next up previous
Next: About this document

Math 296 problems 11

Igor Kriz

Regular problems:

1.

Compute the following integrals:

(a) tex2html_wrap_inline143

(b) tex2html_wrap_inline145

(c) tex2html_wrap_inline147 .

2.

Using integration of rational functions, compute:

(a) tex2html_wrap_inline149

(b) tex2html_wrap_inline151 .

3.

Suppose tex2html_wrap_inline153 is such that ||f(t)||=1 (the Euclidean norm tex2html_wrap_inline157 ) for every t. Prove that tex2html_wrap_inline161 for every tex2html_wrap_inline163 .

4.

Define for tex2html_wrap_inline165 , tex2html_wrap_inline167 . Similarly, for tex2html_wrap_inline169 , tex2html_wrap_inline171 , let tex2html_wrap_inline173 . (This is called the Laplacian.) Prove that

displaymath175

Challenge problems:

5.

Integrate:

(a) tex2html_wrap_inline177

(b) tex2html_wrap_inline179

(c) .

6.

Put f(0,0)=0, and

displaymath185

if tex2html_wrap_inline187 . Prove that

(a) tex2html_wrap_inline189 are continuous in tex2html_wrap_inline191 ;

(b) tex2html_wrap_inline193 and tex2html_wrap_inline195 exist at every point of tex2html_wrap_inline191 and are continuous except at (0,0);

(c) tex2html_wrap_inline201 tex2html_wrap_inline203




Igor Kriz
Mon Mar 30 11:14:18 EST 1998