onto a degencratc Enriques
sextic corresponding to a degenerate tetrahedron (note here a mistake in Corollary
4.7.9 in [C-D 3], where the word «non-degencrate» must be deleted). If p # 2,
this allows us to construct . ¢ as a geometric quotient of the space of Enriques
sextics. This is again an irreducible rational variety of dimension 10.

d =8 . There are two orbits of polarization vector h of degree 8. Each non-
special polarization belonging to the first orbit can be represented by a divisor of
type 2E,; + 2E, , where |2E;| isa genus 1 pencil, and E, - E, = 1. Every
Enriques surface admits such a polarization [C-D 3]. The complete linear system
|h| defines a morphism of degree 2 onto a non-degenerate symmetric quartic Del
Pezzo surface & . If p # 2 , thisis a unique (up to isomorphism) quartic Del Pezzo
surface with 4 ordinary double points. The branch locus consists of the singular
locus of ¢Z and a curve B with simple singularities which is cut out by a quadric
not passing through the four nodes of ¢7. This allows one to construct (% &
as a geometric quotient of the space of such curves B by the automorphism group
of ¢Z ([C-D 4]). This is an irreducible rational variety of dimension 10. If p= 2,
the map F — (7 could be inseparable, and the construction of (Z3g"), is more
complicated ([C-D 4]). The second orbit is represented by the divisors E; + 2 E, ,
where |2 E;| isagenus 1 pencil,and E,-E, = 2 . Every non-special polarization
of degree 4 represented by the divisor E; + 2 E, where E, - E, = 2 , defines two
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non-special polarizations of degree 8 belonging to the second orbit. They are of the
form E, + 2E, or 2E, + E, . This shows that every Enriques surface admits
non-special polarizations of degree 8 of both types. Each polarization of this form
-defines a birational map onto a non-normal octic surface in P* . Not much known
about this surface. Thus, if #§° exists, it must consist of two components; one
is isomorphic to (#7’); and the other, (#%*), , must be a two-sheeted cover
of £ .

d =10 . There are two orbits of polarization vectors A of degree 10. Each non-
special polarization belonging to the first orbit can be represented by a divisor of
type 2E, + E, + Ey , where |2 E;| isagenus 1 pencil, and E By=1,147.
Such a polarization always exists and defines a birational map from F to a non-
normal surface of degree 10in P° . We do not know much about this surface. The
second orbit is represented by the divisors E, + E, + E; , where |2 E,| is a genus
1 pencil,and E, - E, = 1, E, - E; = E, - E; . Such a polarization always exists
and defines a birational map from F onto a normal surface of degree 10 in P°
which has at most double rational singularitics. We do not know yet how to prove

the existence of . . An approach to this problem will be discussed later.

3. Global moduli. Contrary to the casc of K 3- surfaces , where the moduli space
of non-polarized surface does not exist as an algebraic variety, one can parametrize
the isomorphism classes of non-polarized Enriques surfaces by using the periods
of the corresponding K 3- covers. The corresponding variety g 1S a quasi-
projective varicty isomorphic to an open subset of the factor of a bounded domain of
type IV by adiscrete group of automorphisms. This was first shown by Horikawa
[Ho] and Nikulin [Ni 1] (cf. also [B-P-vdV], Chapter VIII, [Na]).

PROBLEM 4. Is therce a purcly geometric analog (a coarse moduli space) of the
moduli space A g, or, at least, of some open Zariski subset of it ?

“For every family of Enriques surfaces X — S the period mapping p : § —
A g, is defined. In particular, if . exists, the period map defines a quasi-finite
forgetful mapping: .

Py MY — My,

PROBLEM 5. Define an appropriatc compactification of both spaces M 7 and
A g, such that the period map extends to a proper morphism of the compactfica-
tions.

Clearly, a compactfications of .# 7" must include the space of special polarized
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surfaces. 1 expect that the ramification divisor of the period map will parametrize
nodal Enriques surfaces and their degenerations.

