OF REGULAR MAPPINGS

I. V. Dolgachev and A. N. Parshin

UDC 513.83

The different of morphisms of surfaces onto curves is studied. A relationship is established between the discriminant and Euler characteristics of degenerate layers for morphisms without multiple components.

1. Let $f: X \to Y$ be a proper morphism of schemes over a field k. The logical problem of its degree of smoothness can be solved, as in the case of a finite morphism, by means of a suitable analog of the different and discriminant. The appropriate definitions have been given by Shafarevich in his lecture series in 1961 (their background and motivation are discussed in [6]). Let \mathcal{O} be a local ring without divisors of zero, M an \mathcal{O} -module of finite type, and K the quotient field of \mathcal{O} . If $0 \to N \to \mathcal{O}^n \to M \to 0$ and dim $M \otimes_{\mathcal{E}} K = m$, we let

$$\vartheta(M) = \bigcup_{S_m} \Lambda^n (N + S_m),$$

where S_m runs through the submodules \mathcal{O}^n , having m generators and Λ^n is the nth outer degree. The ideal $\mathcal{I}(M)$ of ring \mathcal{O} is invariantly defined and is called the <u>different</u> of the module M. Using the projective resolvent, we can provide an analogous definition for any integral rings. The basic properties are as follows:

- 1) $\vartheta(M) = (1) \Leftrightarrow M$ is projective.
- 2) $\vartheta(M \oplus M') = \vartheta(M) \vartheta(M')$.
- 3) If p $\subset \mathcal{O}$ is a prime ideal and $\mathcal{O}_p,\, M_p$ are localizations, then

$$\vartheta (M_p) = \vartheta (M) \mathcal{O}_p.$$

If now a coherent sheaf is given on the scheme X, property 3) makes it possible to define the different $\mathcal{S}(F)$ of the sheaf F such that $\mathcal{S}(F)_X = \mathcal{S}(F_X)$, $x \in X$. Here $\mathcal{S}(F)$ is a sheaf of ideals on X. Returning to the morphism $f: X \to Y$, we set $\mathcal{S}_X |_Y = \mathcal{S}(\Omega_X^1|_Y)$, where $\Omega_X^1|_Y$ is a sheaf of relative differentials (see [3]). We define the discriminant of the mapping f as the sheaf $D_X|_Y = \mathcal{O}_X \nearrow \emptyset$ on X. If Y is a smooth irreducible scheme of dimensionality one and the common layer of the morphism f is smooth, the sheaf $f_{*}D_X|_Y$ is nothing other than $\bigoplus_{v \in Y} \mathcal{O}_{Y,v} | m_v^n, m_v$, i.e., the maximum ideals of points of Y. We also call the number Σ_{n_Y}

the discriminant of the morphism f and denote it by dX|Y.

<u>LEMMA 1.</u> Suppose that scheme Y is smooth over k, scheme X is integral, and morphism f is smooth at the common point of X. We then have an exact sequence of sheafs on X

$$0 \to f^*\Omega^1_Y \to \Omega^1_X \to \Omega^1_{X!Y} \to 0. \tag{1}$$

Proof. For any morphism the sequence

$$f^{\bullet}\Omega^{1}_{Y} \to \Omega^{1}_{X} \to \Omega^{1}_{X|Y} \to 0$$

is exact (see [3]). According to the differential smoothness criterion of Grothendieck [3], morphism f is smooth at a point $x \in X$ if the sequence

$$0 \rightarrow (f^*\Omega^1_Y)_x \rightarrow (\Omega^1_X)_x \rightarrow (\Omega^1_{X|Y})_x \rightarrow 0$$

V. A. Steklov Institute of Mathematics, Academy of Sciences of the USSR. Translated from Matematicheskie Zametki, Vol. 4, No. 5, pp. 519-524, November, 1968. Original article submitted January 18, 1968.

is exact and the module $(\Omega^1_{X|Y})_X$ is projective. The conditions of the lemma indicate that the sheaf $f * \Omega^1_Y$ is locally free and the kernel of the homomorphism $f * \Omega^1_Y \to \Omega^1_X$ is a torsion sheaf. Inasmuch as a locally free sheaf does not contain a torsion subsheaf, we arrive at that which was to be proved.

