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Ž .We classify minimal pairs X, G for smooth rational projective surface X and
finite group G of automorphisms on X. We also determine the fixed locus X G and
the quotient surface Y � X�G as well as the fundamental group of the smooth
part of Y. The realization of each pair is included. Mori’s extremal ray theory and
recent results of Alexeev and also Ambro on the existence of good anti-canonical
divisors are used. � 2001 Academic Press
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INTRODUCTION

More than one hundred years ago, Kantor wrote a book on finite
birational automorphism groups of rational surfaces. From the sixties to
eighties, Manin, Iskovskih, Gizatullin also thoroughly studied G-rational
surfaces defined over non-closed fields. One aim of theirs was to reduce to

� �G-minimal surfaces. In Giz , G-pseudoprojective rational surfaces, which
are not G-projective surfaces, are shown to be relative minimal elliptic
surfaces; the same paper also shows that not every G-rational surface is

� �G-pseudo-projective. Segre Seg did, among many other things, the classi-
Ž � �.fication of Aut X for cubic surfaces X see also Ho2 .

Recently, Aut X has also been classified again for the quartic del Pezzo
� � � �surface in Ho1 . In Koit , automorphism groups of rational surfaces

obtained by blowing up very general points in P 2 are completely classified.
It is very desirable to test the modern machineries on the old subject and
obtain a simpler proof at the same time.
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In this note, we work over the complex numbers field C and consider
Ž .pairs of X, G of an arbitrary smooth rational projective surface X with a

fixed group G acting on it. To simplify the arguments, we assume also that
G is cyclic of prime order. We believe that the general case could be
handled similarly. Indeed, our last theorem deals with arbitrary G, where

Žwe reduce to either G-stable conic fibration or the del Pezzo case see
.Remark 5 .

Actually, this note is inspired by Bayle and Beauville’s recent simple new
� �classification of birational involutions of rational surfaces BB . Following

� �it, we also adopt the latest Mori theory Mor . Though the theory has been
developed along the course of classification of higher dimensional varieties
Ž .dimension at least 3 , we will see how useful it is even for surfaces. First,
it will help us to reduce to a G-minimal surface very quickly, which has

Ž .either a G-stable conic-fibration Mori fibration , or a Picard number one
quotient surface. The first case is easy to treat.

For the second case, we have two approaches. The top down approach is
Ž .based on known information on Weyl groups W E of lattice E wheren n

� � � �we apply Manin’s results in Man2 ; see also Re1 . For the bottom up
Ž .approach more geometric , we will study the quotient surfaces; this

approach is normally more difficult. To do so, we apply results of Alexeev
and Ambro about the existence of a good member in the anti-canonical

� �system Alex, Am ; implicitly we are also using Fujita’s theory of polarized
� �varieties, � genus zero case Fuj . This way, we avoid referring to the

classification list of automorphism groups of del Pezzo surfaces X ; such a
list is available if K 2 is bigger.X

Ž .It turns out that all pairs X, G with G cyclic of prime order p, except
Ž . Ž .the last 3 rows in Table I p � 5 , have minimal models X , G , via amin

ŽG-equivariant birational morphism only smooth blow-downs of G-stable
.divisors but no blow-ups , such that at least one of X and Y � X�G is a
Ž 2 .minimal rational surface i.e., P or Hirzebruch surfaces F , e � 1 or thee

Ž .projective cone F p � 3 .3
To be precise, denote by � the multiplicative group of prime order p.p

Ž .By writing X, � , we mean that X is a smooth projective rational surfacep
with a faithful � -action. It is natural to assume that X is minimal inp

Ž .terms of G-equivariant birational morphisms Definition 1.4 .
Ž . �pWe now state our results. For X � F in Theorem 1 I , X should bee

well known and is also determined in Lemma 4.3.

Ž .THEOREM 1. Let p be a prime number and let X, � be a minimal pairp
of a smooth projecti�e rational surface and the group � acting faithfullyp
on X.

Ž . Ž .I If p is odd prime for p � 2 see Theorem 4 and Remark 5 below
Ž . �pand the � -in�ariant sublattice PicX has rank � 2, then X is a Hirze-p
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Ž . Ž .bruch surface F e � 1 and X, � is birationally equi�ariant to a paire p
Ž 2 .P , � gi�en in Example 2.1.p

Ž . Ž . �p Ž .II Suppose that PicX has rank 1. Then X, � is equal to one ofp

the pairs in Examples 2.1�2.8. The fixed locus X �p, X, Y � X�� , Fanop

Ž .index r Y , the type of all singularities on Y, and the topological fundamental
0 Ž .group of Y � Y 	 Sing Y are summarized in Table I for odd prime p only .

Ž .COROLLARY 2. Let p be an odd prime number and let X, � be anp
arbitrary pair of a smooth projecti�e rational surface and the group � actingp

Ž .faithfully on X. Then X, � is birationally equi�ariant to one of the pairsp

Ž .X , � in Table I. Set Y � X �� .min p min min p
2 2 Ž .In particular, either X � P , or Y � P , or Y � F , or X , �min min min 3 min p

Ž .p � 5 is one of the pairs in rows 5, 6, 7 of Table I gi�en in Examples 2.4
Ž .and 2.5 see Lemmas 2.12�2.13 for the uniqueness of the pairs in rows 6, 7 .

Ž . Ž .In the result below, 2 is trivial, while 1 is not so obvious; there is a
Ž .rational surface with at worst two quotient singularities such that its

Ž � �.smooth part has infinite � see GZ3, Sect. 4 . See Remark 4.7.1

Ž .COROLLARY 3. Let X, � be as in Corollary 2. Set Y � X�� andp p
0 Ž 0. Ž . Ž .Y � Y 	 Sing Y. Then � Y equals 1 or � . Moreo�er, when X, � is1 p p

a minimal pair, we ha�e:

Ž . �p 01 If X contains a cur�e, then Y is simply connected.
Ž . �p Ž 0. Ž .2 If X is a finite set, then � Y � � see also Lemma 4.4 .1 p

G �In the following, we denote by X � x 
 X � gx � x for some 1 � g 

4 0G the fixed locus, � : X � Y � X�G the quotient map, Y � Y 	 Sing Y,

Ž .and r Y the Fano index.

Ž .THEOREM 4. Let X, G be a minimal pair of a smooth projecti�e
rational surface and an arbitrary finite group G acting faithfully on X. Then we
ha�e:

Ž . Ž .GI Suppose that the G-in�ariant sublattice PicX has rank � 2.
Then X has a G-stable conic fibration each singular fibre of which is a linear

Ž .chain of two 	1 -cur�es.
Ž . Ž .G Ž .II Suppose that Pic X has rank 1. Then X is a smooth del Pezzo

surface and Y is a singular del Pezzo surface with at worst quotient singularities
Ž 0. Ž 0. Gso that � Y is finite; one has � Y � G if the fixed locus X is a finite1 1

set. Moreo�er, the following are true.
Ž . Ž . G Ž . Ž1 If r Y � 1 and X is a finite set, then X, G is equal modulo

. Ž .G-equi�ariant isomorphism to one of the pairs in Examples 2.1b p � 3 ,
2.5, 2.9�11. X G, X, Y � X�G, K 2 and the types of all singularities of Y areY
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TABLE II

G 2² :G X X ; G � g , . . . K Sing Y Details1 Y

2Ž . � � � � Ž .Z� 3 P 1, 0, 0 , 0, 1, 0 3 1, 2 �3 Ex. 2.1b
� � Ž .0, 0, 1 ; 1, 2 �3

2� � Ž .g � diag 1, � , � 1, 2 �31 3 3

1 1Ž . Ž .Z� 4 P � P 4 points 2 1, 1 �2 Ex. 2.11
Ž .1, 3 �4 Lemma 2.15
Ž .1, 3 �4

Ž . Ž .Z� 5 deg 5 del Pezzo 2 points 1 1, 4 �5 Ex. 2.5
Ž .1, 4 �5 Lemma 2.13

Ž . Ž .Z� 6 deg 6 del Pezzo 6 points 1 1, 1 �2 Ex. 2.9
Ž .1, 2 �3 Lemma 2.14
Ž .1, 5 �6

2Ž . Ž . Ž .Z� 3 � Z� 3 P 12 points; 1 1, 2 �3 Ex. 2.10
2� � Ž .g � diag 1, � , � 1, 2 �31 3 3

Ž . Ž .g � a 1, 2 �32 i j
Ž .a a a � 1 1, 2 �313 21 32

other a � 0i j

1 1Ž . Ž . Ž .Z� 4 � Z� 2 P � P 12 points 1 1, 1 �2 Ex. 2.11
Ž .1, 1 �2 Lemma 2.15
Ž .1, 3 �4
Ž .1, 3 �4

Žsummarized in Table II see Lemmas 2.13�2.15 for the uniqueness of the
.pairs in the rows 3, 4, 2, 6 .

2Ž . Ž . Ž .2 If r Y � 1, then Y is either P or the projecti�e cone F e � 2e
� �with e � G .

Ž . Ž .Remark 5. 1 If G � � in Theorem 4 I , then it is birationally2
� �equivariant to some De Jonquieres involution of degree d � 2 BB ; when

d � 2, it is given in Example 2.6.

Ž . Ž Ž ..2 For a normal surface S like Y in Theorem 4 II with at worst
quotient singularities, Q-ample anti-canonical divisor 	K and rank Pic SS

Ž .� 1, the Fano index r S � 1 holds if and only if S is a Gorenstein log del
ŽPezzo surface other than the projective cone F this cone has Fano index2

. Ž � �. �2 Lemma 1.9 and MZ1, Lemma 6 ; for such S, it is also shown in MZ,
� Ž 0.Lemma 6 that � S is abelian of order � 9.1

Ž .3 Kantor had classified automorphism groups of del Pezzo sur-
faces, though it was not told which automorphism is lifted from a del Pezzo
surface of bigger degree. In this sense, the result in Theorem 4 and
Kantor’s book together complete the picture of automorphism groups of
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� �rational surfaces. In particular, we have to refer to Kan for the case
Ž . � �where r Y � 1. See also MZ, Zh2 .