In the case (#3’), this problem has been solved in the works of Horikawa
[Ha], Jayhant Shah [Sh] and Hans Sterk [St].

PROBLEM 6. Is there a geometric analog of the map p, : M7 — A 5 living
in any characteristic (or, at least, when p# 2 )?

Here I shall try to convince you that this is not just a mere dream. It is known
(over € ) that
p:(AHY), — H,

is of degree 27.17.31 [B-P]. One observes that
e g Y L e B g e

and recalls that the number 23(24 + 1) is cqual to the number of even theta char-
acteristics on a curve of genus 4 , and the number 24(2% — 1) is equal to the
number of odd theta characteristics on a curve of genus 5 . This suggests that one
may try to represent the map p as a composition:

<‘%;’)1 l'Xtt ﬁ"%5 ”

where X, (resp. .# " )stands for the 10- dimensional moduli space of pointed
curves of genus 4 (resp. some subvaricty of codimension 2 of the moduli space of
curves of genus 5 ). The degree of the first (resp. the second) map must be equal
0 23(2% + 1) (resp. 24(25 — 1) ). Let us indicate how one can construct such
maps.

We define f as follows. Let (F,h) be arepresentative of a point of (#£7g*), .
We assume that F' is unnodal. As we remarked above, |h| defines amap of degree
2 onto a 4-nodal quartic Del Pezzo surface ¢Z. Its branch curve is a canonical
curve B of genus 5 with two vanishing theta characteristics. Let 4" be the net
of quadrics passing through B and H(.#) C .4 be the Hessian curve of .4~
parametrizing the singular quadrics from .4, Since .#” contains two quadrics of
rank 3 (defining @), H(.#) is a quintic with two nodes. Its normalization is
acurve C of genus 4 . The quintic model of C is given by the linear system
|Ke — gq|, where g is the point residual to the line passing through the nodes
of H(/) . Itis known that the nct .4 can be uniquely reconstructed from its
Hessian curve and an even theta characteristic on its normalization [Be]. Forgetting
the theta characteristic, we obtain a point on the varicty X, . This defines a map
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f. To define the map ¢ . we take a representative (C,q) in the image of f,
and consider the birational map P° — P* defined by the lincar system of cubics
passing through the canonical modcl of C in P’ . It is known that the image of
‘P? is a cubic hypersurface X given by the equation:

$4Q($0,z],12,za) + F(xo,xl,xz,x3) = O

where C = {Q = F = O} (sec [Bc], [Ty]). The point ¢ = (ag,0;,05,03,04) €
C defines the line £(¢q) on X which joins the singular point (0, ...,0, 1) with
the point (ag,ay,a;,0a3,a4,0) . Projecting from £(q) , we obtain a conic bundle
X — P?. Its discriminant curve is a quintic D' with a cusp (the image of the
singular point (1,0,...,0) of X ). Onc casily shows that the normalization D
of D' is atrigonal curve of genus 5 with a vanishing theta constant (see [S-V]).
‘Also it is known that the cubic hypersurface can be uniquely reconstructed (up to
isomorphism) from the discriminant curve D' as above and an odd theta charac-
teristic on its normalization [Be]. Forgetting the theta characteristic, we obtain the
map ¢ of the needed degree with the image equal to the subvariety % gymg of
trigonal curves of genus 5 with a vanishing theta constant.
In this way we have constructed an unramified map of degree 21731

d) : (%gn)l _"%g,uig

from the moduli space of degree 8 polarized unnodal Enriques surfaces onto the
moduli space of trigonal curves of genus 5 with a vanishing theta constant. This
leads us to the following:

CONJECTURE 1. The fibresof ¢ arc isomorphic Enriques surfaces. In particular,
if k= €, themap ¢ factors through an isomorphism between the open subset
of A g parametrizing isomorphism classcs of unnodal Enriquees surfaces and the
variety A vig -

