
Math 110 Homework 4 Solutions

February 5, 2015

1. (a) Let p be a positive prime. Define a primitive root modulo p.

(b) Identify all primitive roots modulo 11. Is your solution consistent with the claim that there are
φ(φ(p)) primitive roots modulo p?

(c) We stated the Primitive Root Theorem: If p is prime, then there is at least one primitive root
modulo p. Show that this result does not hold for composite n: if n is composite, then there may
not be unit that is a multiplicative generator (ie, primitive root) of the set of units modulo n.
Hint: Check the units modulo 8.

Solution: A primitive root is an integer a (equivalently, a congruence class [a] (mod p)) such that the
powers of a generate all units modulo p.

The primitive roots are 2, 6, 7, 8 (mod 11). To check, we can simply compute the first φ(11) = 10 powers
of each unit modulo 11, and check whether or not all units appear on the list. A more sophisticated
approach: Once you have a primitive root a (mod 11), it’s a fact that the other primitive roots must be
the congruence classes am (mod 11) where (m, 10) = 1 (the units modulo 10), so we can take 2, 23 ≡ 9
(mod 10), 27 ≡ 7 (mod 11), and 29 ≡ 6 (mod 11). This explains why there are φ(φ(11)) = φ(10) = 4
primitive roots modulo 11.

Let n = 8. Then if a is unit modulo n, then a is one of 1, 3, 7, 9. We can check in each case that a2 ≡ 1
(mod 8), so the only powers of a are a and 1. No element is a primitive root. There is a primitive root
when n is 2, 4, pr, 2pr where r ≥ 1 and p is an odd prime.

2. In this question, you will prove the following result which appeared in class and is given in Chapter 3.7
of the textbook. You are welcome to read the proof on page 84, but your solution must be written in
your own words.

Theorem 1. Let p be a positive prime and g be a primitive root modulo p.

1. Let n be an integer. Then

gn ≡ 1 (mod p) if and only if n ≡ 0 (mod p− 1).

2. If j and k are integers, then

gj ≡ gk (mod p) if and only if j ≡ k (mod p− 1).

Solution: For the first part, suppose gn ≡ 1 (mod p). Then as we know gp−1 ≡ 1 (mod p), using the
division algorithm to write n = (p− 1)s+ t with 0 ≤ t < p− 1 we see that

1 ≡ gn ≡ g(p−1)sgt ≡ gt (mod p)

Suppose 0 < t < p− 1. Then g can have at most t distinct powers: since

gat+b ≡ (gt)agb ≡ (1)agb ≡ gb
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we can always reduce exponents of g modulo t, which implies that there can be at most one distinct
power of g for each residue class modulo t. Primitive roots, by definition, have p− 1 distinct powers (all
the units modulo p), and so this contradicts our assumption that g is a primitive root modulo p. Thus
t = 0 and n ≡ 0 (mod p− 1). Conversely, if n = (p− 1)s then gn ≡

(
gp−1

)s ≡ 1s ≡ 1 (mod p).

For the second part, the first condition is equivalent to gj−k ≡ 1 (mod p) by multiplying by g−k. The
second condition is equivalent to j − k ≡ 0 (mod p− 1). Thus the second part follows from the first.

3. Trappe–Washington Chapter 3 Question 20.

Solution:

(a) By Euler’s theorem, aφ(n) ≡ 1 (mod n). Thus the least integer r with ar ≡ 1 (mod n) is at most
φ(n).

(b) Calculate am ≡ (ar)
k ≡ 1k ≡ 1 (mod n).

(c) This is like one direction of the previous problem. Calculate at ≡ aqras ≡ as (mod n) using the
previous part.

(d) Suppose at ≡ 1 (mod n). Then by the previous part, as ≡ 1 (mod n) while 0 ≤ s < r. As r is the
least positive integer such that ar ≡ 1 (mod n), this forces s = 0 and hence at ≡ 1 (mod n) implies
r | t. For the converse, use the second part of this question.

4. Trappe–Washington Chapter 3 Question 21. This question develops a method for finding primitive roots.

Solution:

(a) Consider the prime factorization of 600 and a proper divisor. Each prime (2, 3, 5) occuring in the
factorization of the divisor occurs at most as many times as it appears in the factorization of 600,
and for at least one prime divisor has strictly fewer. This means any proper divisor must divide
600/2, 600/3, or 600/5.

(b) The order of 7 is a divisor of φ(601) = 600. If it is less than 600, then it must be a proper divisor,
so it divides 300, 200, or 120.

(c) If the order of 7 divided any of these, then question 3b would show 7m ≡ 1 (mod 601) for at least
one m ∈ {300, 200, 120}. The calculations given show this is not the case.

(d) Therefore the order of 7 is 600. There are 600 units modulo 601. If 7i ≡ 7j (mod 601), then
7i−j ≡ 1 (mod 601). Hence 600|i− j (question 2), and hence no two distinct powers of 7 that are
less than 600 can be equal. Hence all 600 units occur as powers of 7, so 7 is a primitive root.

(e) In general, let di = p−1
qi

. Compute gdi (mod p). Following the same reasoning as above, if any of
these are 1 then the order of g is less than p− 1 and g is not a primitive root. If none are congruent
to 1, then g is a primitive root.

Note: searching for a primitive root by using this on 2, 3, 5, . . . , is reasonable, but hard to analyze. How
long it takes depends on the smallest primitive root. Assuming the generalized Riemann Hypothesis,
the smallest primitive root is O(log(p)6), so this would run in polynomial time. The best unconditional
bound is much worse.

5. (a) Define the discrete logarithm problem and the function Lα(β).