Ž .4 The difference of our approach from others lies in two aspects:
Ž . �pi we determine also the fixed locus X and the quotient surface X��p

Ž . Ž .and ii we include both the geometric approach bottom up , and the
algebraic approach as an Appendix, though the uniqueness and realizabil-
ity of pairs are only treated in the geometric approach.

1. PRELIMINARY RESULTS

Ž .1.1. Let X, G be a pair of smooth rational projective surface and a
non-trivial finite group G acting faithfully on X. Denote by Y � X�G the
quotient surface and � : X � Y the quotient map. Let f : Z � Y be the
minimal resolution. Note that Y is a rational surface by Luroth’s theorem
and Y has at worst quotient singularities and hence is simply connected
� �Ko, Theorem 7.8 .

We assert that X G is non-empty. Indeed, if X G is empty then the
� �quotient map X � Y is an unramified finite morphism of degree G over

� �the simply connected surface Y, whence G � 1, a contradiction.
� � �pThe following is well known Bri, Satz 2.11 ; for the smoothness of X

we diagonalize the action locally and see that the � fixed part is definedp

Ž .by a local coordinate the eigenvector w.r.t. to the eigenvalue � 1 .

Ž . G � pLEMMA 1.2. 1 The fixed locus X is non-empty. If G � � then X isp
Ža disjoint union of smooth cur�es R and finitely many points p 1 � j � s;i j

.s � 0 .

Ž .2 The surface Y � X�G is a Q-Gorenstein normal rational surface
Ž .with singularities. If G � � , then q � � p is a cyclic quotient singularityp i i

1 Ž . � 4of type 1, k for some 1 � k � p 	 1; one has Sing Y � q , . . . , q andi i 1 sp
	1Ž .� q � p .i i

Ž . Ž3 Suppose that G � � . Then Y � X�� is Du Val at q i.e.,p p i
.Gorenstein in the present quotient singularity case if and only if k � p 	 1i

Ž .this is always true when p � 2 . In general, pK is Cartier.Y

Ž . G4 The quotient map � is unramified outside the fixed locus X . If
Ž .G � � , the ramification formula has the form Q-linear equi�alence : Kp X

� Ž . Ž .	 � K � p 	 1 Ý R .Q Y i i

Ž . Ž .G5 The �-in�ariant sublattice Pic X � Q has rank equal to the
Ž .Picard number � Y � rank Pic Y of the quotient surface Y.

1.3. On surfaces, quotient singularity and log terminal singularity are
� �equivalent Kaw, Corollary 1.9 . So there is a Q-effective divisor � sup-
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	1Ž . � �ported on f Sing Y and with the integral part � � 0, such that

K � f � K 	 � .Ž .Z Y

	1Ž .Write � � Ý � where � is supported on f q . Then � � 0 if andi i i i i
only if q is Du Val.i

Ž .1.4. DEFINITION. Fix a group G. Let X , G be two pairs where G actsi
Ž . Ž .faithfully on X . A G-equi�ariant birational morphism � : X , G � X , Gi 1 2

Ž . Ž .is a birational morphism � : X � X , satisfying � gx � g� x for every1 2
g 
 G. The existence of such � is equivalent to that of a G-stable divisor
on X which can be smoothly blown down. If the G-invariant sublattice1
Ž .G Ž .Pic X � Q has rank 1, then there is no such � and X, � is minimal inp
the sense below.

Ž .Two pairs X , G are birationally G-equivariant if there is a birationali
map X 			 � X which can be decomposed as f � 			 � f such that for1 2 1 n
each i either f or f	1 is a G-equivariant birational morphism.i i
Ž .X, G is called a minimal pair, if for any G-equivariant birational

Ž . Ž .morphism � : X, G � X , G , one has � � id.2
Ž . Ž .Let X, G be a pair with X rational and G finite and let Y � X�G.

Suppose that 	K is Q-ample. Write 	K 	 rP, where r is a positiveY Y Q
Ž .rational number and P a Cartier ample divisor. Let r Y be the largest

Ž .hence P is the ‘‘smallest’’ among such expression, noting that Pic Y is a
Ž .torsion free Z-module of finite rank Y is simply connected . By the same

reasoning, the divisor class of P is uniquely determined by 	K or X.X
Ž .This r Y is called the Fano index of Y. When G � � , one can writep

Ž .r Y � m�p with a positive integer m because pK is Cartier.Y

Ž .Remark 1.5. If X is a smooth Fano n-fold i.e., 	K is ample thenX
Ž . Ž . Ž Ž . .r X � n � 1, and r X � n resp. r X � n � 1 if and only if X is a

n�1 Ž n. � �smooth quadric hypersurface in P resp. X � P KO .
Ž . Ž .Let F e � 2 be the projective cone, with vertex q , over a smoothe 1

rational curve of degree e in P e. Then the resolution of the vertex is the
Ž � �. Ž .Hirzebruch surface F see Hart , where the 	e -curve is the inverse ofe

e�1the vertex. F can also be embedded into P as a non-degenerate surfacee
e�1Ž � �.of degree e see Nag . The hyperplane section H of F 
 P is thee

generator of the Picard lattice and is the image of a section on F disjointe
2Ž . Ž .from the 	e -section; so H � e. One sees that r � e � 2 �e � 1.

1.6. Suppose that G � � . The induced � action on Pic X � C can bep p
diagonalized. Since � acts on the integral lattice Pic X, there is ap 'Ž .generator h of � satisfying, where � � exp 2� 	 1 �p ,p p

� �t 2 p	1h � Pic X � C � diag I , M , M � � , � , . . . , � .c p p p p p
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Ž . Ž . �p 2 Ž .ŽLEMMA. 1 rank Pic X � Q � c; K � 10 	 c 	 p 	 1 2 � c 	X
Ž Ž ..s 	 Ý 2 	 2 g R .i i

Ž . �p � 4 Ž Ž ..2 Writing X � � R � p , . . . , p , we ha�e s � Ý 2 	 2 g Ri 1 s i i
� c � 2 	 t.

Ž . Ž .3 Let k 1 � i � p 	 1 be the number of isolated � -fixed points ati p

Ž i.which a generator of � can be diagonalized as � , � with � a primiti�e pthp
Ž .root of 1 so s � Ý k . Theni i

2 p	11 	 g R p � 1 R 1Ž .Ž .j j i1 � � � k � 1 	 � 1 	 �Ž . Ž .Ý Ý Ý iž /2 12 p 	 1j i�1 �

1 	 g R p � 1 R2 5 	 p 11 	 pŽ .Ž .j j� � � k � kÝ 1 2ž /2 12 12 24j

� k a � k a � 			 ,3 3 4 4

where � runs o�er the set of primiti�e pth root of 1, where a � 1�4,3
a � 1�2, when p � 5.4

Proof. Applying the topological fixed-point formula, we obtain
i �h is � 2 	 2 g R � 
 X � 	1 Tr h � H X , CŽ . Ž . Ž . Ž .Ž . Ž .Ý Ýi t o p

i i

� 2 � c � tTr M � 2 � c 	 t .Ž .p

Ž . 2 Ž . Ž .The Picard number � X is 10 	 K and also equals c � t p 	 1 . So 1X
Ž .and 2 are proved.

� �By the holomorphic Lefschetz fixed point formula ASIII, p. 567 , one
has

i � i1 � 	1 Tr h � H X , OOŽ . Ž .Ž .Ý X
i

� 1�det 1 	 h � T � 1 	 g R � 1 	 � n jŽ .Ž . Ž .Ž .Ý Ýp j pi
i j

22 n nj j	 R � � 1 	 � ,Ž .Ý j p p
j

where T is the tangent space of X at p , h is the generator of � , and h�
p i pi

n j Žacts on the normal bundle of R by a multiple � a primitive pth root ofj p
.1 . Letting h run in the set of generators of � and taking sums for bothp

Ž .sides of the above equality, to prove 3 we only need to show
p	1 p	1

2i 2 i ip 	 1 �2 � 1� 1 	 � , 1 	 p �12 � � � 1 	 � .Ž . Ž .Ž . Ž .Ý Ýp p p
i�1 i�1
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Ž .Ž p	2 p	3 ŽThese can be checked by using p � 1 	 x x � 2 x � 			 � p 	
. .2 x � p 	 1 with x � � to get rid of the denominators. The equalitiesp

above were originally calculated by Cay Horstman and were kindly brought
to our attention by Jonghae Keum.

Ž .In Lemmas 1.7�1.10 below, except Lemma 1.7 4 and Lemma 1.8, we
assume only that X is a smooth rational surface and G a non-trivial finite
group acting on it.

Ž .GLEMMA 1.7. Suppose that rank Pic X � Q � 1. Then we ha�e:

Ž . 21 X is a del Pezzo surface. Hence d � K satisfies 1 � d � 9. d � 9X
if and only if X � P 2; d � 8 if and only if X is the Hirzebruch surface F withe
e � 0 or e � 1; d � 2 if and only if X is the blow-up of P 2 at 9 	 d points
in general position.

Ž . Ž . 2 Ž .G2 One has Pic Y � Z P see Definition 1.4 . If K � 7, then Pic XX
� Z K .X

Ž . � �3 	K is Q-ample. A general member of P is smooth and irre-Y
ducible, which does not pass through the singular locus of Y; one has also

Ž . Ž .2 g P 	 2 � P. K � P .Y

Ž . �p4 Suppose further that G � � . Then X is either a finite set, or ap
union of a smooth irreducible cur�e R and finitely many points.

Proof. Clearly, both the pull-back H on X of an ample divisor on Y
Ž .Gand 	K are generators of the rank one Q-module Pic X � Q. NotingX

Ž .that the Kodaira dimension 	� � � X � 2, 	K is a positive multipleX
Ž . � �of H and 1 follows Man2 .