"Note that one can prove that the varicty 4 IS,trig is rational (sec [Do 2]). This
may eventially lead to the proof that .# , is rational.
Another interesting problem is to extend the map ¢ to a finite map between
certain compactifications of the corresponding spaces.
Now I shall discuss another approach to global moduli. This time we consider
a polarization of degree 10 which defines a birational morphism i : F' — FcP
onto a normal surface of degree 10. Assume f is an embedding, for example, F
is unnodal. Let h = f*(@ps(1)) , then one shows that

3h~E1=...+ E“):
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where |2 E;| is a genus 1 pencil, and E; - E; =1, 1% ;. Thedivisors E; are
defined uniquely up to a permutation and the change E; — E; + K. Assume
p # 2 . The choice of an ordered sequence of the divisors E!s as above, defines
an isomorphism of quadratic groups ¢ : P = E,; & Z /2 — Pic(F), such that
p(A) = h forsome fixed vector A in Ey, and ¢(f,) = E;,where (fi,..., fio)
is a sequence of isotropic vectors in E,, such that f;- fj=1,1i% ;. Conversely,
every such isomorphism defines a unique set (E,,..., E,;,) as above (see [C-D
3], Chapter 2, § 5). Define a marked Enriques surface as a pair ( F, ) , where F is
an Enriques surface and ¢ : P — Pic(F) is an isomorphism of quadratic groups
such that p(A) is a polarization of degree 10. Two marked Enriques surfaces
(F,p) and (F',¢') arc called isomorphic if there exists an isomorphism f :
F — F' suchthat f*o¢p = ¢™. Note that, if E; is as above, h - E; = 3.
Therefore the image of the E; in P° is a plane cubic curve. Let m; be the plane
containing this curve. The linear system |E; + K| is non-empty and consists
of an isolated curve E;, the curves 2 E; and 2 E| are the two double fibres of
the genus 1 pencil [2E;|. Let m; be the plane containing the image of E] in
P’ . Thus a marked unnodal Enriques surface defines two ordered sets of 10 planes
(7,00, M) and (m_y,...,m_y,) satisfying: (i) dim ;N7 =0 if i+ #0;
(i) mNm_;=@ . We call such aset of 20 plancs in P° a double-ten. Let

X G e"

be the subvariety of the tenth Cartesian power of the Grassman variety G(3,6)
of planes P° parametrizing the 10- tuples of planes which can be extended to a
double ten. One easily verifies that every point of X is stable with respect to the
natural action of PGL(6) on X . Let

X = X/PGL(6).

CONJECTURE 2. The variety X is a coarse moduli space for marked Enn’qués
surfaces (F,p) such that the corresponding polarization p(A) defines an em-
bedding into P° .

Assume this is true. Let O( P) be the orthogonal group of P. We know that
O(P)=(Z /2)"°x0(E)y). Let O(E,y) =0( E,o)'x{£1}, the subgroup 0(E,,)’
is the Weyl group of the lattice E,,. The group O( P)'=(Z /2)'° »x0( E,p)' acts
naturally on the markings, hence it must define an algebraic action on X . Every
generator (0,...,1,...,0) € (Z/2)'° acts naturally on X by

(T ooy Wag)am (ay e, T T 5 o)
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It is known that O(E,,)’ is generated by the permutation group 3, and a
reflection s, which acts on E,, by the formula:

-1+ (1 0,

where o= A — f; — f, — f5 . The subgroup $7,, C O(P)’ acts naturally on X
via permutations of the factors of G(3,6)!° . To define the action of the generator
so we consider the lincar system of quadrics through the planes m,, 7, and ;.
Assuming F isunnodal, the three planes span P° , and one checks that this system
is homaloidal, i.e. defines a birational transformation 7' : P° — P° . Choosing an
appropriate basis of this linear system, we obtain that T2 = identity. The image of
F under T is an Enriques surface isomorphic to F' embedded via ¢(sy(A)) .
In this way the whole group 0(P)’ = (Z/2)'" xW(E,,) acts on the open subset
(X)*» c X parametrizing the isomorphism classes of marked unnodal Enriques
surfaces. One checks that the kernel of this action is a subgroup of finite index (see
below). Thus the quotient space

(X)*"/0(P)’

parametrizes isomorphism classes of unnodal Enriques surfaces. Again, we do not
know how to extend this quotient to construct the moduli space of all Enriques
surfaces.

