MATH 396 PROBLEMS 11

IGOR KRIZ

Regular problems:

1. Prove that the function

$$f(x+iy) = \frac{x+1}{(x+1)^2 + y^2} - i\frac{y}{(x+1)^2 + y^2}$$

is holomorphic where defined. What is its domain of definition?

2. Using the Caychy formula, calculate:

(a) $\int_K \frac{e^x}{(x-2)^3} dx$ where K is a small circle around 2 oriented counter-clockwise

(b) $\int_L \frac{e^z+z}{z^2(z-1)} dz$ where L is the circle with center 0 and radius 6, oriented counterclockwise. For this one, use the method of partial fractions (ignoring the numerator), to get denominators as in the Cauchy formula.]

3. Using the definitions of complex elementary functions, rewrite the following expressions of z = x + iy as $f_1 + if_2$ where f_1 , f_2 are real elementary functions of $x \text{ and } y \text{ (e.g., } e^z = e^x \cos(y) + ie^x \sin(y))$: (a) e^{z^2}

(b) $\frac{1}{z^2 + e^z}$

4. Find the Taylor expansion of the function $z \ln(z)$ with center 1. What is its radius of convergence?

1

Challenge problem:

- **5.** A point $a \in \mathbb{C}$ is called an *isolated singularity* of a function f if f is holomorphic in some disk with center a, but with a removed (i.e. $B_{\epsilon}(a) \setminus \{a\}$). a is called a *removable singularity* if f is bounded in a neighbourhood of a. a is called a *pole* if $f(z)(z-a)^n$ has a removable singularity at a. Otherwise, a is called an *essential singularity*.
- (a) Prove that if a is a removable singularity, then one can redefine f(a) in such a way that f becomes holomorphic in $B_{\epsilon}(a)$. [Use the Cauchy formula.]
- (b) Prove that if f is holomorphic at a, then 1/f is holomorphic or has a pole at a (i.e. does not have an essential singularity). [Use the Taylor formula.]
 - (c) Prove that the function $e^{-1/z}$ has an essential singularity at 0.
- (d) Prove that if a function has an essential singularity at a, then the image $f[B_{\epsilon}(a)] = \{f(z)|z \in B_{\epsilon}(a)\}$ is dense in \mathbb{C} (i.e. every non-empty open set in \mathbb{C} intersects $f[B_{\epsilon}(a)]$). [Hint: use contradiction and (b).]