Ž .The first part of 2 is true because Pic Y is a rank one lattice and 	K Y
Ž Ž ..is ample see 3 . Let C be any G-stable Cartier divisor. Then C �

Ž .Ž .m�n 	K for some coprime positive integers. Intersecting this with aX
Ž . Ž .	1 -curve E on X, one obtains n C.E � m and n � m, whence n � 1

Ž .and 2 is proved.
Ž . �p Ž .For 4 , if X contains two disjoint curves R , R then both R are1 2 i

2 Žpositive multiples of H and this leads to that 0 � R .R � H � a1 2
.positive number , a contradiction.

Ž . Ž .For 3 , since � Y � 1, either K or 	K is Q-ample. By the ramifica-Y Y
Ž .tion formula similar to the one in Lemma 1.2 and the fact that the divisor

	K is ample, we see that 	K is Q-ample.X Y
� � � � � � ŽBy the main theorem of Am or Alex , dim P � 1 and a general

.member P is smooth irreducible. Since P is Cartier and Y has at worst
Ž .rational singularities for the second equality and by the Riemann�Roch
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Ž . Ž � �.theorem for the third one has cf. Art, Theorem 2.3


 OO � 
 OO 	 
 OO 	P � 
 OO 	 
 OO 	f �PŽ . Ž . Ž . Ž . Ž .Ž . Ž .P Y Y Z Z

	1
� �� f P . K � f PŽ .Z2

	1 	1

 
 



� P � D K � P � 
 OO � D. K � P ,Ž . Ž . Ž . Ž .Z P Z2 2

where P
 is the proper transform on Z of P and D an effective divisor
	1Ž . � 
 
with support in f Sing Y such that f P � P � D. Since P � P , we get

Ž 
. 
0 � D. K � P � D.P , where the inequality is true because each com-Z
Ž . � � 2 �ponent of D is a 	n -curve with n � 2 Bri, Satz 2.11 . Thus D � D. f P

� � � 
� 0 and D � 0 for D is negative definite Mum, p. 230 . So f P � P and
Ž . Ž 
.P is away from the singular locus of Y. Now 2 g P 	 2 � 2 g P 	 2 �

� Ž � . Ž .f P. K � f P � P. K � P because f�K � K .Z Y Z Y

Ž .LEMMA 1.8. Suppose that the quotient surface Y � X�� satisfies � Yp
Ž . �p� 1 and r Y � 1. Then the fixed locus X is a finite set.

Ž .Proof. Write 	K � rP with r � r Y � 1. Suppose the contrary thatY
X � contains an irreducible curve R. Then X � is a union of R and points

Ž . Ž .p Lemmas 1.2 and 1.7 . Note that B � � R is away from Sing Yi
Ž . �Lemma 1.2 , is Cartier, and satisfies � B � pR. Write B � bP, where
b � 1 by the maximality of r. Then the ramification formula implies that

� �	K � 	 � K � p 	 1 R � rp 	 b p 	 1 �p� P .Ž . Ž .Ž .X Y

Ž . Ž . Ž .Since 	K is ample Lemma 1.7 , r � b p 	 1 �p � p 	 1 �p. This andX
the fact that r � m�p with an integer m would imply that m � p and
r � 1. This contradiction proves the lemma.

� �The following two results are essentially proved in Fuj, Chap. 1, Sect. 5 .
For the convenience of the reader we give a kind of new proof here.

Ž .LEMMA 1.9. Suppose that the quotient surface Y � X�G satisfies r Y �
Ž .1. Then Y is Du Val i.e., Gorenstein in the present case and a general

� �member of 	 K is a smooth elliptic cur�e which does not pass through theY
singular locus of Y.

Proof. In view of Lemma 1.7, we only need to show that Y is Goren-
stein and P 	 	K . By the assumption K � P is Q-linearly equivalentY Y

� Ž . Ž 
. 
 �to zero. Then 0 	 f K � P � K � P � �; here P � f P is aQ Y Z
Ž 
 . Ž .smooth curve with p P � 1 � 0 cf. Subsection 1.3 and Lemma 1.7 , anda

� 
 �hence the Riemann�Roch theorem implies that K � P � �. ThusZ
Ž .� � 0, whence Y has only Du Val singularities cf. Subsection 1.3 . Finally,
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since the two Cartier divisors 	K and P are Q-linear equivalent, theyY
are linear equivalent because the rational surface Y is simply connected
and hence Pic Y is torsion free. The lemma is proved.

LEMMA 1.10. Suppose that the quotient surface Y � X�G satisfies r �
Ž . Ž .r Y � 1. Then a general member P is a smooth rational cur�e away from

Ž . 2the singular locus of Y. Moreo�er, r 	 1 P � 2.

Proof. Substituting 	K � rP into the equality in Lemma 1.7, we getY
Ž . Ž . 2 Ž .2 g P 	 2 � 1 	 r P � 0. Thus g P � 0 and the current lemma fol-

lows from Lemma 1.7.

2. EXAMPLES

Ž . ŽIn this section, we shall construct examples of pairs X, � see Theo-p
.rems 1 and 4 in the Introduction .

2.1. Suppose that � acts faithfully on X � P 2 with homogeneousp
coordinates X, Y, Z. Then one can diagonalize a suitable generator g of

'Ž .� as one of the following, where � � exp 2� 	 1 �p ,p p

�2.1a. g � diag 1, 1, � ; 2.1b. diag 1, � , � 2 � � � p 	 1 .Ž .p p p

� � �In 2.1a, X is a union of the line Z � 0 and the point p � 0, 0, 1 .1
1 Ž .This p dominates a singularity q of Y � X�� of type 1, 1 . It is easy1 1 p p

to see that Y is the projective cone F with the vertex at q . Thep 1
Ž .Z� p -covering map � : X � Y is branched along the vertex and a

Ž . Ž .smooth hyperplane B 	 H in notation of Remark 1.5 . One has r Y �
Ž . Ž .p � 2 �p Remark 1.5 .

In 2.1b, one must have p � 3 and X � is a union of three points
� � � � � �p � 1, 0, 0 , p � 0, 1, 0 , p � 0, 0, 1 . These p dominate singular points1 2 3 i

1 12 Ž . Ž .q of Y � P �� . The q are respectively of type 1, � , 1, p � 1 	 � ,i p i p p
1 0Ž . Ž . Ž . Ž .and 1, u with u� � � 	 1 mod p . One has � Y � � Lemma 4.41 pp

One sees also that Y is Du Val if and only if p � 3; if this is the case then
� 2 �g � diag 1, � , � and Y is a Gorenstein log del Pezzo surface of rank 13 3

1 Ž . Ž . � �with 3 type 1, 2 singularities and also r Y � 1 MZ1, Lemma 6 . If3
Ž . Ž .p � 5, then r Y � 1�p, 3�p Lemma 1.9 and Propositions 3.1 and 3.3 .

2.2. Let Y � P 2, p � 3, and � : X � Y the triple cover totally
branched along a smooth plane cubic B; X is a del Pezzo surface with

2 � � �K � 3 and R 
 	 K , where � B � 3R.X X

2.3. Let Y � F , p � 3, and � : X � Y be the triple cover branchedp
Ž .along a smooth genus-2 curve B and the vertex q � B of the cone Y.1
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2 � �Then X is a del Pezzo surface with K � 1 and 	 K contains 6X X
members of cuspidal rational curves lying over the 6 generating lines of the
cone Y tangent to the branch curve B. Blowing up the unique base point

� � � �of 	 K Dem, Proposition 2, p. 40 with E the exceptional curve, oneX
˜ 1gets a relatively minimal rational elliptic surface 
 : X � P with a section

E and six type II singular fibres; so the Mordell Weil group of the
fibration 
 is torsion free and of full rank 8. There is an induced � -action3

˜ Ž .on X fixing point wise the section E.

Ž .2.4 the rows 5 and 6 of Table I . Here we construct a 1-dimensional
Ž . Ž 1 � 4. Ž .family X , � s 
 P � 0, 
 1 and a unique pair X , � , where eachs 5 II 5

surface is a degree 1 del Pezzo surface on which � acts faithfully and fixes5
Ž .point wise a smooth member in the anti-canonical linear system. When

Ž . � �X � X resp. X � X , 	 K has 10 nodal members forming twos II X
Ž� -orbits, and one cuspidal member resp. 5 � 1 cuspidal members form-5

.ing two � -orbits .5
˜ 1 ˜ ˜ ˜ ˜Ž .Let Z � P with Z � Z resp. Z � Z be the unique elliptic surfaceI II

� ˜Ž .with only one section E, a type II fibre Z , and two type I fibres att�0 1
Ž . � �t � 
1 resp. a single type II fibre at t � � MP, Theorem 5.4 . Express

� Ž .the type II fibre as D � 5C � D , where C is a 	2 -curve, and1 2
Ž .Supp D are the two disjoint chains of 	2 -curves of length 4 so that thei

˜ Žsection E meets a tip component of D . Let Z � Y later referred to as2
.Y � Y , Y � Y , respectively be the contraction of E � D , D to aI II 2 1

1 Ž .smooth point q and a type 1, 4 singular point q ; both points lie on the15
Ž .image of C also denoted by C .

˜ ˜Ž .Let B be the image on Y of a smooth fibre Z , s � 0, 
 1 resp. Zt�s t�1
˜Ž .when Y � Y resp. Y � Y . Since fibres on Z are linearly equivalent,I II

Ž .�5 Ž .pushing down, we get an induced relation OO C � OO B . This givesY Y
Ž .rise to a � � Z� 5 -Galois cover,4

4

� : X � Spec OO 	iC � Y ,Ž .� Y
i�0

Ž .referred to as X � X , X � X , respectively which is etale outside thes II
� �smooth elliptic B in 	 K and the only singularity q of Y; along B theY 1

map � is totally branched.

