MATH 395 PROBLEMS 5

IGOR KRIZ

Regular problems:

1. Find all solutions to the differential equations

(a) $y' = yx^3$

(b) $y' = (x + 2y)^2$ (c) $y' = \sin(x)y + \cos(x)$.

2. Prove that if (X, ρ) is a metric space, then another metric d on X can be defined by $d(x,y) = \max\{1, \rho(x,y)\}$. Prove that the identity is a homeomorphism of (X,d) to (X,ρ) . Prove also that (X,ρ) is complete if and only if (X,d) is complete.

3. Prove that there does not exist a differential equation

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

with f continuous and Lipschitz in the last n variables which would have the solutions

$$y = ax^2 + (4a + 2)x + a + 3.$$

for all $a \in \mathbb{R}$. [Use the existence and uniqueness theorem.]

4. Define \mathbb{R}^{∞} as the set of all infinite sequences

$$x_1, x_2, x_3, \dots$$

of real numbers. Define

$$\rho((x_n),(y_n)) = \sum_{i=1}^{\infty} \frac{1}{2^i} \max\{1,|x_i-y_i|\}.$$

(see Problem 2). Is \mathbb{R}^{∞} a metric space? Is it complete?

Challenge problems:

5. Let f(x, y) be a continuous function with continuous partial derivative by y such that $f(x_0, y_0) = 0$, and

$$\frac{\partial f}{\partial y}(x_0, y_0) \neq 0.$$

Prove that there exists an $\epsilon > 0$ and a unique function

$$g:(x_0-\epsilon,x_0+\epsilon)\to\mathbb{R}$$

such that

$$f(x,g(x)) = 0.$$

[Differentiate by x and, using the chain rule, write a differential equation for y = g(x).]

- **6.** Find a differential equation whose characteristics (=solutions defined on a maximal possible interval) have domains
 - (a) $(a, +\infty), a \in \mathbb{R}$
 - (b) (-a, a), a > 0.