
Math 110 Homework 2 Solutions

January 22, 2015

1. Let a, n ∈ Z, n > 0.

(a) Suppose that a is a unit modulo n. Show that the multiplicative inverse of the congruence class [a]
is unique. This justifies referring to “the” multiplicative inverse of [a] and using the notation [a]−1.
Hint: Suppose that the congruence classes [b] and [c] are both multiplicative inverses of [a] modulo
n; the goal is to show they are equal. Consider the product [b][a][c].

(b) If gcd(a, n) = 1, show that the equation ax ≡ d (mod n) has exactly one solution [x] in Z/nZ.
Conclude that there is a unique integer solution x = t ∈ Z with 0 ≤ t < n.

Solution: (a) Suppose a is a unit modulo n, and let [b] and [c] be multiplicative inverses. This means
[a][b] = [b][a] = [1] and [a][c] = [c][a] = [1]. But then

[b] = [b]
(

[a][c]
)

=
(

[b][a]
)

[c] = [c].

Therefore multiplicative inverses are unique.

(b) If gcd(a, n) = 1, there is a multiplicative inverse for a modulo n. The fact that x ∈ Z satisfies ax ≡ d
(mod n) means that [a][x] = [d]. Multiplying by [a]−1, we see [x] = [a]−1[d], hence there is a unique
congruence class solving the equation. The elements of this congruence class are all possible integer
solutions to ax ≡ d (mod n). Because elements of the congruence class differ by a multiple of n, there
is a unique integer solution in the range 0 ≤ x < n.

2. To receive credit for this question, submit your solution to Problem 3 typeset in Latex, using template.tex.
Use the “theorem” environment to state the result, and the “proof” environment to type your proof.

Some useful commands (used in math environments):
\equiv outputs ≡
2 \pmod{3} outputs 2 (mod 3)
\mathbb{Z} outputs Z ( “bb” stands for “blackboard bold”)
a \; \vert \; b outputs a | b (The \; commands create small spaces)

3. If a, b ∈ Z and 3 | (a2 + b2), prove that 3 | a or 3 | b.
Hint: Consider the possibilities for the congruence classes of a, b, and a2 + b2 (mod 3).

Solution:

Theorem 1.1. If a, b ∈ Z and 3 | (a2 + b2), then 3 | a or 3 | b.

Proof. There are three congruence classes modulo 3: [0], [1], and [2]. In terms of congruence classes, the
problem is asking if [a]2 + [b]2 = [0] in Z/3Z, show [a] = [0] or [b] = 0.

Note that [a]2 = [0] if [a] = 0, and [a]2 = [1] if [a] is [1] or [2]. We need to check that whenever both [a]
and [b] are nonzero modulo 3, then ([a]2 + [b]2) is also nonzero. There are three cases:
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• If both [a] and [b] are [1] modulo 3, then ([a]2 + [b]2) = ([1] + [1]) = [2].

• If both [a] and [b] are [2] modulo 3, then ([a]2 + [b]2) = ([1] + [1]) = [2].

• If one of [a] and [b] is [1] and the other is [2], then ([a]2 + [b]2) = ([1] + [1]) = [2].

We conclude that ([a]2 + [b]2) can be zero only when at least one of a and b is divisible by 3.

4. In this question we will verify the textbook’s procedure for finding solutions for ax ≡ b (mod n) when
gcd(a, n) = d (page 74).

(a) As a warm-up, verify what happens to the 12 congruence classes modulo 12 when they are reduced
modulo 4. Verify that each class modulo 4 (considered as a set of integers) is a union of congruence
classes modulo 12.

(b) Suppose that n is a positive integer with divisor k. Show that if a congruence class modulo n
reduces to the class [c] modulo k, it must have been one of the n

k classes

[c], [c+ k], [c+ 2k], . . . , [c+

(
n

k
− 1

)
k] modulo n.

(c) Suppose that ax ≡ b (mod n) with gcd(a, n) = d. Show that if [x0] modulo n
d is a solution to(

a

d

)
x ≡

(
b

d

)
(mod

n

d
),

then the solutions to ax ≡ b (mod n) are exactly the congruence classes

[x0], [x0 +
n

d
], [x0 + 2

(
n

d

)
], . . . , [x0 + (d− 1)

(
n

d

)
] modulo n.

Solution: (a) Since we need to use congruence classes modulo two different numbers, here is an alternate
notation that makes it easy to express the dependence on n: a+ nZ = {a+ tn : t ∈ Z}. Then

0 + 4Z = 0 + 12Z
⋃

4 + 12Z
⋃

8 + 12Z

1 + 4Z = 1 + 12Z
⋃

5 + 12Z
⋃

9 + 12Z

2 + 4Z = 2 + 12Z
⋃

6 + 12Z
⋃

10 + 12Z

3 + 4Z = 3 + 12Z
⋃

7 + 12Z
⋃

11 + 12Z

(b) We have to check two things: that every congruence class modulo n of the form [c + tk], with
0 ≤ t < n

k does reduce to [c] modulo k, and conversely that every class that reduces to c modulo k must
be among this set.