2.4.1. Conversely, suppose that 5M 	 B is a relation on Y with M a
Ž . Ž .Weil divisor. We now show that OO M � OO C . Pulling it back by theY Y

˜Ž .minimal resolution f : Z � Y Z � Z is the contraction of E � D , one2

has 5M � D 	 B on Z, where M is mapped to M, the same B denotes1


 Žits preimage on Z and D is supported on the support of the image of Z1
. Ž .of D . On Z, the image of C satisfies C.B � 1, while each component of1
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D has zero intersection with B. Using these to intersect the above1
relation with C and components of D , one sees that D
 	 D � 5D with1 1 1

Ž .D a Z-combination of irreducible components of D . Thus 5 M � D �1
D 	 B on Z. On the other hand, one has 5C � D 	 B on Z. These1 1

Ž .relations imply that 5 M � D 	 C 	 0 and hence M � D 	 C for the
Ž .rational surface Z has torsion free Pic Z. Passing to Y, one gets OO M �Y

Ž .OO C .Y
� Ž .It is easy to see that X is smooth and 	K � � 	K 	 4C �X Y

� Ž . � 2� 5C 	 4C � � C so that 	K is nef and big with K � 1 becauseX X
2 Ž . � �C � 1�5 on Y; every member F � B, 5C in 	 K has total transformY

on X splitting into 5 elliptics meeting at the unique point lying over q
Ž . � � � �� B � C , while � B � 5R with a smooth elliptic R 
 	 K and � CX

� � 	1Ž .is a cuspidal curve in 	 K with a cusp at the point p � � q . ThusX 1 1
� is totally ramified exactly along R and the point p , and X is a del1

�5 � 4 Ž .Pezzo surface with X � R� p ; indeed, X has no 	2 -curves and the1
Ž � . � �only singular members � � C in 	 K are 10 nodal curves lying overX

˜ Žthe two type I fibres on Z resp. five cuspidal curves lying over the type1 I
˜ .II fibre on Z .II

2 Ž .Finally, we have rank Pic Y � 1 and K � 5 noting that Y is Du Val .Y
Ž . Ž . Ž . � �One has also r Y � 1 and � Y 	 Sing Y � 1 MZ, Lemma 6 .1

Ž . �52.5 the row 7 of Table I . We shall calculate X and determine the
Ž .type of singularities of Y � X�� for the unique pair X, � , where X is5 5

2 Ž .the unique del Pezzo surface with K � 5 Lemma 2.13 .X

˜ 1Let X � P be a relatively minimal elliptic surface with a section and
˜with two type I fibres F , F ; such an X is unique and the fibration has5 1 2

Ž . � �the Mordell Weil group Z� 5 MP, Theorem 5.4 ; it has also two type I1
� �singular fibres. Using Shioda’s height pairing Sh, Theorem 8.6 , one can

Ž .verify that the five sections P 0 � i � 4 are disjoint and meet distincti
˜fibre components of F , F . Let X � X be the blow-down of the sections1 2

P . Then X is the del Pezzo surface with K 2 � 5. The translation auto-i X

morphism given by the section P induces an automorphism g on X so1
�5 Žthat X consists of two points the images of the nodes of the two type I1

˜ 0. ² :fibres on X , where � � g . Set Y � X�� and Y � Y 	 Sing Y. Then5 5
1 Ž .Y is a Gorenstein log del Pezzo surface with two type 1, 4 singularities,5

2 Ž . Ž � �.K � 1, rank Pic Y � 1, and r Y � 1 see MZ, Lemma 6 .Y

Conversely, one can show that such a kind of singular del Pezzo surface
Ž 0.Y is unique modulo isomorphism and that � Y � � ; hence the quo-1 5

tient map � : X � X�� here is the completion for the universal covering5
map of the smooth part of the unique Gorenstein log del Pezzo surface

1 Ž . Ž .with two type 1, 4 singularities see Lemma 4.4 .5
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Ž . 1 1 Ž . Ž . Ž2.6. � p � 2 acts on X � P � P by x, y � y, x switching thep

. 2fibrations . One sees that Y � X�� is P and the quotient map � : X � Yp
is branched along a smooth conic, whose inverse on X is the diagonal.
This � is birationally equivalent to De Jonquieres in�olution of degree 2p
� �BB, Example 1.6 .

2.7. Let Y � P 2, p � 2, and � : X � Y the double cover branched
along a smooth quartic curve. � is called Geiser ’s in�olution on the delp

Pezzo surface X with K 2 � 2. Conversely, if X is a del Pezzo surface withX
2 � �K � 2 then � is the � above Dem, Chap. V, Sect. 4 .X �	K �X

Ž .2.8. Let Y � F p � 2 and � : X � Y the double cover branchedp
Ž .along a smooth genus-4 curve B and the vertex q � B of the cone Y.1

Then X is a del Pezzo surface with K 2 � 1. � is called the BertiniX p

in�olution. Conversely, if X is a del Pezzo surface with K 2 � 1 thenX
� �� is the � above Dem, Chap. V, Sect. 5 .�	2 K �X

Ž . Ž .2.9 the row 4 of Table II . We construct a pair X, � with X the6
Ž . 2unique del Pezzo surface with K � 6 and the group � acting faithfullyX 6
on X such that X �6 is a finite set and Y � X�� has exactly 3 singulari-6

1 1 1Ž . Ž . Ž . Ž .ties of type 1, 1 , 1, 2 , 1, 5 types A , A , A in other notation as1 2 52 3 6

all of its singularities.
˜ 1Let X � P be a relatively minimal rational elliptic fibration with type

I , I , I , I singular fibres F , F , F , F and a section P . Such an elliptic1 2 3 6 0 1 2 3 0
� � 2surface is unique MP, Theorem 5.4. . Write F � C � C , F � Ý D ,1 0 1 2 i�0 i

F � Ý5 E , with D .D � E .E � 1 so that P meets C , D , E .3 j�0 j i i�1 j j�1 0 0 0 0

� �Using the height-pairing in Sh, Theorem 8.6 , one sees that the Mordell
Ž .Weil group of the fibration is Z� 6 and its generator P meets C , D , E1 1 1 1

after suitable relabelling.
Denote by g the translation automorphism given by the section P . One1

˜�6 3 2² : Ž .sees that X , with � � g , consists of 6 points: g resp. g ; g fixes6
Ž .the node p resp. the two nodes p , p ; the three nodes p , p , p of the1 2 3 4 5 6

˜Ž .type I resp. I ; I fibre. Let X � X be the smooth blow-down of the six1 2 3
Ž .disjoint sections so that X is the degree 6 del Pezzo surface. Then X has

�6 ˜�6Ž .an induced � action so that X is still a 6-point set the image of X .6
One sees that Y � X�� has exactly three singular points of type6

Ž � 4 � 4.A , A , A the images of p , p , p , p , p , p , rank Pic Y � 1, and5 2 1 1 2 3 4 5 6

K 2 � 1.Y

Ž . Ž Ž ..�22.10 the row 5 of Table II . Suppose that G � Z� 3 acts faith-
fully on P 2 with coordinates X, Y, Z, so that X G is a finite set. Take

G �generators g , g of G. By the assumption on X , one has g � diag 1,1 2 1
2 �� , � after a change of coordinates. Now the commutativity of g , g in3 3 1 2
Ž . Ž .PGL C implies that g � a with a a a � 1 and a � 0 for other2 2 i j 13 21 32 i j
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entries. One sees easily that each order 3 subgroup of G fixes exactly 3
� G � g1 �� � � � � �4points, and X � 12. For instance, X � 1, 0, 0 , 0, 1, 0 , 0, 0, 1 and

g 2 �� i 2 i � 4X � 1, a � , � �a � 0 � i � 2 .21 3 3 13

Ž .2.11 the rows 2 and 6 of Table II . We shall construct:

Ž . Ž . 1 11 a pair X, � with X � P � P and the group � acting4 4
faithfully on X such that X �4 is a finite set and Y � X�� has exactly 34

1 1 1Ž . Ž . Ž . Ž .singularities of type 1, 1 , 1, 3 , 1, 3 i.e., types A , A , A as all of1 2 32 4 4

its singularities; and
Ž . Ž . 1 12 a pair X, G with X � P � P and the group G � � � �2 4

acting faithfully on X such that X G is a finite set and Y � X�G has
1 1 1 1Ž . Ž . Ž . Ž .exactly 4 singularities of type 1, 1 , 1, 1 , 1, 3 , 1, 3 as all of its2 2 4 4

singularities.

