
Math 110 Homework 7 Solutions

February 26, 2015

1. (a) Describe the Exponent Factorization Method (Chapter 6.4). What additional information do we
need to use this factorization method that is usually prohibitively difficult to obtain?

(b) Suppose I know that 2900 ≡ 1 (mod 9191). Use the Exponent Factorization Method to factor 9191.

Solution: The Exponent Factorization method tries to factor n by finding a square root of 1 which is
not ±1 (mod n). In this regard it is like parts of the Miller-Rabin primality test. It starts with an a
and r > 0 such that ar ≡ 1 (mod n). This is often very hard to find. Writing r = 2km, we can consider
b0 ≡ am (mod n) and bi = b2i−1 (mod n). Some bi ≡ 1 (mod n) for i ≤ k, in which case bi−1 will be a
square root of 1 that might not be −1 (mod n) (provided i 6= 0).

For example, we can factor 9191 by observing that 900 = 4 · 225 and b0 ≡ 2225 ≡ 3242 (mod 9191) while
b1 ≡ b20 ≡ 5251 (mod 9191) which is a non-trivial equare root of 1. Then gcd(5251− 1, 9191) = 7 · 1313.
1313 is not prime, but has an obvious factor of 101. Thus 9191 = 7 · 13 · 101.

2. Trappe-Washington Chapter 7 Problem 5(a).

Solution: Let α be a primitive root and β1 and β2 be units modulo p. If αr ≡ β1 (mod n) and αs ≡ β2
(mod n), then β1β2 ≡ αs+r (mod n). Taking r = Lα(β1) and s = Lα(β2), by Homework 4 Problem 2,
this means that s+ r ≡ Lα(β1β2) (mod n− 1).

3. (a) Describe the Pohlig-Hellman Algorithm for computing discrete logarithms (Chapter 7.2.1). In the
notation in the textbook, in lecture we described how to compute x0. Be sure to complete the
description by carefully explaining how we can find x1, x2, etc.

(b) Let p = 71. The congruence class 11 (mod 71) is a primitive root. Use the Pohlig-Hellman Algo-
rithm to solve 11x ≡ 30 (mod 71) for the exponent x (mod 70).

Solution: We search for an x for which β ≡ αx (mod p) using the notation of the book. Let qr be
the largest power of q dividing p− 1.. Write x = x0 + x1q + . . .+ xr−1q

r−1. Suppose we already know

x0, . . . xi. Then consider βi ≡ βα−x0−qx1...−qixi ≡ αxi+1q
i+1+...+xr−1q

r−1

(mod n). We calculate

β
p−1

qi+2

i ≡ βxi+1
p−1
q +(p−1)(...)

i (mod p).

All the omitted terms are multiples of p− 1, so by Fermat’s little theorem they do not effect the value.

Furthermore, the qth power of this is one, so if we run through the q powers of α
p−1
q which the are the

qth roots of unity, we will find the value of xi+1.

Then do this to find all of the xi for each prime power dividing p− 1 and combine the results using the
Chinese remainder theorem modulo p− 1.

Remember that this requires p − 1 to only have small factors so it is feasible to factor it and to run
through the q powers.

Since 70 ≡ 2 · 5 · 7, we can use the algorithm. Suppose 11x ≡ 30 (mod 71). First let q = 2. Then we
consider p−1

q = 35, and compute 3035 ≡ 1 (mod 71). This means that x ≡ 0 (mod 2). Likewise for
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q = 5 we compute 30
70
5 ≡ 1 (mod 71), so x ≡ 0 (mod 5). Finally for q = 7 we compute 3010 ≡ 20

(mod 71). Which power of 1110 ≡ 32 (mod 71) is it? Well, running through the choices we see that
326 ≡ 20 (mod 71), so x ≡ 6 (mod 7). Combining these via the Chinese remainder theorem, we see that
x ≡ 20 (mod 70) is the discrete logarithm.

4. (a) Describe the Baby Step, Giant Step method for computing discrete logarithms (Chapter 7.2.2).

(b) Using this method with N = 10, find all solutions x to 5x ≡ 2 (mod 97). Note that 5 is a primitive
root of the prime 97.

Solution: The description in the book is fine.

We compute powers of 5 for the first list:

5, 52 ≡ 25, 53 ≡ 28, 54 ≡ 43, 21, 8, 40, 6, 30 (mod 97).

For the second list, we compute βα−10k = 25−10k for 0 ≤ k < 10 and compare them to the first list. The
list begins 2, 22, 48, 43 . . .. We stop when we notice that 54 ≡ 43 ≡ 25−30 (mod 97). Thus the discrete
logarithm of 2 is 34.

