MATH 395 PROBLEMS 4

IGOR KRIZ

Regular problems:

1. Rewrite the following system of differential equations in the form $y'_i = f_i(x, y_1, \ldots, y_n), i = 1, \ldots, n$:

$$z_1'''' = g_1(x, z_1, z_2, z_1', z_2', z_1'', z_2'', z_1''', z_2'''),$$

$$z_2''' = g_2(x, z_1, z_2, z_1', z_2', z_1'', z_2'', z_1''').$$

2

- (a) Two $n \times n$ matrices A, B are called *similar* if there exists an invertible $n \times n$ matrix P such that $A = P^{-1}BP$. Prove that similar matrices have the same eigenvalues.
 - (b) Find an explicit formula for the eigenvalues of a 2×2 matrix.

3. A normed space is a vector space V over \mathbb{R} together with a function (called norm) assigning to every $x \in V$ a number $||x|| \geq 0$ such that (1) ||x|| = 0 iff x = 0, (2) $||x + y|| \leq ||x|| + ||y||$. Prove that if V is a normed space, then V is a metric space with metric

$$\rho(x,y) = ||x - y||.$$

Give at least three different examples of norms on \mathbb{R}^n . (Challenge: can you give infinitely many examples?)

4. An $n \times n$ matrix is called a *projection matrix* if AA = A. Prove an eigenvalue of a projection matrix is either 0 or 1.

Challenge problems:

5. Let \mathbb{R}^n be a metric space with metric

$$\rho((x_1,...x_n),(y_1,...,y_n)) = \max_{i=1,...,n} |x_i - y_i|$$

and let $f: \mathbb{R} \to \mathbb{R}$ be a map such that for some constant K,

$$\rho(f(x), f(y)) < K\rho(x, y)$$

for every $x,y\in\mathbb{R}$. Prove that there exists a $\lambda\in\mathbb{R}$ and an $x\in\mathbb{R}^n$ such that

$$f(x) = \lambda x$$
.

Is this true if the above metric is replaced by the Euclidean metric?

6. Give an example of a metric d on \mathbb{R}^n such that (\mathbb{R}^n, d) is homeomorphic to (\mathbb{R}^n, ρ) (ρ is defined in Problem 5), but such that (\mathbb{R}^n, d) is not complete.