<u>COROLLARY.</u> Given the conditions of the lemma, $supp(D_X|_Y)$ is congruent with the set of points of X in which the morphism f is nonsmooth. In particular, if all layers of f have the same dimensionality, this set comprises the union of singular points of the layers of f.

2. We now assume that X is a smooth algebraic surface, Y is a smooth algebraic curve of genus q, the common layer of the morphism f is a smooth curve of genus g over a field of functions on Y, and the morphism f and schemes X, Y are defined on an algebraically closed field k. Let us assume also that the layers of f do not have multiple components.

LEMMA 2. Under these conditions we have an exact sequence of sheafs on X

$$0 \to \Omega_{X|Y}^{1} \otimes f^{*} \omega_{Y} \xrightarrow{\alpha} \omega_{X} \to D_{X|Y} \to 0, \tag{2}$$

where $\omega_X = \Omega^2_{X|k}$, $\omega_Y = \Omega^1_{Y|k}$ are canonic sheafs of X and Y, respectively.

<u>Proof.</u> Let a: $f *\Omega^1_X \subset \Omega^1_X$ be the canonic embedding determined by the exact sequence (1). Multiplying it tensorially by the sheaf Ω^1_X , we obtain

$$a': f^*\Omega_X^1 \otimes \Omega_X^1 \subset \Omega_X^1 \otimes \Omega_X^1$$
.

The composition of a' with the mapping of outer degree

$$\Lambda: \Omega^1_X \otimes \Omega^1_X \to \Omega^2_{Xlk} = \omega_X$$

defines a homomorphism

$$\alpha':\Omega^1_X\otimes f^*\omega_Y\to\omega_X$$
.

Since the sheaf $f * \omega_Y$ is invertible, it is readily seen that

$$f^*\omega_Y \otimes f^*\omega_Y \subset \ker \alpha'$$
.

Applying the exact sequence (1), we obtain the homomorphism

$$\alpha: \Omega^1_{X|Y} \otimes f^*\omega_Y \to \omega_X.$$

Let $Z = \text{supp}(D_X|Y)$. The assumption regarding morphism f indicates that codim $Z \ge 2$; on the other hand, α is an isomorphism on X-Z. This shows that supp(ker α) $\subset Z$. But the exact sequence (1) implies

$$dp\Omega^1_{X|Y} \leqslant 1$$
,

so that, consequently,

$$\operatorname{dep} \operatorname{th}_{\mathbf{Z}}\Omega_{\mathbf{X},\mathbf{Y}}^{1} \geqslant 1$$

(X is a regular scheme), whence it follows that ker $\alpha = 0$. It is readily inferred from the definition of $\vartheta_{X|Y}$ that

$$Im\alpha = \vartheta_{X|Y} \otimes \omega_{X},$$

and, since codim $Z \ge 2$,

$$\operatorname{coker} \alpha = \omega_X / \vartheta_{X|Y} \otimes \omega_X = D_{X|Y} \otimes \omega_X = D_{X|Y}.$$

COROLLARY.

- 1) $\operatorname{Hom}_{\mathscr{O}_X}(\Omega^1_{X|Y}, \mathscr{O}_X) \simeq \omega_X^{-1} \otimes f^*\omega_Y;$
- 2) $\operatorname{Ext}_{\mathcal{O}_X}^1(\Omega_{X|Y}^1, \mathcal{O}_X) = D_{X|Y};$
- 3) $\operatorname{Ext}_{\mathcal{O}_X}^i(\Omega^1_{X|Y}, \mathcal{O}_X) = 0, \quad i > 1.$

Proof. Inasmuch as a regular ring is a Gorenstein ring, it follows (see [1]) that

$$\operatorname{Ext}_{\mathcal{O}_{X}}^{i}(D_{X|Y},\mathcal{O}_{X}) = \begin{cases} 0, & i \neq 2, \\ D_{X|Y}, & i = 2. \end{cases}$$

Now it is only required to apply the functor Hom $(., \mathcal{O}_X)$ to sequence (2).