The following observation suggests that we are moving in the right direction.
Every set of 10 planes y,...,m,, as above defines a maximal isotropic subspace
in P(A*(K®)) with respect to the symplectic form A3(K®) x A3 (K6) —
AS(K®) ¥ k. The varicty of such subspaces is the 45- dimensional homoge-
neous space Sp,,/P ,where P is amaximal parabolic subgroup. The 35- dimen-
sional group PG M (6) acts onan open subsetof Sp,,/P witha 10- dimensional
quotient. It is plausible that our spacc X C G(3,6)'° is isomorphic to some
219- cover of an open subspace of Sp,,/P .

B. Automorphisms

~ The main problem here is to prove the known results about automorphisms of
complex Enriques surfaces without using the theory of periods of K 3- surfaces .
For example, we do not know how to reprove the Barth-Peters-Nikulin theorem
on automorphisms of unnodal Enriques surfaces in the case p # 0 . One possible
approach to this problem is as follows. We can prove that the 2 - level congruence
subgroup W(E,()(2) is equal to the normal closure of the involution W, €
O(E))" defined by —1p @ 1. This involution is induced by an automorphism
of an unnodal surface obtained from a representation of F' as a double cover of a
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4-nodal Del Pezzo quartic surface. From this one deduces easily that the whole
normal closure of W, in O(E,y)’ is realized by automorphisms of F'. Next we
apply a non-trivial group-theoretical result of Looijenga that says that this closure
is equal to the whole subgroup W(E,()(2) (sec [C-D 3], Theorem 2.10.1). To
prove that there are no more automorphisms for generic F', we would like to argue
as follows. Suppose the space X exists and the group O( P’) acts regularly on it
via its action on the markings. Then the subgroup W (E,()(2) lies in the kernel
(since the latter is a normal subgroup containg W, ), hence

W(E;,)(2) C Aut(F)

for every unnodal Enriques surface F'. The action of 0( P') factors through the
quotient group

O(P') /W (Ex)(2) ¥ (Z/2)'° x0*(10, F,).

Then it is easy to verify, knowing the structure of this group, that none of its
normal subgroups can act trivially. Thus for some open subset U of X the action
of this group is fixed-point-free (provided that p does not divide #0*(10, F,)),
hence the Enriques surfaces parametrized by this subset have the automorphism
group isomorphic to W( Ey,(2)) . What is lacking in this «proof» is the absence
of the construction of the space X (Conjecture 2).

Another interesting problem on automorphisms of Enriques surfaces is the clas-
sification of Enriques surfaces with only finitely many automorphisms. As we men-
tioned already, for complex surfaces such a classification was produced by Nikulin
and K o ndo. It is easy to see that it covers the cases of all characteristics except
2. In the latter case we have some additional cases and it is very interesting to find
them all. Note that every Enriques surface F with finitely many automorphisms
defines a crystallographic polyhedron in the 9 - dimensional hyperbolic space. Its
reflection group is isomorphic to the subgroup of O(Pic(F) /Tors) generated by
the reflections defined by the classes of nodal curves on F . One may ask whether
every such polyhedron is obtained from some Enriques surface. For this we have
to take into consideration the case p =2 .

C. Nodal Enriques surfaces

1. The set of nodal curves. The sct of nodal curves on an Enriques surface F' has
many interesting properties. For example, one can prove, if p # 2 , that any effec-
tive divisor D with D? = 2 congruent to a nodal curve modulo 2(Pic(F) con-
tains a nodal curve among its irreducible components. This was remarked by Looi-
jenga, and can be easily seen by considering the K 3- cover of an Enriques surface.
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It is a challenging problem to prove this fact without appealing to K3 - surfaces,
for example to give a proof in the case p= 2 .

