MATH 396 PROBLEMS 9

IGOR KRIZ

Regular problems:

- 1. Let S be the image of $[0,1] \times [0,1]$ under the map $\mathbb{R}^2 \to \mathbb{R}^3$ given by $x=r+s^2$, y=r-s. Using Stokes' theorem, calculate the integral of $f(x,y,z)=(x^2+y,z-y,y^3)$ over the boundary of S.
- **2.** Prove that if $f: \mathbb{C} \to \mathbb{C}$ satisfies $f(z) \in \mathbb{R}$ for all $z \in \mathbb{C}$, and f has complex derivative everywhere, then f is constant. [Consider the total differential.]
- **3.** Using Gauss' formula, calculate the surface integral of second kind of the function $f(x,y,z)=(xy,xz,z^2)$ over the surface of the unit ball $\{(x,y,z)|x^2+y^2+z^2\leq 1\}$ (oriented so that the normal vector points outward).
- **4.** (a) Using the definition, calculate the complex derivative of the function $f(z) = \frac{1}{z-i}$.
- (b) A function $f: \mathbb{C} \to \mathbb{C}$ is given by $f(x+iy) = e^{x^2+y^2+1}(\cos(2xy)+i\sin(2xy))$. Is it holomorphic? [Use Cauchy-Riemann conditions.]

Challenge problem:

5. Consider the 2-form in \mathbb{R}^4

$$\omega = (x+t+z)^2 dx \wedge dy + e^x dy \wedge dt + (x-y) dx \wedge dt + 3xy dx \wedge dz.$$

- (a) Let S be the image of the square $[0,1] \times [0,1]$ under the map $\mathbb{R}^2 \to \mathbb{R}^4$ given by $x=rs,\ y=r^2+s^2,\ z=r-s,\ t=s.$ Calculate $\int_S \omega$.

 (b) Using Stokes' theorem, calculate the integral of ω over the boundary of the cube $\{(x,y,z,t)|0\leq x,y,z\leq 1,t=2\}$.