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1. (a) Describe the Solovay-Strassen primality test (Chapter 6.3) and explain why it works.

(b) Use the test on n = 804 509. Is n composite, prime, or inconclusive?

Solution: The Solovay-Strassen primality testing algorithm works analogously to the Miller-Rabin al-
gorithm - for a base a check a congruence condition that holds if n is prime and hope that a randomly
chosen a has a good chance of catching a composite n. In this case, choose a to be a unit modulo n, and
check the congruence

a
n−1
2 ≡

(a
n

)
(mod n).

If it holds, we suspect n is prime: we repeat as necessary until we are willing to say that n is probably
prime.

The congruence holds when n is prime because of Euler’s criterion. When n is not prime, one has to
analyze the chance a randomly chosen a will catch this fact. It turns out that at least half will. This
is not done in Trappe and Washington and this level of detail is not the point of this question. If you
want to see this analysis, you can read it at http://planetmath.org/solovaystrassentest.

Note that this test is computationally efficient as the exponentiation can be done by repeated squaring
and the Jacobi symbol can be computed using quadratic reciprocity efficiently.

Now let n = 804509. Let’s try a = 2. Computing that 2402254 ≡ 651195 (mod n) which is not ±1
(mod n) shows that n is not prime.

2. (a) Describe the (p − 1) factoring algorithm (Chapter 6.4) and explain why it works. What must be
true of the factors of n for this algorithm to succeed quickly?

(b) By choosing a base a and testing some small values of B, use the algorithm to find a factor of 49349.

Solution: To factor n, we will try computing b ≡ aB! (mod n) and then checking whether b− 1 shares
any common factors with n using the Euclidean algorithm. Suppose p|n. Then ap−1 ≡ 1 (mod p), and
hence aB! ≡ 1 (mod p) provided p− 1|B!. If all of the prime factors of p− 1 are small, they will appear
in B! for a relatively small value of B. In that case, b ≡ 1 (mod p). If we also had b 6≡ 1 (mod n/p),
which is likely unless n/p only had small factors too, then the greatest common divisor of b − 1 and n
would be p. This would give us a way to factor n.

Note that this is a specialized factorization algorithm: it only works if p − 1 has small factors. The
primes used in cryptography should be chosen so they do not have this property.

Now let n = 49349. We pick a base a = 2 and try B = 10: we compute aB! ≡ 210! ≡ 18423 (mod n).
The greatest common divisor of 18422 and n is 61. Hence 61 is a factor. (The full factorization is
61 · 809).

3. (a) Describe the Quadratic Sieve factorization method (Chapter 6.4) and explain why it works.

(b) Let n = 4181. Find a factor of n using the following:
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652 ≡ 44 (mod 4181)

662 ≡ 175 (mod 4181)

672 ≡ 308 (mod 4181)

1452 ≡ 120 (mod 4181)

4292 ≡ 77 (mod 4181)

4972 ≡ 330 (mod 4181)

6882 ≡ 891 (mod 4181)

Solution: The basis idea is that knowing four square roots of a number modulo n allows us to factor
n by computing greatest common divisors. The quadratic sieve produces these square roots as follows.
Pick a factor base {p1, . . . , pr} consisting of small primes. Square random integers modulo n and try
to factor the result using only primes in the factor base. This is easy to do provided the factor base is
small, for example by computing the greatest common divisor of n and the product of the primes in the
factor base. Produce a lot of these equations

a21 ≡ p
m1,1

1 . . . pm1,r
r (mod n)

a22 ≡ p
m2.1
1 . . . pm2,r

r (mod n)

. . .

a2s ≡ p
ms,1

1 . . . pms,r
r (mod n).

Then find a product of the a2j ’s such that each exponent of a pi is even. This can be interpretted as
doing linear algebra over F2 to find a dependence relation between the vectors

(m1,1, . . . ,m1,r), . . . , (ms,1, . . . ,ms,r) ∈ Fr
2.

Let A be the product of the aj ’s appearing in the relation.

At this stage, we see that A2 ≡ p2s11 p2s22 . . . p2srr (mod n) for some integers s1, . . . , sr. There is a good
chance that A 6≡ ±ps11 . . . psrr (mod n) which means we have multiple square roots of A2 (mod n) and
hence can compute a gcd to obtain a factor of n.

In the example given, we want to combine the equations to get a square on the right hand side. We’ll
do this by inspection, but this can also be done by computing the kernel of a linear transformation over
F2. Note that 652 ≡ 22 · 11 (mod n) and 662 ≡ 52 · 7 (mod n) and 4292 ≡ 7 · 11 (mod n). Therefore

(65 · 66 · 429)2 ≡ 22 · 52 · 72 · 112 (mod n).

This gives square roots of 65 · 66 · 429 ≡ 770 (mod n) and 2 · 5 · 7 · 11 ≡ 770 (mod n). So this didn’t
help. Instead, note that 672 ≡ 22 · 7 · 11. Using that instead of 429, we get

(65 · 66 · 67)2 ≡ 24 · 52 · 72 · 112 (mod n).

This shows that 65 ·66 ·67 ≡ 3122 (mod 4181) and 4 ·5 ·7 ·11 ≡ 1540 (mod 4181) have the same square,
but −3122 6≡ 1540 (mod 4181). Then gcd(3122− 1540, 4181) = 113 is a prime factor. The other is 37.

4. (a) Describe the Pollard rho algorithm.

(b) Using x0 = 1 and f(x) = x2 + 1, find a factor of n = 403. At each step i, you may compute just
gcd(xi − xi−1, n) (instead of performing all computations gcd(xi − xj , n) with j < i).
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Solution: In the Pollard ρ algorithm, we fix a polynomial f(x), often x2 + 1. We choose a starting
x0, and then compute x1 = f(x0) (mod n), x2 = f(x1) (mod n), etc. After computing xn, we check
whether gcd(xn − xi, n) 6= 1, n for i < n. If this does not happen, we will eventually repeat an x value,
in which case we have failed to factor n and need to retry with a different starting value and/or different
polynomial.

The idea behind this algorithm is that iterating the polynomial f is like a random function. Doing it
multiple times will eventually get back to place where you already where. You can think of it as defining
a random walk on Z/nZ. Using the Chinese remainder theorem, we can equivalently do this random
walk on each of the prime factors separately. Hopefully, one of the primes will return to a place it already
was before the others do, so the gcd calculation will give a factorization of n. A more mathematical
analysis is in Koblitz’s book, Section V.2.

In the numerical example, we iterate and see that x0 ≡ 1 (mod 403), x1 ≡ 2 (mod 403), x2 ≡ 5
(mod 403), x3 ≡ 26 (mod 403) and x4 ≡ 274 (mod 403). All of the gcd(xi, xi−1) = 1 until we get that
gcd(274− 26, 403) = 31. This shows that 403 = 31 · 13.
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