The first claim follows since c + tk ≡ c (mod k) for any t ∈ Z, so all of these congruence classes do
reduce to [c] modulo k.

Conversely, suppose that a ≡ c (mod k). Then by definition a = c + kt for some t ∈ Z. Finally, note
that changing t by a multiple of n

k does not change a+ nZ:

c+ k(t+
n

k
s) = c+ +kt+ nts ≡ c+ kt (mod n),

so [a] depends only on the conjugacy class of t modulo n
k . Thus [a] is one of the n

k congruence classes

[c], [c+ k], [c+ 2k], . . . , [c+

(
n

k
− 1

)
k] modulo n.
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(c) Now suppose x is a solution to
ax ≡ b (mod n).

This means there is a t ∈ Z such that nt = ax− b. Dividing by d (as a, n, and b are all multiples of d,
we see that a

dx−
b
d = n

d t, hence
a

d
x ≡ b

d
(mod

n

d
).

As (n
d ,

a
d ) = 1, there is a unique solution to this modulo n

d , so x reduces to x0 modulo n
d . Let k = n

d .
By the previous part, x+ nZ must be one of the congruence classes

x0 + nZ, x0 +
n

d
+ nZ, . . . c+

n

d
(d− 1) + nZ.

5. Find all solutions to each of the following equations. Show your work.

(a) 5x+ 3 ≡ 7 (mod 8)

(b) 4x ≡ 12 (mod 20)

(c) 10x ≡ 8 (mod 25)

Solution: (a) For the first, rearrange so 5x ≡ 4mod 8. Note 5 and 8 are relatively prime. By inspec-
tion, a multiplicative inverse to 5 is 5, so multiplying by 5 we see 25x ≡ x ≡ 20 ≡ 4 (mod 8). Thus all
solutions are x ≡ 4 (mod 8) or equivalently the elements of [4] = {. . . ,−4, 4, 12, . . .}.

(b) For the second, we use the technique of the previous problem to divide through by 4. We are solving
x ≡ 3 (mod 5) which is easy. Then the solutions are x ≡ 3, 8, 13, 18 (mod 20).

(c) The third has no solutions because 5 | 25 and 5 | 10, but 5 - 8. More formally, a solution would
satisfy 25 | (10x − 8). If 25 | 10x − 8, then there is a t ∈ Z such that 25t = 10x − 8. But rearranging
gives 8 = 5(2x− 5t). But 5 does not divide 8.

6. In this question, we will let the letters of the alphabet represent congruence classes modulo 26 as follows:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To facilitate encoding and decoding, you may wish to use an online program such as: http://rumkin.

com/tools/cipher/affine.php. They denote α by a and β by b.

(a) Read Chapter 2 of the textbook up to the end of Section 2.2 (ie, pages 12-16). State the definition
of an affine cipher.

(b) Show that the affine function
x 7−→ αx+ β (mod 26)

is invertible if and only if gcd(α, 26) = 1. In the case that it is invertible, write down its inverse (in
terms of α−1).

(c) The following text was encoded using an invertible affine function x 7−→ αx+ β (mod 26).

g cgrvwcgrmomgt ma g fwzmow nkj rijtmte oknnww mtrk rvwkjwca
- glnjwf jwtym kt bgil wjfka

Suppose that you correctly guess that “ma g” encodes the words “ is a”. Find the affine function
used to encode this message. Show your work.
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(d) Find the inverse of the affine function in part (c). Show your work.

(e) Decode the message from part (c).

Solution: (a) For the definition, look in the textbook.

(b) Let f(x) = αx + β (mod 26) be the affine function. Suppose gcd(α, 26) = 1. Then α is invertible
modulo 26, and we claim that g(x) = α−1x − α−1β is an inverse. To verify this claim, we must check
that f(g(x)) ≡ x (mod 26) and g(f(x)) ≡ x (mod 26) for every congruence class x modulo 26.

f(g(x)) ≡ f(α−1x− α−1β) ≡ α(α−1x− α−1β) + β ≡ x− β + β ≡ x (mod 26)

and similarly

g(f(x)) ≡ g(αx+ β) ≡ α−1(αx+ β)− α−1β ≡ x (mod 26) as desired.

Conversely, suppose gcd(α, 26) 6= 1. Then there is a common divisor d > 1, and α 26
d ≡ 0 (mod 26).

Then f(0) = f( 26
d ) = β and 26

d 6≡ 0 (mod 26), so the function is not injective and hence not invertible.