Remark. Relation 2) is also fulfilled for multiple components. In this case the sheaf $\operatorname{Hom}_{\mathscr{O}_X}(\Omega_{X|Y,\mathscr{O}_X})$ is also locally free, being specifically equal to

$$\omega_X^{-1} \otimes f^* \omega_Y \otimes \mathcal{O}_X(D)$$
, where $D = \sum_{w \in Y} X_y - (X_y)_{\text{red}}$.

The following theorem has been advanced as a hypothesis by Shafarevich.

THEOREM.

$$d_{X|Y} = \sum_{y \in Y} \chi(X_y) - \chi(F),$$

where F is the common layer of morphism f, and χ is the l-adic Euler-Poincaré covering characteristic (l, char k) = 1.

Proof. From (1) we obtain the exact sequence

$$0 \to \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega^{1}_{X|Y}, \mathcal{O}_{X}) \to \operatorname{Hom}_{\mathcal{O}_{X}}(\Omega^{1}_{X}, \mathcal{O}_{X}) \to \operatorname{Hom}_{\mathcal{O}_{X}}(f^{\bullet}\omega_{Y}, \mathcal{O}_{X}) \to \operatorname{Ext}^{1}_{\mathcal{O}_{X}}(\Omega^{1}_{X|Y}, \mathcal{O}_{X}) \to 0.$$

Invoking the corollary to Lemma 2, we rewrite this sequence as

$$0 \to \omega_X^{-1} \otimes f^* \omega_Y \to T_X \to f^* T_Y \to D_{X|Y} \to 0, \tag{3}$$

where T_Z is the tangential sheaf of the scheme Z. It is seen at once that

$$c_2\left(D_{X|Y}\right) = d_{X|Y},$$

where c_2 is the Chen second class of sheaf $D_X|_Y$. Applying the properties of the Chen character ch(F) of a sheaf F (see [2]), we obtain

$$ch(\omega_X^{-1} \otimes f^*\omega_Y) = 1 + f^*c_1(Y) - c_1(X) + \frac{1}{2}c_1(X)^2 - (2 - 2g)(2 - 2q),$$

$$ch(T_X) = 2 - c_1(X) + \frac{1}{2}c_1(X)^2 - c_2(X),$$

$$ch(f^*T_Y) = 1 - f^*c_1(Y),$$

$$ch(D_{X|Y}) = d_{X|Y}.$$

Sequence (3) and the additivity of ch yield

$$d_{X|Y} = c_2(X) - (2 - 2g)(2 - 2q).$$

Now we need only make use of the formula

$$\chi(X) = \chi(F) \cdot \chi(Y) + \sum_{y \in Y} \chi(X_y) - \chi(F)$$

and the formula

$$c_2(X) = \chi(X),$$

which follows from Lefschetz' theorem on stationary points of morphisms (see [4]).

Remarks. 1. If k = C, then by the congruence theorem and computation of the Euler characteristic for arbitrary curves the analogous theorem holds when χ is replaced by the ordinary topological Euler characteristic.

2. It is readily seen that the sheaf $\vartheta_X|_Y$ is precisely the Jacobian sheaf of Hironaka, which plays an important role in determining the equisingularity of a morphism of schemes (see [5]).

LITERATURE CITED

- 1. H. Bass, "On the ubiquity of Gorenstein rings," Math. Z., 82, 8-28 (1963).
- 2. A. Borel and J. P. Serre, "The Riemann-Roch theorem," Matematika, <u>5</u>, No. 5, 17-54 (1961); Bull. Soc. Math. France, <u>86</u>, 97-136 (1958).
- 3. A. Grothendieck and J. Dieudonne, Elements de Géometrie Algébrique, Ch. IV, Publ. Math. IHES, Nos. 32, 28, 28, 24, 20.
- 4. A. Grothendieck, Cohomologie l-adique et Fonctions L, Seminaire IHES (1964/1965).
- 5. H. Hironaka, Equivalences and Deformations of Isolated Singularities, Summer School, Woods Hole (1964).
- 6. I. R. Shaferevich [Safarevic], "Algebraic number fields," Proc. Intern. Congr. Math., Stockholm (1962), pp. 163-176; Am. Math. Soc. Transl., 31, 25-39 (1963).