MATH 396 PROBLEMS 14

IGOR KRIZ

Regular problems:

- 1. Let V be a \mathbb{C} -vector space with inner product denoted by < u, v >. Then V is in particular an \mathbb{R} -vector space (by using the \mathbb{R} -scalar multiplication). Decide if the following functions are real inner products on V:
 - (a) Re < u, v > +Im < u, v >
 - (b) Re < u, v >
 - (c) Im < u, v >.

[Here Re(x+iy) = x, Im(x+iy) = y for $x, y \in \mathbb{R}$.]

- **2.** Calculate $\langle \sin(mx), \sin(nx) \rangle$, $\langle \sin(mx), \cos(nx) \rangle$ in $L^2([0, 2\pi], \mathbb{R})$.
- 3. For constants K, r, s, determine numbers a, b and a function $f: [a, b] \to \mathbb{R}$, f(a) = r, f(b) = s, such that the solid formed by rotating the graph of f around the x axis in \mathbb{R}^3 has surface K and maximal possible volume. [Use the same method as in Problem 5 from last time: parametrize $(x, f(x)) = (\phi(x), \psi(x))$ such that the derivative of the rotational surface area is 1: $\psi \sqrt{(\phi')^2 + (\psi')^2} = 1$. The derivative of the rotational volume is $\psi^2 \phi'$ (up to constants). Substitute for ϕ' from the previous equality, and form a first order Euler equation for ψ .]

Challenge problem:

4. In the center of a circular pond is a beaver. An animal control worker on shore runs K times faster than the beaver swims. He is trying to catch the beaver without swimming in the pond. For what values of K can the beaver escape the pond without being caught, and for what values will he be caught? What is the optimal strategy for the beaver to escape?