(c) The guess that “ma g” encodes “ is a” means that f(8) = 12, f(18) = 0 and f(0) = 6. The last says
that β = 6. Then the first says

f(8) = 8α+ 6 ≡ 12 (mod 26).

Solving, 8α ≡ 6 (mod 26), or 4α ≡ 3 (mod 13). A multiplicative inverse for 4 is 10 (mod 13), so α ≡ 4
(mod 13). Thus we have two solutions for α modulo 26, α ≡ 4, 17 (mod 26). But the affine function
must be invertible, so by (b) α must be coprime to 26. We conclude that α ≡ 17 (mod 26), and the
encryption function is

f(x) = 17x+ 6 (mod 26).

(d) Using the formula for the inverse, an inverse is given by g(x) = α−1x − α−1β. Now β = 6 and an
inverse for α = 17 is 23 (mod 26). Thus the inverse function is

g(x) = 23x+ 18 (mod 26).

(e) Using the website listed to do the actual calculation, we read

a mathematician is a device for turning coffee into theorems
– alfred renyi on paul erdos

7. (a) State the general form of the Chinese Remainder Theorem.

(b) Find the unique solution [x] modulo (4)(3)(5) = 60 to the system of simultaneous congruences

x ≡ 2 (mod 4) x ≡ 1 (mod 3) x ≡ 3 (mod 5).

(c) Find an example of integers m,n, a, b where gcd(m,n) 6= 1 so that

x ≡ a (mod m) x ≡ b (mod n)

has no solutions, and an example of m,n, a, b as above where the system has more than one solution.

Solution: (a) The Chinese Remainder Thereom says : let m1,m2, . . . ,mn be pairwise coprime integers.
Then a system of congruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ an (mod mn)

has an integer solution that is unique modulo m1m2 . . .mn.
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(b) To solve the three equations, do them pairwise using the extended Euclidean algorithm (or by
inspection, as these numbers are small). If x ≡ 2 (mod 4) and x ≡ 1 (mod 3), inspection shows the
solution is x ≡ 10 (mod 12). Now solve this and x ≡ 3 (mod 5). We’ll do this by the general algorithm.

We must have x = 10 + 12s and x = 3 + 5t. Thus

7 = −12s+ 5t

Running the Euclidean algorithm on 12 and 5 gives that −12 · 2 + 5 · 5 = 1, so s = 14 and t = 35 is a
solution. In other words, x = 3 + 5 · 35 = 178 ≡ −2 (mod 60).

Note that there are other ways to approach this: one method involves finding a number which is a
multiple of two of the primes and is ≡ 1 modulo the third prime, and then forming a linear combination.
This will be illustrated in the next problem.

(c) The system x ≡ 2 (mod 4) and x ≡ 1 (mod 2) has no solutions, as we see by reducing the first
equation modulo 2.

The system x ≡ 2 (mod 4) and x ≡ 2 (mod 6) has two solutions modulo 24: 2 and 14.

8. Find all solutions x to the equation x2 ≡ 1 (mod 77), using a method other than simply squaring all
77 congruence classes. (Note that 77 = (7)(11) is a product of distinct primes). Explain how you know
that your answer includes every solution.

Solution: By the Chinese remainder theorem, solutions to this equation modulo 77 are in bijection with
solutions to

x2 ≡ 1 (mod 7) and x2 ≡ 1 (mod 11).

We proved in class that when p is prime, the equation x2 ≡ 1 (mod p) has precisely two solutions: 1 and
−1 modulo p. Thus the solutions are exactly those integers x congruent to 1 or 6 modulo 7 and to 1 or
10 modulo 11. There are four solutions, one for each of the following possible systems of simultaneous
congruences:

x ≡ 1 (mod 7) x ≡ 1 (mod 7) x ≡ −1 (mod 7) x ≡ −1 (mod 7)

x ≡ 1 (mod 11) x ≡ −1 (mod 11) x ≡ 1 (mod 11) x ≡ −1 (mod 11)

Now we combine them using the Chinese remainder theorem to get solutions modulo 77 using the
technique alluded to in the previous solution.

Using the Euclidean algorithm (or by inspection) we can find numbers w1 = 22 such that

w1 ≡ 1 (mod 7) and w1 ≡ 0 (mod 11),

and w2 = 56 such that
w2 ≡ 0 (mod 7) and w2 ≡ 1 (mod 11).

This means that
aw1 + bw2 ≡ a (mod 7) and aw1 + bw2 ≡ b (mod 11)

It is now arithmetic to find the four solutions:

(1)w1 + (1)w2 ≡ 78 ≡ 1 (mod 77)

(1)w1 + (−1)w2 ≡ −34 ≡ 43 (mod 77)

(−1)w1 + (1)w2 ≡ 34 (mod 77)

(−1)w1 + (−1)w2 ≡ 76 (mod 77)
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