Examples: \(R = \Lambda_Q [x] = Q[x]/(x^2) \).

\(Q \) is an \(R \)-module where \(x \) acts by 0.

\[
0 \to Q \to \Lambda_Q [x] \to Q \to 0
\]

long exact sequence

\[
\cdots \to \Lambda_Q [x] \overset{x}{\rightarrow} \Lambda_Q [x] \overset{x}{\rightarrow} \Lambda_Q [x] \overset{x}{\rightarrow} \Lambda_Q [x] \overset{x}{\rightarrow} Q \to 0
\]
A free resolution of the $\Lambda Q[x]$-module Q:

$$
\cdots \rightarrow \Lambda Q[x] \xrightarrow{x} \Lambda Q[x] \xrightarrow{\delta_3} \Lambda Q[x] \xrightarrow{\delta_2} \Lambda Q[x] \xrightarrow{\delta_1} \Lambda Q[x] \rightarrow C
$$

$$
\text{Hom}_{\Lambda Q[x]}(Q, Q) = 0 \quad \forall \ i > 0
$$

$$
\text{Ext}_{\Lambda Q[x]}^i(Q, Q) = 0 \quad \forall \ i \in \mathbb{N}_0
$$

Remarks: ① If $R = F$ is a field, every
module is free (every vector space has a basis)

\[\text{Tor}_n^R(,) = 0, \quad \text{Ext}_n^R = 0 \quad n > 0. \]

2. If \(R \) is a PID then a submodule of a free module is free, \(V_R \)-module \(M \)

\[0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0 \]

\[\text{free } R\text{-module} \quad \text{free } R\text{-module} \]

\[(R \text{ factor}_R M^R) \]

\[K \rightarrow F \quad \text{is a free resolution of } M \]

\[\text{Tor}_n^R = \text{Ext}_n^R = 0 \quad \text{for } n > 1. \]
D: \(\text{(3) \hspace{1cm} \mathfrak{R} = \Lambda_{\alpha} \mathfrak{L}[x] } \)

\[\Lambda_{\alpha}[x] \xrightarrow{x} \Lambda_{\alpha}[x] \xrightarrow{\cdot x} \ldots \Lambda_{\alpha}[x] \xrightarrow{\cdot x} \ldots \]

This is an exact sequence, so it satisfies the definition of a resolution of 0 except \(C_i = 0 \) for \(i < 0 \).

Hence, \(\Lambda_{\alpha}[x] (0, \alpha) \) has cohomology 0 in every dimension.

\[\cdots \Omega^0 \xrightarrow{d} \Omega^0 \xrightarrow{d} \cdots \Omega^0 \xrightarrow{d} \cdots \]

So the assumption \(C_i = 0 \) for \(i < 0 \) cannot be dropped from the definition of a resolution!
HW: Consider Q as a module over $Q[x, y]$.

x and y act by 0 on Q. Compute

$\text{Tor}_1^Q(x, y) \times (Q, Q)$, $\text{Ext}_1^Q(x, y) \times (Q, Q)$.

Long exact sequences

on Tor, Ext

from short exact sequences of R-modules.

$0 \to M' \xrightarrow{2} M \xrightarrow{k} \to M'' \to 0$

be a short exact sequence of R-modules.
Long exact sequences: Let p be an R-module.

\[0 \rightarrow \text{Tor}_1^R(p, N) \rightarrow \text{Tor}_i^R(p, N) \rightarrow \text{Tor}_i^R(p, N') \rightarrow \]

\[\cdots \]

(1)

(\text{In symmetric, so also in the other variable).)

Proof:

Let C be a free R-resolution of p.

\[0 \rightarrow C \otimes_R N' \rightarrow C \otimes_R N \rightarrow C \otimes_R N'' \rightarrow 0 \]

C is a free resolution! $C_i = RS_i$, a free R-module.
\[C_i = \bigoplus_{s \in s_i} R \]

\[\otimes_R \text{ preserves sums, } \]

\[R \text{ is the unit under } \otimes_R \]

exactness of \(\otimes \) follows. \(\Rightarrow \) Pass to long exact sequence in homology. We get \(C_i \).

It works similarly for \(\text{Ext}^i \)

\[0 \to \text{Hom}_R (C_i, M') \to \text{Hom}_R (C_i, M) \to \text{Hom}_R (C_i, M') \to 0 \]

homomorphisms are specified by values on generators.
$C_i = R^S_i$

$0 \to \prod_{s \in S_i} M' \to \prod_{s \in S_i} M \to \prod_{s \in S_i} M'' \to 0$

$\prod_{s \in S_i}$

\prod preserves exactness. $\Rightarrow (2)$.