˜ 1Let X � P be a relatively minimal rational elliptic fibration with type
I , I , I , I fibres F , F , F , F and a section P . Such an elliptic surface2 2 4 4 1 2 3 4 0

� �is unique MP, Theorem 5.4 . Write F � C � C , F � D � D , F �1 0 1 2 0 1 3
Ý3 E , and F � Ý3 G with E .E � G .G � 1 so that P meetsi�0 i 4 j�0 i i i�1 j j�1 0

� �C , D , E , G . Using the height-pairing in Sh, Theorem 8.6 , one sees0 0 0 0
that the Mordell Weil group of the fibration is � � � ; after suitable2 4

Ž .relabelling, two disjoint sections P , P meet fibres in this way: P meets1 2 1
C , D , E , G and P meets C , D , E , G . Clearly P , P have order 40 1 1 1 2 1 0 1 3 1 2
and generate the Mordell Weil group with P as the origin.0

Denote by g the translation automorphism given by the section P . Onei i
˜G ² :sees that X , with G � g , g � � � � , consists of 12 points : g1 2 2 4 1

Ž . Ž . Ž .resp. g fixes the two nodes p , p resp. p , p of F resp. F , while2 1 2 3 4 1 2

Ž . Ž . 	1 Ž .g resp. g switches p , p resp. p , p ; g g resp. g g fixes the2 1 1 2 3 4 2 1 2 1
˜Ž . Ž .four nodes p , . . . , p resp. p , . . . , p of F resp. F . Let X � X be5 8 9 12 3 4

Ž . 1 1the smooth blow-down of the eight disjoint sections so that X � P � P .
G ŽThen there is an induced G actions so that X is still a 12-point set the

˜G .image of X .
Ž . Ž .One sees that Y � X�H with H � � generated by the image of g1 4 1

Žhas exactly three singular points of type A , A , A the images of3 3 1
� 4. 2 2p , p , p , p , K � K �4 � 2, and rank Pic Y � 1.1 2 3 4 Y X 11

One can also verify that Y � X�G has exactly four singular points of
Ž � 4 � 4 � 4 �type A , A , A , A the images of p , p , p , p , p , . . . , p , p ,3 3 1 1 1 2 3 4 5 8 9

4. 2. . . , p , rank Pic Y � 1, and K � 1.12 Y

LEMMA 2.12. Let X be a del Pezzo surface with K 2 � 1 and a faithfulX
Ž . Ž .� -action such that � fixes point wise a smooth elliptic cur�e R 
5 5

� � Ž .	 K . Then modulo � -equi�ariant isomorphism the pair X, � is equalX 5 5

Ž . Ž 1 � 4. Ž .to either X , � s 
 P � 0, 
 1 or X , � in Example 2.4.s 5 II 5
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Proof. It suffices to show that the covering map X � Y � X�� here5
coincides with one in Example 2.4. We shall show that the relative minimal
model of the induced elliptic fibration on Y has a type II� singular fibre

˜Ž .and only one section. To begin with, let X � X be the blow-up of the
˜ ˜� �unique base point of 	 K with E the exceptional curve. Then X is aX

˜relatively minimal elliptic surface with a section E. Since X contains no
˜Ž .	2 -curves for 	K is ample, each fibre of the elliptic fibration on X isX

˜irreducible. The induced � -action on X fixes the proper transform of R5
˜Ž .also denoted by R, which is a smooth fibre now and stabilizes E. Clearly

˜the rational curve E has exactly two � -fixed points: the intersection5
Ẽ � R and one more point p on another fibre F .1

Ž . � 4If F is a singular fibre � F then gF � g 
 � is a set of 5 singular2 1 2 5
˜Ž . Ž .fibres of the same type. Hence the Euler number 12 � 
 X � 
 F � 5t1

Ž .with t � 0. Thus 
 F � 2, 7 because there should be at least two1
singular fibres if one calculates the Picard number in terms of contri-

�butions from fibres and the rank of the Mordell Weil group Sh, Corol-
�lary 5.3 .
˜ 1Let Z � P be the smooth relative minimal model of the elliptic

˜ ˜fibration on the quotient X�� induced from the one on X. Since � acts5 5
˜on the base curve of the fibration of X as an automorphism of order 5, we

˜Ž .see that if T F is the monodromy of the fibre F on Z dominated by the1 1
5˜ Ž . Ž .fibre F on X, then the monodromy T F equals T F . This and1 1 1

�Ž .
 F � 2, 7 imply that F is of type II and its image F is of type II at1 1 1
Žt � 0 with t the inhomogeneous coordinate of the base curve we arrange t

˜. � �this way BPV, Table 6, p. 159 . So Z is a rational elliptic surface with only
˜ ˜ ˜Ž .one section E the image of E and we can identify it with either Z or ZI II

˜in Example 2.4. Then the fibre B on Z dominated by the fibre R is at
Ž .t � s with s � 0, 
 1 resp. at s � 1 .

˜ ˜One sees that Z � X�� is the contradiction of D , D in notation of5 1 2
˜ ˜ ˜Ž .Example 2.5. Contracting further E on X and the image of E on X��5

Ž .to get X and Y � X�� , we see that our � : X � Y is also a Z� 5 -Galois5
cover totally branched at the only singular point q of Y and the curve B1
Ž .the image of R . It is known that such a cover is given by a relation

�5Ž . Ž . Ž . Ž .OO M � OO B for some Weil divisor M. Since OO M � OO C byY Y Y Y
Subsection 2.4.1, our � here coincides with the one in Example 2.4. This
proves the lemma.

Ž .LEMMA 2.13. There is only one pair X, � of the del Pezzo surface X5
with K 2 � 5 and the group � acting faithfully on X modulo equi�ariantX 5
� -isomorphism.5

Proof. A degree 5 del Pezzo surface X is the blow-up of 4 points p oni
2 Ž .P no three of them are collinear , and hence there is only one such X



D.-Q. ZHANG576

Ž 2modulo isomorphism these 4 points p form a frame of P , and any otheri
.frame is mapped to this by a projective transformation . It is known that

Ž .Aut X is the symmetric group S in 5 letters. Since all sylow-5 groups of5
S are conjugate to each other, the lemma follows.5

LEMMA 2.14. Modulo equi�ariant � -isomorphism, there is only one pair6
Ž . Ž . 2X, � of the unique del Pezzo surface X with K � 6 and the group �6 X 6
acting faithfully on X such that X �6 is a finite set and Y � X�� has exactly 36

1 1 1Ž . Ž . Ž .singularities of type 1, 1 , 1, 2 , 1, 5 as all of its singularities.2 3 6

Proof. Note that Y is a Gorenstein log del Pezzo surface with 3
singularities of type A , A , A in other notation. In view of Lemma 4.4, it1 2 5
is enough to show that there is only one such Y modulo isomorphism. Let
f : Z � Y be the minimal resolution. Then Z is an almost del Pezzo

2 � � � �surface with K � 1 so that 	 K has exactly one base point, dim 	 KZ Z Z
2 Ž .� K � 1 Riemann�Roch and Kawamata�Viehweg vanishing and aZ

� � � �general member of 	 K is irreducible Dem, Theorem 1, p. 39 . LetZ
˜ � �Z � Z be the blow-up of the unique base point of 	 K with P theZ 0

˜exceptional curve. Then Z is a relatively minimal elliptic surface with P0
as a section. One sees that the inverse of Sing Y is contained in three

� �different fibres F , F , F of types I , I , I MP, Theorem 4.1 . Now the1 2 3 2 3 6
uniqueness of Y follows from the uniqueness of such an elliptic surface

˜� � Ž .MP, Theorem 5.4 and also the uniqueness of the pair Z, P modulo0
translation automorphism. This proves the lemma.

Ž . Ž .LEMMA 2.15. 1 Modulo equi�ariant H-isomorphism H � � there is4
Ž . 1 1only one pair X, H with X � P � P and the group H acting faithfully on

X such that X H is a finite set and Y � X�H has exactly 3 singularities of type1
1 1 1Ž . Ž . Ž .1, 1 , 1, 3 , 1, 3 as all of its singularities and rank Pic Y � 1.12 4 4

Ž . Ž .2 Modulo equi�ariant G-isomorphism G � � � � , there is only4 2
Ž . 1 1one pair X, G with X � P � P and the group G acting faithfully on X

such that X G is a finite set and Y � X�G has exactly 4 singularities of type
1 1 1 1Ž . Ž . Ž . Ž .1, 1 , 1, 1 , 1, 3 , 1, 3 as all of its singularities.2 2 4 4

Ž . Ž . Ž .3 There is a subgroup H of G such that X, H � X, H modulo1 1
Ž .� -equi�ariant isomorphism identity H � H � � and hence Y � X�G �4 1 4

Ž .X�H �G � Y �G, where G � G�H � � .1 1 1 2

Ž .Proof. 1 Note that Y is a Gorenstein log del Pezzo surface of Picard1
number 1 and with singularities of type A , A , A . It suffices to show1 2 3

Ž .such Y is unique Lemma 4.4 . Let f : Z � Y be the minimal resolu-1 1 1
	1Ž . Ž .tion. Then f Sing Y is a disjoint union of linear chains of 	2 -curves1

of length 1, 3, 3. As in Lemma 2.14, Z is an almost del Pezzo surface with1
2 � � � �K � 2, dim 	 K � 2, and a general member A of 	 K smoothZ Z Z1 1 1
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� � Ž . 
irreducible Dem, Theorem 1, p. 39 . Pick up any 	1 -curve D on Z4 1

 	1Ž .such that D � f Sing Y is a disjoint union of two linear chains of4 1

Ž 
 . 
length 1, 7 D connects the two length-3 chains . One can find such D by4 4
1 � �playing with P -fibrations, or from Zh1, Lemmas 3.5, 4.2, 4.3 we see that

Ž 	1Ž .. Ž . �Z , f Sing Y fits Case 9 in Lemma 4.2 there and the picture at Zh1,1 1
� 
p. 454 , and we just let D � E in the notation there.4 2


 ŽLet Z � Z be the blow-up of the point A � D with A fixed for the2 1 4
. 
time being with P the exceptional curve. Then Z is again an almost del2 2

Pezzo surface with K 2 � 1. As in Lemma 2.14, let Z � Z be theZ 3 22
� �blow-up of the only base point of 	 K with P the exceptional curve.Z 02

Then Z is a relatively minimal elliptic surface so that the strict inverse of3

 	1Ž .D � f Sing Y is contained in two different fibres F , F of types I , I4 1 1 2 2 8

� �MP, Theorem 4.1 . Now the uniqueness of Y follows from the uniqueness
� �of such an elliptic surface MP, Theorem 5.4 and also the uniqueness of

Ž .the triplet Z ; P , P modulo translation automorphism, noting that the3 0 2
Ž .Mordell Weil group of the fibration is Z� 4 and when we choose P as0

Ž .the origin then P is the unique element of order 2. This proves 1 .2

Ž .2 Note that Y is a Gorenstein log del Pezzo surface with 4
singularities of type A , A , A , A . As in Lemma 2.14, let f : Z � Y be1 1 3 3

˜the minimal resolution and let Z � Z be the blow-up of the unique base
� �point of 	 K with P the exceptional curve. Now the uniqueness of YZ 0

� �follows from the uniqueness of such an elliptic surface MP, Theorem 5.4
˜Ž .and also the uniqueness of the pair Z, P modulo translation automor-0

Ž .phism. This proves 2 .
Ž .3 This is shown in Example 2.11.

