MATH 395 PROBLEMS 11

IGOR KRIZ

Regular problems:

1. Calculate

$$\int_{Q} f(x+y) dx dy$$

where $Q = [0, 2] \times [0, 2]$ and f(t) denotes the greatest integer $\leq t$. [Find some way to visualize the function; the fundamental theorem of calculus won't work.]

2. Prove that if S is a countable set, then the set of all finite subsets of S is countable.

3. Using theorems from class (your notes), prove that if $f_n:[a,b]\to\mathbb{R}$ are continuous functions and $f_n\nearrow f$, then f is continuous if and only if $f_n\xrightarrow{\to} f$.

4. (a) Calculate

$$\int_0^1 \ln(x) dx,$$

and justify using Lebesgue integral.

(b) Prove, more generally, that if $f:[a,b]\to [0,\infty)$ (or $f:[a,b]\to (-\infty,0]$ and f is continuous on [a,b), then

$$\int_{a}^{b} f = \lim_{x \to a} \int_{a}^{x} f$$

where \int denotes Lebesgue integral. [Hint: express f as an increasing (resp. decreasing) limit of continuous functions.]

Challenge problems:

5. The Cantor set C is the set of all $x \in [0,1]$ which are not of the form

$$\frac{k+\alpha}{3^n}$$

 $\frac{k+\alpha}{3^n}$ for any $k\in\mathbb{Z},\,\alpha\in(1/3,2/3).$ Define a function $f:\mathbb{R}\to\mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{else.} \end{cases}$$

Is f Lebesgue-integrable? If yes, what is the integral equal to?

6. Prove that the set of all subsets of $\mathbb N$ is not countable. [Find a method analogous to the one used for the real numbers.]