(\exists) $\Rightarrow \text{Ext}^i_R(M''', p) \xrightarrow{k^*} \text{Ext}^i_R(M', p) \xrightarrow{z^*} \text{Ext}^i_R(M_i, p) \xrightarrow{f} \text{Ext}^i_R(n''', p) \xrightarrow{}$

$z^* = \text{Hom}_R (2, \text{Id}_p)$

Invariant.

To prove (3), we need projective resolutions.
An R-module C is called projective if it is a direct summand of a free module.

If D is an R-module and a set S and an isomorphism $C \otimes D \cong RS$, then $\text{Tor}_i^R(C, D)$ is projective.

Lemma: Projective resolutions may also be used to calculate $\text{Tor}_i^R(C, D)$.

Proof: Consider a projective resolution:

$$C : \ldots \to C_2 \to C_1 \to C_0 \to 0 \ldots$$
I can add (with respect to \(\oplus \)) complexes of the form

\[
0 \to P \to P \to 0 \tag{chain homotopy equivalent to 0}
\]

to make a free resolution. (chain contractible)

\[
\cdots \to C_2 \to C_1 \to C_0 \to 0
\]

\[
\oplus\quad \oplus \quad \oplus \quad \oplus \quad \oplus
\]

\[
C_0 \to C_0 \tag{free}
\]

\[
P_1 \to P_1
\]

I produced a free resolution chain - homotopy equivalent to \(C \). But we already observed that...
chain homotopy (hence chain homotopy equivalence) is preserved by $\otimes R M$

$\text{Hom}_R (\mathbb{Z}, M)$.

So I will get the same $\text{Tor}_i^R \text{Ext}_R^j$ from the projective resolution.

To get a long exact sequence for Ext_R^j in the first variable, I need to produce a short exact sequence of resolutions:

$$(+) \quad 0 \rightarrow \mathcal{N}^1 \rightarrow \mathcal{N} \rightarrow \mathcal{N}^2 \rightarrow 0$$
$0 \to C' \to C \to C'' \to 0$ by resolutions which, in \mathcal{H}_0, gives C^1:

- Take any resolution
- Add a free resolution
- $0 \to 0 \to 0$

Kernels $\to K_0 \to K_0 \to K_0$

$0 \to M' \to M \to M'' \to 0$
\[\begin{align*}
\mathbb{R}^n & \xrightarrow{\theta} \mathbb{R}^n \\
\text{Id} & \downarrow \\
\mathbb{R}^n & \xrightarrow{\varphi} \mathbb{R}^n \\
\mathbb{R}^n & \xrightarrow{\text{Id}} \mathbb{R}^n
\end{align*} \]

\[\mathbb{R}^n \xrightarrow{\theta} \mathbb{R}^n \]

\[\Phi \]

\[0 \quad \text{def} \quad k_i \xrightarrow{c_i} c_i'' \xrightarrow{0} \]

\[\Phi \]

\[\text{id} \]

\[c_i'' = R s_i \]

\[\therefore c_i = k_i \circ c_i'' \]

define the splitting on the

\[k_i \circ \text{proietto}, \quad \text{rel} \quad s_i'' \]
\[(\ast) \quad 0 \to K \to C \to C' \to 0\]

\[\text{Im } K_{0} \colon 0 \to \mathfrak{n}' \to \mathfrak{n} \to \mathfrak{n}' \to 0\]

\[\text{Hom } (C_{k}) \rho \text{ is still short exact.}\]
\[\uparrow\]
\[0 \to K_{i} \to C_{i} \to C_{i}' \to 0\]

commutes with
\[? \Theta ?\]
\[C_{i} = K_{i} \circ C_{i}'; \overline{\rho} \text{ lift}\]

Apply \(H^{\ast}(?)\) get long exact sequence in cohomology.
Symmetry of Tor

\textbf{Theorem}: There is a natural isomorphism

\[\text{Tor}_n^R(\mathcal{M}, N) \cong \text{Tor}_n^R(N, \mathcal{M}). \]

Why can't we take free resolutions both of \(\mathcal{M}, N \)? How they play symmetrical roles?

But what if \(\mathcal{C} \otimes_R D \) of chain complexes of \(R \)-modules?