3. CASE: THE INVARIANT SUBLATTICE IS OF RANK 1

Ž Ž . . Ž . �pIn this section, we consider the case � Y � rank Pic X � 1. We
Ž .first treat the case r Y � 1.

Ž .PROPOSITION 3.1. Suppose that the quotient surface satisfies � Y � 1
Ž . Ž .and r � r Y � 1. Then p � 5, X, � equals a pair in Example 2.1b, andp

r � 1�p or r � 3�p.

�p � 4Proof. By Lemmas 1.2 and 1.8, X is a finite set p , . . . , p with1 s
Ž . � 4 2s � 1. Set q � � p so that Sing Y � q , . . . , q . Note that if X � Pi i 1 s

Ž .and s � 3 then p � 5 because r � 1 see Example 2.1 . Write r � m�p
with an integer 1 � m � p 	 1.

Ž .ŽWe shall frequently apply Lemma 1.6 to the extent that 9 	 p 	 1 3
. 2 Ž .	 s � K , which is between 1 and 9 because X is del Pezzo Lemma 1.7 .X
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Ž . Ž . Ž . 2 ŽSince 2 g P 	 2 � P. P � K � p 	 m P �p is an integer LemmaY

. 2 2 Ž � .2 2 2 2 21.7 , p � P . One has also K � � K � pK � m P �p � m .X Y Y

If m � 3, then K 2 � 9, r � 3�p, P 2 � p, and s � 3; so the propositionX
2 2 Ž . Ž .is true. If m � 2 and P �p � 2, then K � 8, r � 2�p and p, s � 2, 2 ,X

which leads to that r � 1, a contradiction. If m � 2 and P 2 � p, then
2 Ž .Ž .K � 4, which leads to 4 � 9 	 p 	 1 3 	 s , a contradiction.X
We now assume that r � 1�p. If s � 3, then K 2 � 9, P 2 � 9p; so theX

proposition is true.
2 Ž .Suppose that s � 1. Then K � 9 	 2 p 	 1 , whence p � 2, 3, 5. InX

the notation of Lemma 1.6, one has k � s � 1 for some 1 � u � p 	 1u
Ž Ž .. Ž .Ž u.and 1 � k 1� p 	 1 Ý 1� 1 	 � 1 	 � , where � runs over the set ofu �

all primitive pth root of 1. This is impossible by the calculation of the right
hand side in Lemma 1.6.

Suppose that s � 2. Then K 2 � 10 	 p and p � 2, 3, 5, 7. Since �X 7
Ž � �.cannot act on a cubic del Pezzo see Man2, Table 1, p. 176 , p � 7.

Applying Lemma 1.6, we can show that p � 5, k � s � 2. But then the4
Ž .quotient surface Y is Gorenstein and hence r Y � 1, a contradiction.

This completes the proof of the proposition.

Ž .Next we consider the case r Y � 1.

Ž .PROPOSITION 3.2. Suppose that the quotient surface satisfies � Y � 1
Ž . Ž .and r Y � 1. Then X, � is equal to one of the pairs in Examples 2.1bp

Ž .with p � 3 , 2.4, and 2.5.

Proof. We note that the minimal resolution Z of Y is neither P 2 nor a
2 Ž .Hirzebruch surface F , for otherwise, either Y � Z � P , or Y � F e � 2e e

Ž . Ž . Žbecause � Y � 1, which would lead to r Y � 1, a contradiction Remark
. 2 2 2 Ž .1.5 ; in particular, K � 7. If K � 8, then X � P or X � F e � 0, 1Z X e

Ž .because X is del Pezzo Lemma 1.7 . If X � F then � stabilizes the1 p
Ž .	1 -section and the divisor class of a fibre, which contradicts that
Ž . Ž . 1 1� Y � 1 Lemma 1.2 . By the same reasoning, if X � F � P � P , then0

p � 2 and � switches the two fibrations, but then Y � P 2 and r � 3 � 1,p

Ž . 2a contradiction see Example 2.6 . If X � P , then the proposition is true
Ž .by Lemma 1.9 see Example 2.1 . So we may assume the following, noting

� Ž .that f K � K Lemmas 1.3 and 1.9 :Y Z

Condition 3.2.1. Given 1 � K 2 � 7 and 1 � K 2 � K 2 � 7.X Y Z

Consider first the case X �p contains an irreducible curve R. We shall
show that this fits Example 2.4. By Lemma 1.7, X � is a union of the

Ž .irreducible smooth curve R and s points p . As in Lemma 1.8, writingi
Ž . Ž . Ž .� R � B and B � bP � b 	K with b a positive integer Lemma 1.7 ,Y

Ž . � � Ž .�we get 	K � m�n � P, where m�n � p 	 b p 	 1 �p with co-X



AUTOMORPHISMS ON RATIONAL SURFACES 579

� Ž .�� Ž .� Žprime positive integers m, n. So 1 � b � 1 	 m�n p� p 	 1 � p� p
. Ž . Ž .	 1 � 2. Thus b � 1 and m�n � 1�p. So B 	 	K and its reducedY

Ž . �preimage R are isomorphic elliptic curves. Now 	K � 1�p � P 	 RX
2 2 2 2 Žand K � P �p � K �p. By Lemma 1.6, one has also K � 9 	 p 	X Y X

.Ž .1 3 	 s .
Ž . 	1Ž .Since each q 
 Sing Y 1 � i � s is Du Val, D � f q is a chain ofi i i

Ž . Ž . Ž . Ž . Ž .p 	 1 of 	2 -curves. So � Z � � Y � s p 	 1 � 1 � s p 	 1 . Thus
2 2 Ž . Ž .K � K � 10 	 � Z � 9 	 s p 	 1 , which is an integer between 1 andY Z
Ž . Ž . � Ž .Ž .�7 cf. Condition 3.2.1 . So 2 � s p 	 1 � 8. Solving p 9 	 p 	 1 3 	 s

2 2 Ž . Ž .� pK � K � 9 	 s p 	 1 , one obtains s � 3 	 12� p � 1 . So onlyX Y
Ž . Ž .p, s � 5, 1 is possible. Our pair here is equal to the pair in Example 2.4

Ž .modulo � -equivariant isomorphism Lemma 2.12 .5
�p � 4Next we consider the case where X is a finite set p , . . . , p with1 s

Ž . � 2 2s � 1 Lemma 1.2 . Then 	K � � K and K � pK . As above, oneX Y X Y
Ž .Ž . 2 2 � Ž .� Žobtains 9 	 p 	 1 3 	 s � K � pK � p 9 	 s p 	 1 with 2 � p 	X Y

.Ž . Ž . Ž . Ž . Ž .1 3 	 s � 8 cf. 3.2.1 , s � 12� p � 1 , and p, s � 5, 2 . Our pair here
is now equal to the pair in Example 2.5 modulo � -equivariant isomor-5

Ž .phism Lemma 2.13 . This completes the proof of the proposition.
Ž .Now we treat the case were r Y � 1.

Ž .PROPOSITION 3.3. Suppose that the quotient surface satisfies � Y � 1
Ž . Ž .and r Y � 1. Then X, � is equal to one of the pairs in Examples 2.1a,p

2.2, 2.3, 2.6, 2.7, 2.8.

Ž .Proof. By Lemma 1.10 a general member P is a smooth rational
curve away from the singular locus of Y. Let P
 � f �P and m � P 2.
Applying the cohomology exact sequence arising from the exact sequence,

0 � OO � OO P
 � OO 
 m � 0,Ž . Ž .Z P

0Ž 
. Ž 
.2we obtain h Z, P � P � 2. As long as L is a smooth rational curve
2 0Ž . 2with L � 0 on a smooth rational surface, one always has h L � L � 2;

2 Ž 2 .thus by induction on L to reduce to L � 0 case one can deduce that
� � � �Bs L � �. See DZ, Lemma 1.7 .

� � �So the linear system f P gives rise to a well-defined morphism � : Z
m� 1 Ž 2 .� P , with the image W a non-degenerate surface noting that P � 0

Ž 
 .2 Ž .Ž .and hence deg W � m. On the other hand, m � P � deg � deg W .
Thus � is a birational morphism onto a degree m surface in P m� 1.
Clearly, � factors as 
 � f , with a birational morphism 
 : Y � W which is

� � Žgiven by the linear system P . Since P is ample, 
 is an isomorphism W
.is normal; see below . So we can identify Y � W.

m� 1 ŽNon-degenerate surfaces W of degree m in P are well classified cf.
� �. 2 Ž . 2 5Nag . W is either P m � 1 , or the Veronese embedding of P in P
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Ž . Žm � 4 , or the embedding with the negative section C contracted if
. m� 1a � n � m of the Hirzebruch surface F in P by the linear systemn

� � 2C � aF , where m � 2 a 	 n, a � n, C is the section with C � 	n, and
2 Ž .F a fibre. If W is smooth then Z � Y � W � P because � Y � 1. If W

is singular, then a � n � m � 2, Z � F , and Y � F , the projective conem m

Ž .see Remark 1.5 . Clearly, m � p and the only singularity in F is of typep
1 Ž .1, 1 .p

2 � p ŽSuppose that Y � P . Then X is a single smooth curve R Lemma
. Ž . Ž .1.7 . Let d be the degree in Y of B � � R . Then the Z� p -Galois cover

Ž . Ž .� : X � Y is given by a relation B 	 pF. Set d � deg B � p deg F .
� Ž Ž . . �Ž .Ž . � �Now K � � K � p 	 1 F � p 	 1 deg F 	 3 � P, where P isX Y

Ž . Ž . Ž . Ž . Ž .a line. Since 	K is ample, p, deg F � 2, 1 , 2, 2 , 3, 1 . Thus X, �X p
is as in Examples 2.6, 2.7, and 2.2.