5. Trappe–Washington Chapter 7 Problem 12.

Solution: With the notation of the book, think about j + Nk as a two digit number base N . This
represents every integer between 0 and N2 − 1. As m ≡ cd (mod n), and d < N2, d can be written
as d = j + Nk. Then the elements cj and mc−Nk agree modulo n, so two elements match. Given the
match, you recover d in terms of the j and k used.

Of course, this may not be the actual decryption exponent, it is simply a number with cd ≡ m (mod n).
For example, if we used n = 15 and e = 3 and d = 3 then the message m = 4 encrypts to c = 4 (mod 15).
But then c1 = 4 matches mc−0, so we find j = 1 and k = 0. This shows that c1 ≡ 4 (mod 15) but does
not tell us the original decryption exponent.

This is not efficient though, as the size of the lists needs to be N , where N is around the square root of
the modulus n used. Trial division takes at most

√
n steps, so this is no faster than factoring n through

brute force.

6. (a) Describe the Index Calculus method of computing discrete logarithms (Chapter 7.2.3).

(b) Given that 3 is a primitive root of the prime 101, find all solutions x of 3x ≡ 96 (mod 101) using
the Index Calculus. It may help you to know:

31 ≡ 3 (mod 101)

316 ≡ 16 (mod 101)

321 ≡ 50 (mod 101)

322 ≡ 49 (mod 101)

327 ≡ 90 (mod 101)

330 ≡ 6 (mod 101)

Solution: The description in the book is fine.

The problem gives us a nice set of powers of 3 that are products of the small primes 2, 3, 5, 7. These
in turn give us information about the discrete logarithms of 2, 3, 5, 7. For example, the first tells us the
discrete logarithm of 3 is 1, while combining this with last tells us that

330 ≡ 3 · 3L3(2) (mod 101)
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so L3(2) ≡ 29 (mod 100). You can get more information using linear algebra. To find the discrete
logarithm of 96, we simply compute 96 · 3x (mod 101) for some values of x. We then see if we can
express the result in terms of the factor base. Well, taking x = 0 we see that 96 = 25 · 3. But 25 ≡ 35·29

(mod 101), so 96 ≡ 31+5·29 (mod 101). Thus the discrete logarithm is 46 (modulo 100).

7. Let A be an alphabet of of q symbols (also called letters). In your own words:

(a) Define a q-ary code of length n.

(b) Define the Hamming distance d on An, and explain what it means to say that d is a metric.

(c) Define the Hamming sphere, the closed ball B(c, r) of radius r around the word c in the Hamming
distance. Compute the sets B(0100, 2) ⊆ (Z/2Z)4 and B(11, 1) ⊆ (Z/4Z)2. Here, 0100 abbreviates
the vector (0,1,0,0), and 11 abbreviates (1,1).

(d) Define the minimum distance d(C) of a code C. What does d(C) tell you about the code?

(e) Define nearest neighbour decoding.

(f) Define an (n,M, d) code.

(g) Define the code rate of a code C. What does the code rate tell you about C?

Solution: A q−ary code of length n is a subset of An (which represents which words of length n are
used to encode things).

The Hamming distance between two elements of An is the number of positions where the elements differ.
It being a metric mean it behaves like a generalization of a distance function: you should think that the
Hamming distance is small when words are close together, and you can often reason informally about
codes by drawing pictures of balls. Formally, being a metric means that

• d(u, v) ≥ 0 for any u, v ∈ An, d(u, v) = 0 if and only if u = v,

• d(u, v) = d(v, u)

• d(u, v) ≤ d(u,w) + d(w, v)

The Hamming sphere B(c, r) is {w ∈ An : d(c, w) ≤ r}. If c = 0100 and r = 2, this is all words which
agree with c in at least two places. The list is

{0100, 1100, 0000, 0110, 0101, 1000, 0010, 1110, 1101, 0111, 0001}.

For a four element alphabet with c = 11 and r = 1, the list is all things which agree with c in at least
one place: ie all code words where the first letter is 1 or the second is 1 (seven of them).

The minimum distance of a code is the minimum Hamming distance between code words. It tells you
how many errors will change a code word into another valid code word.

The nearest neighbor decoding attempts to correct errors by correcting w ∈ An to the closest codeword
(with respect to the Hamming distance).

An (n,M, d) code is a code of length n with M code words and minimum distance d. This measures the
properties of the code relevant to analyzing its efficiency.

The code rate is
logq(M)

n . This is the ratio of logq(M), the information content of a code word, to the
information content of a n-letter word, so this measures the ratio of the data in the message to the data
transmitted by the code.

8. Determine (n,M, d) and the code rate R of the following codes:

(a) Let A be an alphabet of q letters, and let C = An be the set of all q-ary n-tuples.