\textbf{Caution}: \(\to C_n \otimes_R \mathcal{M} \xrightarrow{d_{n+1}} C_{n-1} \otimes_R \mathcal{M} \to \) is the wrong construction!
that construction does not preserve chain homotopy equivalence (for example).

\[
\begin{array}{c}
\begin{pmatrix} R \\ \text{Id} \\ R \end{pmatrix} & R & R \otimes R & R \\
\begin{pmatrix} 1 \\ 0 \end{pmatrix} & 0 & 0 & 0
\end{array}
\]

Only go down by 1 in dimension: a double complex:

\[
\begin{array}{c}
\begin{pmatrix}
\text{Id} & d \\
\text{Id} & d \\
\end{pmatrix}
\end{array}
\]

\[
\begin{array}{c}
\begin{pmatrix}
C_n \otimes R & C_{n-1} \otimes R \\
C_n \otimes R & C_{n-1} \otimes R
\end{pmatrix}
\end{array}
\]

\[
\begin{array}{c}
\begin{pmatrix}
C_n \otimes R & C_{n-1} \otimes R \\
C_n \otimes R & C_{n-1} \otimes R
\end{pmatrix}
\end{array}
\]

\[
\begin{array}{c}
\begin{pmatrix}
\text{Id} & d \\
\text{Id} & d
\end{pmatrix}
\end{array}
\]

\[
\begin{array}{c}
\begin{pmatrix}
C_n \otimes R & C_{n-1} \otimes R \\
C_n \otimes R & C_{n-1} \otimes R
\end{pmatrix}
\end{array}
\]

\[
\begin{array}{c}
\begin{pmatrix}
\text{Id} & d \\
\text{Id} & d
\end{pmatrix}
\end{array}
\]
the square commutes.

This is an example of a **double chain complex**:

\[
C = \left(C_{m,n} \right) \quad \text{R-modules}
\]

definition

\[
\partial : C_{m,n} \to C_{m-1,n} \quad \partial \partial = 0
\]

double chain complex

\[
\delta : C_{m,n} \to C_{m,n-1} \quad \delta \delta = 0
\]

of

\[
\exists \ \mathfrak{D} = \mathfrak{D}_0
\]

R-modules

double chain complex

\[
\text{totalization}
\]
If \(C \) is a double chain complex then
the totalization \(|C| \) is a chain complex
defined as follows:

\[
|C|_n = \bigoplus_{k \in \mathbb{Z}} C_{k, n-k}
\]
Define for C, D chain complexes of R-modules,

$$C \otimes_R D = \left\{ \sum c_i \otimes d_i \in C \otimes_R D \mid \sum c_i = 0 \right\}$$

as \text{totalization of a double chain complex}.

- a functor
- preserves short exact sequences in either variable which are split in each dimension.
An isomorphism

\[C \otimes_R D \longrightarrow D \otimes_R C \]

Claim: Let \(C \) resp. \(D \) be a free resolution of an \(R \)-module \(M \) resp. \(N \). Then

\[H_n(C \otimes_R D) \cong \text{Tor}_n^R(M, N). \]
\[\partial : C^m \rightarrow C^{m-1} \quad \delta : C^m \rightarrow C^{m-1} \]

such that

(1) \(C^m \rightarrow 0 \) for \(m < 0 \)

(2) \(\cdots \rightarrow C^m \rightarrow C^{m-1} \rightarrow C^{m-2} \rightarrow \cdots \)

is exact (has 0 homology) for each \(m \).

Then \(H_m(\mathbb{C}) = 0 \) \(\forall m \in \mathbb{Z} \).
Why do I care? The augmented resolution of M is

$$\cdots \to C_3 \to C_2 \to C_1 \to M \to 0 \to \tilde{C}$$

$$\text{Id} \hspace{1cm} \text{Id} \hspace{1cm} \text{Id} \hspace{1cm} \text{Id} \hspace{1cm} \text{Id} \hspace{1cm} \text{Id} \hspace{1cm} \text{Id} \hspace{1cm} \text{Id}$$

$$\begin{array}{cccccccc}
\uparrow & \uparrow \\
\text{Id} & \text{Id} \\
\end{array}$$

$$\text{dimannin}$$

$$\cdots \to C_3 \to C_2 \to C_1 \to C_0 \to 0 \to \tilde{C}$$

Short exact sequence:

$$0 \to \mathbb{P}[-1] \to \tilde{C} \to C \to 0$$

Apply $? \otimes_R D$ where D is a free resolution of M.