�pSuppose that Y � F . If X contains no curve, then it is a single pointp
� 4 Ž .p and � is unramified over Y 	 q , where q � � p is the vertex of1 1 1 1

� 4the cone Y; this is impossible because Y 	 q is simply connected. Write1
B � bP. This P is the generator of Pic Y, is the hyperplane of Y 
 P p�1,

2 Ž .and satisfies P � p P � H in notation of Remark 1.5 . In the present
�Žcase, b � 1 is an integer for B 
 Pic Y. As in Lemma 1.8, 	K � rp 	X

.Ž .� � �Ž . Ž .� � Žb p 	 1 �p� P � p � 2 	 b p 	 1 �p� P, noting that r � p �

. Ž . Ž . Ž .2 �p Remark 1.5 . Since 	K is ample, either b � 1, or b, p � 2, 2 ,X
Ž . Ž .2, 3 , 3, 2 .

Ž .Note that the Z� p -Galois cover � : X � Y is totally branched along
Ž .the smooth curve B and the vertex q � B . If b � 1, then one sees easily1

Ž .that X, � is equal to a pair in Example 2.1a.p

Ž . Ž . 	1Ž .If b, p � 2, 2 , one can verify that the � q has to split into two1
singularities of the same type, i.e., � is not branched at q , a contradic-1

Ž . Ž . Ž . Ž .tion. If b, p � 2, 3 or 3, 2 then X, � is as in Example 2.3 or 2.8.p
This proves Proposition 3.3.

4. THE PROOFS OF THEOREMS AND COROLLARIES

Ž .Let X, G be a pair with X a smooth projective rational surface and G
� �a finite group acting effectively on X. We follow the approach in BB

� �using the Mori theory. The cone theory Mor, Theorems 1.5 and 2.1
implies the decomposition of the closed cone of effective cycles with
coefficients in R and modulo numerical equivalence,

� �NE X � NE X � R C ,Ž . Ž . K �0 Ý �X

C
EE
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where EE is a countable set of smooth rational curves C satisfying C 2 �
� �	1, 0, 1. Passing to the G-invariant part, we get Mor, Proposition 2.6

G GNE X � NE X � R gC ,Ž . Ž . K �0 Ý Ý�X

g
GC
FF

� �where FF is the subset of curves C in EE such that R Ý gC is an� g 
 G
GŽ .extremal ray in the G-invariant cone NE X .

For a curve C on X, denote by G the maximum subgroup of Gc
� � � 4 Žstabilizing C and let k be the index G : G and g G � 1 � i � k withc c i c c

.g � id the k cosets. For the lemma below, we are essentially proceeding1 c
� Ž .�along the idea in Mor, Theorem 2.7 .

Ž .LEMMA 4.1. Assume that X, G is a minimal pair such that

Grank Pic X � 2.Ž .

Then there is a G-stable cone fibration 
 : X � P1 with a smooth rational
cur�e as its general fibre, such that e�ery singular fibre is a linear chain of two
Ž . � �	1 -cur�es. If 
 is not smooth, i.e., X is not a Hirzebruch surface, then G
is e�en.

Proof. Since X is rational, K has negative intersection with a curve EX
and hence with the G-stable effective 1-cycle Ý gE. So the coneg 
 G

GŽ . � �NE X has an extremal ray R L where L � Ý gC with a smooth� g 
 G
rational curve C.

k � � 2Note that L � Ý g C and L � G L , where k � k . First L � 0,red i�1 i c red c
GŽ . �for otherwise L would belong to the interior of NE X Mor, Lemma

Ž .� Ž .G2.5 and L could not be extremal; here we use the fact that rank Pic X
� 2. Since L2 � 0, we have C 2 � 0; and if C 2 � 0 then L is a disjointred
union of k smooth rational curves of self intersection 0 and 
 � � is a�C �

G-stable P1-fibration.
2 Ž .Consider the case C � 	1. Then C is a 	1 -curve for C.K � 0. IfX

k � 1, then C is G-stable, a contradiction to the minimality of the pair.
2 � �Ž . � � � �Ž . � � � �ŽSo k � 2. Now 0 � L � G C.L � G G C.L � G G 	1 �c red c

.Ý .C. g C . If Ý C. g C � 0 then L is a disjoint union of k ofi� 2 i i� 2 i red

Ž .	1 -curves which contradicts the minimality of the pair. So we may
Ž . 	1arrange C. g C � 1 and C. g C � 0 i � 3 . Since g C.C � 1, one has2 i 2

g	1 C � g C and g 2 
 G because C meets only one component g C2 2 2 c 2
Ž .among g C 2 � i � k .i

Ž .If k � 3, we see that g C � g C is a linear chain of two intersecting3 2
Ž .	1 -curves disjoint from C � g C. We can easily arrange L as a2 red

Ž . Ž . Ždisjoint unions of pairs of intersecting 	1 -curves g C � g C 1 � i �i 2
.k�2 so that an arbitrary element of G either stabilizes each of two
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Žcomponents in C � g C, switches them, or maps them to some g C �2 i
. 1g C . Thus 
 � � is a G-stable P -fibration. Note that 2 divides2 �C�g C �2

� � � �k � k � G : G and hence G .c c

To finish the proof, we still need to determine the singular fibres of the
Ž .G-stable conic fibration 
. Take any 	1 -curve E in a fibre of 
 and set

L � Ý gE. Then L2 � 0 because L is supported by fibres and henceg 
 G
� �negative semi-definite Re2, A.7 . Now the same argument above will imply

the lemma.

Ž .COROLLARY 4.2. Assume that p is an odd prime number. Let X, � bep
a minimal pair with X a smooth projecti�e rational surface and � actingp

Ž . �pfaithfully on X. Suppose that Pic X has rank � 2. Then X is a Hirze-
Ž . Ž .bruch surface F e � 1 and e�ery ruling there are two only when e � 0 ise

� -stable.p

Ž .Proof. By Lemma 4.1, X � F . If e � 1, then the unique 	1 -curvee
would be � -stable and we reach a contradiction to the minimality as-p

sumption. The rest is clear.

Before we proceed to prove theorems, we need two results.

LEMMA 4.3. Suppose that the group � of prime order p acts faithfully onp

the Hirzebruch surface X � F and stabilizes its fixed ruling 
. Then X �p ise
one of the following, where � stabilizes exactly two out of all fibres in the firstp
three cases,

Ž .1 a union of two fibres,
Ž .2 a union of a fibre and two points in another fibre,
Ž .3 four points in two distinct fibres, and
Ž . Ž Ž .4 a disjoint union of two sections one of which is the 	e -section

.if e � 0 .

Proof. This result must be well known but we do not have a reference.
Suppose that X �p is contained in fibres. Note that there is an induced
� -action on the base rational curve of the ruling. So either � stabilizesp p

Ž Ž . Ž . Ž . .exactly two fibres then Case 1 , 2 , or 3 of the lemma occurs , or �p
stabilizes all fibres. If the second situation happens, then X � F � P1 �0

1 Ž .P , for otherwise the 	e -section is � -stable only and has exactly twop

� -fixed points so that � would stabilize only the two fibres containingp p

these two points; on the other hand, � stabilizes also the second ruling asp
�p Žwell as its fibre F through a point in X which is non-empty; see2

.Lemma 1.2 , so that F is a section of the first ruling and has exactly two2
� -fixed points, a contradiction again.p
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� Ž .Next we consider the case where X contains a multi- section. Then
each fibre is � -stable. Thus either X � is the union of two disjointp

Ž Ž . . Ž .sections one of which is the 	e -curve if e � 0 so that Case 4 of the
lemma occurs, or X � is the union of a double section D and a few points
Ž .a general fibre of the ruling has exactly two � -fixed points . In thep
second case, X � F and � stabilizes also the second ruling. Since D0 p
intersects all fibres of both rulings, an arbitrary fibre of any ruling is

Ž .� -stable, whence the diagonal of X a section of both rulings is alsop
contained in X �p, a contradiction to the assumption that X �p is the union
of a double section D of the first ruling 
 and a few points. This proves
the lemma.

Ž .LEMMA 4.4. For i � 1, 2, let X , G be a pair of a simply connectedi
Ž .smooth algebraic surface e. g., a rational surface and a finite group G acting

faithfully on X such that X G is a finite set. Let Y � X �G and Y 0 � Y 	i i i i i i
Sing Y . Then we ha�e:i

Ž . Ž 0.1 One has � Y � G and the quotient map � : X � Y is the1 i i i i i

completion of the uni�ersal co�ering map U 0 � Y 0; in other words, X is thei i i

Ž 0.normalization of Y in the function field C U .i i

Ž . Ž .2 Two pairs X , G are equal modulo G-equi�ariant isomorphism ifi
and only if the Y are isomorphic to each other.i

Ž .Proof. Since X with a few points removed is still simply connected, 1i
Ž . Ž .follows. Part 2 is a consequence of 1 .

Ž .Now we prove Theorem 1. Theorem 1 II is a consequence of Proposi-
Ž .tions 3.1, 3.2, and 3.3. For Theorem 1 I , in view of Corollary 4.2, we only

Ž .need to show that every pair F , � is � -birationally equivariant to a paire p p

Ž 2 . � Ž .�P , � in Example 2.1. This can be proved as in BB, 2.5 . For reader’sp
convenience, we give a sketch here. Let 
 be as in Corollary 4.2.