One says that a nodal surface F' is general if every two nodal curves are con-

- gruent modulo 2(Pic(F) . This implies, among other things, that every clliptic

pencil on F has at most one reducible fibre which consists of no more than two

irreducible components. Another remarkable implication is the fact that every two

nodal curves R and R’ on a general nodal Enriques surfaces are fibre-equivalent.

The latter means that one can find a sequence of genus 1 pencils |E,|,...,|E;]
and a sequence of nodal curves R;,..., R;_; such that
R+R,€|Ey|, Ry+ Ry € |By|, ..., Ry 2+ Ry_y €|Eyy|, By_1+ R € |Ey|.

More generally, following Nikulin, one may define the nodal invariant of an
Enriques surface as the subset A(F) of N(F) = N(F)/2N(F) 2 F;O of
the classes of nodal curves modulo 2 N(F) , where N(F) = Pic(F) /Tors . The
space N(F) inherits a natural quadratic form ¢ defined by ¢(z) = %xz mod2 ,
where £ € N(F), © = zmod 2N(F) . It is immediately seen that A(F) C
q”l( 1) . Assume that A(F) consists of two elements Z and §. Then -y =0
or 1. Inthe first case every elliptic pencil on F' may contain two reducible non-
multiple fibres, each of which has no more than two irreducible components, or may
contain one reducible multiple fibre which consists of two irreducible components.
In the second case F' may contain a genus one fibration with one reducible fibre
with no more than three irreducible components.

PROBLEM 7. Describe the set of possible nodal invariants. In each case find a
geometric characterization in terms of degenerate fibres of elliptic pencils.

Another definition of the nodal invariant of an Enriques surfaces can be given in
terms of the Picard lattice of the K 3- cover [Ni 3]. This time it is a pair consisting
of a negative definite root lattice and a finite abelian group. We do not know its
analog in the case p =2 .

Finally let me remark that nodal curves on an Enriques surface are analogous to
discriminant conditions on the sets of nodes of a ten-nodal plane sextic (see [D-0]),
the blowing-up of which is a rational surface which is a degeneration of an Enriques
surface.

2. Reye congruences. An example of a nodal Enriques surface is a Reye congruence
oflinesin IP* . Note that webs of quadrics in P> depend on 9 parameters, the same
as the number of parameters of all nodal Enriques surfaces. One can characterize a
class of webs for which the Reye congruence is anormal surface with at most double
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rational points as its singularities. Then, one proves that its minimal resolution is
an Enriques surface. Call such webs good webs. Then the most interesting problem
is:

PROBLEM 8. Is every nodal Enriques surface isomorphic to a nonsingular mini-
mal model of the Reye congruence of a good web of quadrics in P ?

There are various partial results towards a solution of this problem. For example,
we know that for every Enriques surface F there is a birational morphism f :
F — F C P° onto a surface of degree 10 with at most double rational points as
its singularities. If F' lies on a quadric, then it is isomorphic to a Reye congruence.
Or,if f isanisomorphism and F' is nodal, it is isomorphic to a Reye congruence.
Note that a general nodal Enriques surface is isomorphic to a nonsingular Reye
congruence [C-D 4].

D. Characteristic 2
Here there is a lot of unsolved problems. The most notorious of them is the

following (cf. [La 1]):

PROBLEM 9. Are there non-zero regular vector fields on classical Enriques sur-
faces ?

T. Ekedahl showed that there arc none, unless the surface admits a quasi-elliptic
fibration.

PROBLEM 10. Is any Enriques surface liftable to characteristic 0 ?
Thisis trueif p# 2 or F isa p,- surface [La2].

PROBLEM 11. Study the moduli spaces (local, polarize, global) of Enriques sur-
faces in characteristic 2.

I hope that the reader of this rather informal report will get the impression that
the world of Enriques surface which has becn explored by numerous geometers for
almost a hundred years has still many blank spots worthy of further exploration.
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