exact because D is free

(+) $$0 \to M \otimes_R D[-1] \to \tilde{C} \otimes_R D \to C \otimes_R D \to 0$$
But $H^m(\widetilde{C} \otimes R D)$ has 0 homology by the technical lemma. Take the long exact sequence in homology applied to (E):

$$H^m(\widetilde{C} \otimes R D) \rightarrow H^m(C \otimes R D) \rightarrow H^m(\Pi \otimes R D) \rightarrow 0$$

\mapsto

$$H^m(D \otimes R C)$$

\mapsto

\mapsto

$$H^m(\Pi \otimes R D)$$

\mapsto

\mapsto

$$T^R_{\Pi}(\Pi, N)$$

\mapsto

$$T^R_{\Pi}(\Pi, N)$$
Proof of the technical lemma:

The length of a cycle \(c = (c_{mn})_{m,n \in \mathbb{Z}} \) is \(\sum c_{mn} \).

But only finitely many non-zero is \(\max \{ n \mid c_{mn} \neq 0 \} \).

For contradiction, take a cycle \(c \) which is not a boundary of minimal height \(m \).

Let \(G \) be in dimension \(p \).
\[\partial c_{p-n, n} = 0 \quad \text{But rows are exact.} \]

So

\[c_{p-n, n} = \partial x \left(p-m+1, m \right) \]

The two dimensions

So replace

\[c \quad \text{by} \quad c - d \alpha (p-m+1, m) \]

only one non-zero is

lower bound = contradiction.

Let's go back to \(V \): let \(C \) be chain.
complexes of free abelian groups. I can figure out $H_* (C \otimes D)$ from $H_* C$ and $H_* D$.

Reason: Structure Theorem:

$$C \cong \bigoplus_{m \in \mathbb{Z}} X_m [m]$$ where X_m is a free \mathbb{Z}-resolution of $H_m C$.

$$D \cong \bigoplus_{p \in \mathbb{Z}} X_p [p]$$ where X_p is a free \mathbb{Z}-resolution of $H_p D$.
Theorem (Künneth): let C, D be chain complexes of free abelian groups. Then

$$H_n\left(C \otimes \mathbb{Z} D\right) \cong \bigoplus_{k+l=n} H_k(C) \otimes \mathbb{Z} H_l(D) \oplus \bigoplus_{k+l=n-1} \mathbb{Z} H_k(C, H_l(D))$$
Actually, there exist a functional short exact sequence:

\[0 \to \oplus H_\ast(C) \otimes H_\ast(D) \to H_\ast(C \otimes D) \to \oplus \text{Tor}_k^R(H_\ast(C), H_\ast(D)) \to 0. \]

\[k+\ell = n \]

\[k+\ell = n-1 \]

Carter-Gilbertson:

\[[x] \otimes [y] \mapsto [x \otimes y] \]

Homological algebra.

Why do I care about the K"unneth theorem?

Because I have the following singular chain complex:

\[\text{Theorem (Eilenberg-Tate): For spaces } X, Y, \quad C(X \times Y) \cong C(X) \otimes C(Y) \]

natural chain homotopy equivalence.
Example: \[H_* (S^1 \times S^1) \]

\[
egin{align*}
H_0 (S^1) &= \mathbb{Z} \\
H_1 (S^1) &= \mathbb{Z} \\
H_0 (S^1 \times S^1) &= H_0 (S^1) \otimes H_0 (S^1) = \mathbb{Z} \\
H_1 (S^1 \times S^1) &= H_0 (S^1) \otimes H_1 (S^1) \\
&\quad \oplus H_1 (S^1) \otimes H_0 (S^1) \\
&= \mathbb{Z} \oplus \mathbb{Z} \\
H_2 (S^1 \times S^1) &= H_1 (S^1) \otimes H_1 (S^1) = \mathbb{Z} \\
\end{align*}
\]
Note general commutative rings:

No precise Kunneth theorem
(spectral sequence)

- Over PID's - same as over \(\mathbb{Z} \)
- Over a field - No \(\text{Tor}^1 \) or \(\text{Ext}^1 \)!

Over a general ring, we still have a canonical map:

\[
(H_* C) \otimes_k (H_* D) \rightarrow H_{k+c} (C \otimes_k D)
\]

\(c \otimes [d] \rightarrow [c \otimes d]\)