Ž .Case 4.5. � stabilizes each fibre. When e � 0 the unique 	e -sectionp

is � -fixed and X � contains one more disjoint section. We blow up a pointp
Ž .p on the second positive section and blow down the proper transform of1

the fibre containing p . Then we get a � -birational equivariance between1 p

Ž . Ž .our original pair F , � and a new pair F , � . Inductively we reducee p e	1 p

Ž .to the case e � 1 and further blow down the � -stable 	1 -curve on F top 1
Ž 2 .proceed � -birationally equivariantly to a pair P , � in Example 2.1.p p

ŽCase 4.6. � acts non-trivially on the set of fibres and hence on thep
.base rational curve of ruling . Then there are exactly two � -stable fibresp

Ž .lying over two � -fixed points of the base rational curve; see Lemma 4.3 .p
Each stable fibre contains at least two � -fixed points. We blow up the onep
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Ž .not lying on the 	e -curve and then blow down the proper transform
Ž .of the fibre; we reduce to a pair F , � . The rest is the same as ine	1 p

Case 4.5.
ŽFor both Cases 4.5 and 4.6, when e � 0, the argument is similar see

� Ž .�.BB, 2.5 . This completes the proof of Theorem 1.

For Corollary 2, we first proceed � -birationally equivariantly to ap
minimal pair and then apply Theorem 1.

For Corollary 3, it suffices to consider minimal pairs. Indeed, start with a
Ž . Ž .pair X, � and let X , � be a minimal pair with a � -equivariantp min p p

birational morphism � : X � X ; then � induces a birational morphismmin
� : Y � X�� � Y � X �� ; the images of Sing Y and the � -excep-y p min min p y

tional divisor form a finite subset � of Y , and Y 0 �� can be regardedmin min
as a Zariski-open subset of Y 0, whence we have a surjective homomor-

Ž 0 . Ž 0 . Ž 0.phism � Y � � Y �� � � Y .1 min 1 min 1

Remark 4.7. In particular, if X �p contains a curve R with R2 � 0 or
Ž . �pg R � 1 then the image on X or R is still a cur�e in X , whencemin min
Ž 0. Ž 0 . Ž .� Y � � Y � 1 by the statement for minimal pairs.1 1 min

Ž .We now prove Corollary 3 for a minimal pair X, � . If the latticep

Ž . �pPic X has rank 1, then Corollary 3 is true by Table I in Theorem 1.
Suppose that this lattice has rank � 2. Then X is a Hirzebruch surface Fe

1 Ž . �pand the fixed ruling 
 : X � P is � -stable Corollary 4.2 . If X is ap
finite set then X � X �p is simply connected and equals the universal cover

0 � p Ž .of Y , whence Corollary 3 is true. If X is a disjoint union of smooth
curves then Y � X�� is smooth rational and hence Y 0 � Y is simplyp
connected.

Ž .It remains to consider Lemma 4.3, Case 2 . Then Y is rational with two
Ž .singular points q images of two isolated � -fixed points and a rulingi p

1 Ž .Y � P induced from the one on X such that both q are on the samei
fibre F . Thus Y � F is a P1-bundle over the affine line A1 and hence1 1
simply connected. Now the inclusion Y � F 
 Y 0 induces a surjective map1

Ž . Ž . Ž 0. Ž 0. Ž .1 � � Y � F � � Y , whence � Y � 1 . This proves Corollary 3.1 1 1 1
Ž . Ž .We prove Theorem 4. Part I follows from Lemma 4.1. Next we do II

Ž .Gand so assume Pic X has rank 1. Then by Lemma 1.7, X is del Pezzo
� �and Y is singular del Pezzo. Now the main theorem in GZ1, 2 shows that

Ž 0. Ž � � � �� Y is finite see FKL for a differential geometric proof and also MS1
.for a new proof . Since the rational surface X with a few points removed,

Ž 0.is still simply connected, it is clear that � Y � G and � : X � Y is the1
completion of the universal covering map of Y 0 provided that X G is a

Ž . Ž .Ž .finite set Lemma 4.4 . Theorem 4 II 2 follows from the first half of the
arguments in Proposition 3.3.
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Ž .Ž . Ž . GWe now prove Theorem 4 II 1 . So assume r Y � 1 and X is finite.
Then Y is a Gorenstein log del Pezzo surface of Picard number 1 so that

Ž 0.G � � Y and � : X � Y is the completion of the universal covering1
0 Ž . �map of Y see Lemma 4.4 . Such Y is classified in Fur, Theorem 2; MZ1,
� � � �Lemma 6 ; see also BBD, p. 593; Ura . Since our X is smooth, by MZ1,

� Ž .Table 1, p. 71 , X, G fits one of the rows in Table II, but the column on
G ² :X ; G � g , . . . is still to be verified. For rows 2, 3, 4, 6, this is done in1

the examples in Section 2 since we have the uniqueness by Lemmas
Ž .2.13�2.15. For rows 1 and 5, the generator s of G can be easily diagonal-

Ž .ized as in Table II see Examples 2.1 and 2.10 . This completes the proof
of Theorem 4.

� �Final Remark 4.8. In Zh2, Appendix , there are examples of a non-
abelian finite group acting faithfully on X � P 2, such that the fixed locus

G � 4X � x 
 X � gx � x for some 1 � g 
 G is a finite set. For instance, the
non-abelian group of order 21 can act on P 2 this way. Also shown are
examples with P 2 replaced by smooth del Pezzo surfaces or projective

1 1cones F ; e.g., X � P � P with a faithful action by a non-abelian groupe
� � � �G of order 16 or 20. See MM , MZ3 for new developments.

APPENDIX: WEYL GROUP BASED PROOF OF TABLE I
I. Dolgachev1

Ž .Let X, � be a minimal pair of a smooth rational projective surfacep
and the group � of odd prime order p acting faithfully on X. Writep

² : 2 Ž . �p� � g . Assume that X � P and Pic X has rank 1. In this sectionp
Ž �p.we shall deduce Table I the columns on X, X in an approach different

from Section 3. We shall use the following information:

Ž . Ž .1 X is a del Pezzo surface Lemma 1.7 . The minimality and rank
assumption of the pair imply that � acts faithfully on the sublatticep

� 2 ŽM � K of Pic X, and also K � 5, noting that there are exactly 3 resp.X X

. Ž . 2 Ž 2 .6 	1 -curves on X when K � 7 resp. K � 6 .X X

Ž .2 The lattice M is isomorphic to the root lattice E , wheren
E � D , E � A . Here n � 9 	 K 2 � 4.5 5 4 4 X

Ž . � Ž . Ž .3 The image g of g in O E belongs to the Weyl group W E .n n

Ž .4 All conjugacy classes in Weyl groups are known; see the tables in
� �the Atlas of finite groups or Car .

1 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109. E-mail:
idolga@math.lsa.umich.edu.
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Ž .5 E embeds naturally into E , corresponding to the naturaln n�1
Ž .embeddings of the Dynkin diagrams. Any ‘‘old’’ conjugacy class in W En

Ž . Ž .coming from W E leaves a disjoint union of 	1 -curves invariant andn	1
� �then the pair cannot be minimal Man2, Theorem 6.3 .

Ž . Ž .6 Denote by C the unique, if it exists, smooth irreducible curve
�p Ž . Ž . Žin X and write C � 	mK Lemma 1.7 , where 2 g C 	 2 � m m 	X

. 2 � p1 K ; we put m � 0 if X is a finite set. The topological and holomor-X
Žphic Lefschetz fixed point formulae in Lemma 1.6 give a � 1�4, a � 1�23 4

.when p � 5

p	1
2 29 	 K � p 	 1 3 	 k � m m 	 1 K ,Ž . Ž .ÝX i X

i�1

mK 2 5 	 p 11 	 pX
1 � p 	 2 m � 3 � k � k � k a � k a � 			 .Ž . 1 2 3 3 4 412 12 24

Ž . Ž . �p Ž .7 We have Pic X � Z K Lemma 1.7 .X

Now we are in business.

Ž .Step 1. We know that only p � 2, 3, 5, 7 can divide �W E .n

Ž . Ž .Step 2. p � 7 can divide only �W E , �W E . The conjugacy class7 8
Ž . Ž .of g in W E is coming from the subgroup W E since there is only one8 7

each for n � 7 and n � 8. So n � 7 and K 2 � 2 by the minimality of theX
Ž . Žpair. The number of unordered sets of 7 disjoint 	1 -curves an Aronhold

. Ž . Žset on a degree 2 del Pezzo surface X is equal to �Sp 6, F �7! see, for2
� �.example, DO, p. 167 . Since the number 36 � 8 is congruent to 1 mod 7,

there is a g-invariant Aronhold set, a contradiction to the minimality of
the pair.

Ž Ž .Step 3. Assume p � 5. It is a new conjugacy class for n � 4 W E4
. Ž� S and for n � 8 for n � 7 there is only one conjugacy class, so it is5

.always old . If n � 4, then X is a del Pezzo surface of degree 5. Hence
Ž . Ž .X, � fits the last row of Table I Lemma 2.13 .5

2 Ž .Step 4. Assume p � 5 and n � 8. Then K � 1. The formulae in 6X
Ž . Ž . Ž .above imply m; k , . . . , k � 1; 0, 0, 0, 1 . So X, � fits the rows 5 and 61 4 5

of Table I.
Step 5. Assume p � 3. There is a new conjugacy class of order 3 for

every n � 3, 6, 8. If n � 6, there is only one new conjugacy class of order
� �3; it is c in Man2, Table 1, p. 176 . In Carter’s classification it corre-11

Žsponds to the graph 3 A � E . Its trace on E is equal to 	3 see also2 6 6
. Ž . Ž . Ž . Ž .Lemma 1.6 . Now the formulae in 6 imply m; k , k � 1; 0, 0 , 0; 0, 0 .1 2
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�3 Ž .The second case says that X � �, which is impossible Lemma 1.2 ; the
first case is the row 3 of Table I.

Finally, consider the case n � 8. There are 2 new conjugacy classes of
Ž . Žorder 3. In Carter’s notation they are 4 A and E a they should2 8 8

. Ž . Ž .generate the same group . As above the formulae in 6 imply m; k , k1 2
Ž .� 2; 1, 0 . This is the row 4 of Table I.
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