(b) Explain why we can easily determine the parity of Lα(β) when α is a primitive root.

(c) Trappe–Washington Chapter 7 Question 3.
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Solution: The book does the first part fine on page 201.

We can determine whether Lα(β) is even or odd by checking whether β
(p−1)

2 is congruent to 1 or −1
modulo p, respectively. Here’s an explanation:

Suppose that α is a primitive root modulo p. Then α
(p−1)

2 is a square root of 1 modulo p, as

(α
(p−1)

2 )2 ≡ α(p−1) ≡ 1 (mod p) by Fermat’s Little Theorem.

But we proved in class that the only square roots of 1 modulo a prime are 1 and −1. Moreover, since α

is a primitive root, Part 1 of the theorem in Question 2 implies that α
(p−1)

2 cannot be congruent to 1,

so we must have α
(p−1)

2 ≡ −1 (mod p).

It follows that
β

(p−1)
2 ≡ αx

(p−1)
2 ≡ (α

(p−1)
2 )x ≡ (−1)x (mod p)

and so β
(p−1)

2 will be congruent to 1 if x is even and −1 if x is odd.

The congruence 3
(1223−1)

2 ≡ 3611 ≡ 1 (mod 1223) shows 3 is a square, so the discrete logarithm is even.

6. (a) Describe the Diffie–Hellman Key Exchange (Chapter 7.4).

(b) Trappe–Washington Chapter 7 Question 10.

Solution: The description in the book is good.

Given the situation described, Eve can compute a multiplicative inverse for b modulo p − 1. Call it c.
Then bc ≡ 1 (mod p− 1), and hence

xc2 ≡ αbc ≡ α (mod p).

7. (a) Describe the ElGamal public key cryptosystem (Chapter 7.5).

(b) Trappe–Washington Chapter 7 Question 11.

Solution: The description is in the book.

Bob decrypts by computing tr−a in the notation of the book. In this case, t = 6 and r = 7, so
r−a = 7−6 ≡ 710 ≡ 2 (mod 17). Thus the message was 12.

8. At the end of Chapter 3.9 is stated the following principle:

Suppose n = pq is the product of two primes congruent to 3 (mod 4), and suppose that y
is a number relatively prime to n which has a square root modulo n. Then finding the four
solutions x = ±a,±b to x2 ≡ y (mod n) is computationally equivalent to factoring n.

(a) Explain why if n = pq is the product of any two primes p, q, then knowing four square roots of a
unit y (mod n) enables us factor n.

(b) Conversely, explain how (if p and q are both congruent to 3 (mod 4)) we can determine all square
roots of y modulo n = pq. Include the statement of the main proposition in Chapter 3.9.

(c) Alice and Bob are communicating secretly using the RSA cryptosystem with modulus n = pq =
830429. Suppose you learn that 500, 100 424, 730 005, and 829 929 are all square roots of 250 000
modulo n. Find p and q. Show your work.

Solution: Suppose we had four square roots. By the Chinese remainder theorem, the four square roots
arise from combining the solutions x ≡ ±y1 (mod p) and ≡ ±y2 (mod q). Therefore we can find two
of the solutions α and β such that α ≡ β (mod p) and α ≡ −β (mod q). Then α − β is a multiple of
p and not a multiple of q, so gcd(α − β, n) = p. This can be computed efficiently using the Euclidean
algorithm, so knowing all four square roots gives an effective way to factor n.
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The Proposition from 3.9 is stated in the book. It allows one to calculate a square root modulo a prime
p ≡ 3 (mod 4) provided one exists by raising to the p+1

4 th power. The other is the negative. So to
compute the square root for y modulo n, compute the square roots modulo p and q using this procedure,
and then use the Chinese remainder theorem to find the square roots modulo n.

Take the square roots 500 and 100424. Their difference is 99024. Compute the gcd of this and 830429
using the Euclidean algorithm: you get 757. Then dividing 830429 by 757, you get the other prime
factor 1097.

Note that the difficulty of computing square roots modulo n = pq is the foundation for multiple systems
in cryptography. The Rabin cryptosystem is the simplest: it is described in Exercise 3.27 (the bonus
problem).

9. Trappe–Washington Chapter 3 Question 25.

Solution: The first step is to solve x2 ≡ 133 ≡ 1 (mod 11) and x2 ≡ 133 ≡ 3 (mod 13). These are
small enough it is easy to spot the answer: x ≡ ±1 (mod 11) and x ≡ ±4 (mod 13). Then combine
them using the Chinese remainder theorem as in problem problem 8 of homework 2. The answer is
43, 56, 87, 100 (mod 143).

Likewise, we solve x2 ≡ 0 (mod 11) and x2 ≡ 77 ≡ −1 (mod 13). Inspection gives x ≡ 0 (mod 11)
(which explains why there are only two solutions) and x ≡ ±5 (mod 13). Using the Chinese remainder
theorem gives 44, 99 (mod 143) as solutions.

10. (Not for credit) What topic have you chosen for your WIM? Your answer is non-binding, but please do
start thinking about your WIM topic and the specifics of what you might want to include in the paper.

11. (Bonus). Trappe–Washington Chapter 3 Question 27.

Solution: Assuming only one of the four square roots is meaningful, the probability of Alice’s machine
not returning it is 3/4. The chance of it not returning it n times is

(
3
4

)n
which goes to 0 quickly as

n→∞. Thus Alice should soon see the correct message.

If Oscar knows x, to find m would require him to be able to compute the square roots of x modulo n.
We know this equivalent to factoring n.

If Eve can decrypt chosen messages, she would decrypt x = c2 where Eve chooses c at random. Half the
time, the square root produced would not equal ±c, which would allow her to factor n.
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