MATH 395 PROBLEMS 12

IGOR KRIZ

Regular problems:

1. Recall that we say that $\int f$ exists if the function f is Lebesgue-integrable, and that $\int f$ converges if it exists and is finite. For what values of a do the following integrals converge:

$$\int_0^1 x^a dx, \, \int_1^\infty x^a dx, \, \int_0^\infty x^a dx?$$

2. Compute

$$\int_{[0,1]\times[0,1]} \max(x,y) dx dy.$$

[Use Fubini's theorem, but not mechanically.]

- 3. Decide whether the following integrals exist and/or converge: [use bounds by integrals you know]
 - (a) $\int_{2}^{\infty} \frac{dx}{\sqrt{x^4 1}}$ (b) $\int_{0}^{\pi} \frac{\sin(x)}{x} dx$ (c) $\int \frac{dx}{x^2 + x}$.

 - **4.** Let $f:[0,\infty)\to\mathbb{R}$ be defined by f(0)=0 and

$$f(x) = \frac{(-1)^n}{n}$$
 for $x \in (n-1, n]$.

Prove that the Lebesgue integral $\int f$ does not exist, but the improper Riemann integral

$$\lim_{t\to\infty}\int_0^t f(x)dx$$

exists. Is there such an example with $f \geq 0$? [In proving the non-existence, use the fact that an $g \in Z^{inc}$ such that $g \geq f$ is bounded below by a function from Z, and hence is non-negative outside of a bounded interval; similarly, $g \in Z^{dec}$ such that g < f is non-positive outside of a bounded interval; conclude that the upper integral of f is $+\infty$, the lower integral is $-\infty$.

1

Challenge problems:

5. Define the ζ -function $\zeta:(1,\infty)\to\mathbb{R}$ by

$$\zeta(x) = \sum_{n=1}^{\infty} n^{x}.$$

$$\int_{1}^{2} \zeta(x) dx$$

Does the Lebesgue integral

$$\int_{1}^{2} \zeta(x) dx$$

converge?