(b) Let A = Z/qZ and let C be the set of all words (a1, a2, . . . an) in An such that

a1 + a2 + . . .+ an ≡ 0 (mod q).
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(c) Let A be the alphabet on q elements {0, 1, . . . q − 1}. Let C be the length-n repetition code

{(0, 0, . . . , 0), (1, 1, . . . , 1), . . . (q − 1, q − 1, . . . , q − 1)} ⊆ An.

(d) Let A be the alphabet on q elements {0, 1, . . . q − 1}, and let C be the set of all words of the form
(a, a, a, . . . , a, 0, 0, 0, . . . 0) having k copies of a ∈ A and (n− k) copies of 0.

Solution: For the first, the number of code words is qn, so logq(q
n)/n = 1 is the rate. The minimum

distance is 1.

For the second, there are qn−1 code words: pick n − 1 entries arbitrarily, and use the relation to find
the last one. Thus the code rate is logq(q

n−1)/n = (n − 1)/n. The minimum distance is 2: the linear
equation shows code words cannot differ in one spot, and it is easy to find code words that differ by 2.

For the third, there are q code words, so the code rate is 1/n. The minimum distance is n, because all
of the code words differ in n spots.

For the fourth, there are n code words (having 1 to n of a) for each a 6= 0. There is also a code word of
all 0s. This is (q − 1)n+ 1 code words. Thus the rate is logq((q − 1)n+ 1)/n. The minimum distance is
1, because 1000 . . . differs from 0000 . . . in one spot.

9. Here is a schematic of (Z/2Z)3, with a line drawn between all points of Hamming distance 1.

(a) Recopy the picture. Using a different colour, connect all points of Hamming distance 2. Using a
third colour, connect points of Hamming distance 3.

(b) Make an analogous schematic of (Z/2Z)4 and of (Z/3Z)2, with lines drawn between all points of
Hamming distance 1.

(c) Choose a binary length 4 code C in (Z/2Z)4 of minimum distance d(C) = 3 including at least
2 codewords. In your schematic of (Z/2Z)4, colour each codeword, and draw a Hamming sphere
of radius 2 around each codeword. Interpret what ”minimum distance 3” means in terms of these
Hamming spheres and the geometry of your picture. Explain why your code can detect s = 2 errors.

(d) In your diagram of (Z/2Z)4, draw Hamming sphere of radius 1 around each codeword. Explain why
your code can correct t = 1 error.

(e) Write a proof (in your own words) of the following result, which appears on page 400.

Theorem 1. 1. A code C can detect up to s errors if d(C) ≥ s+ 1.

2. A code C can correct up to t errors if d(C) ≥ 2t+ 1.

Solution:

(a) The points of Hamming distance two are the opposite corners of a face. The points of Hamming
distance three are opposite corners of the square.

(b) (Z/2Z)
4

looks like a hypercube with the points of Hamming distance one being the points joined by

an edge. (Z/3Z)
2

looks like a three by grid, where things in the same row or column are connected.

(c) For example, take 0000 and 0111 to be the code words. The minimum distance is obviously three,
and this means that a ball of radius three around some code word contains the other. Now consider
the Hamming balls of radius two. The one around 0000 contains everything with at most two 1, for
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example. In particular, it does not contain 0111, and vice versa for the ball of radius two around
0111. This means that the code can detect up to two errors, for no code word is within two of
another.

(d) The balls of radius one around each code word are disjoint: the one around 0111 only contains
elements with at least two 1s, while the one around 0000 contains at most one 1. Therefore if we
introduce at most one error to a code word, we end up in one of the balls. Since they are disjoint,
we can tell which code word we started with and correct the error.

(e) If d(C) ≥ s+ 1, then starting with a code word and introducing s errors produces an element that
is Hamming distance ≤ s from a code word. Since the minimum distance between code words is
d(C), this new element cannot be a different code word. Thus after introducing errors we do not
have a code word, so we can detect errors.

Now suppose d(C) ≥ 2t + 1, and suppose we introduce up to t errors to a code word w to get w′.
In other words, d(w,w′) ≤ t. Let v be another code word. Then by the triangle inequality and the
inequality d(C) ≥ 2t+ 1 we obtain

2t+ 1 ≤ d(w, v) ≤ d(w,w′) + d(w′, v).

Rearranging we see that d(w′, v) ≥ 2t+ 1− t = t+ 1. Therefore there is a unique code word within
distance t of w′ which allows us to correct the error.

10. Let A be an alphabet of of q symbols (eg, A = Z/qZ).

(a) How many elements are there in An?

(b) Let w be a fixed word in An. How many words in An are Hamming distance 0 from w? How many
words in An are Hamming distance exactly 1 from w?

(c) For m ≥ 0 in Z, how many words in An are Hamming distance exactly m from w?

(d) How many words are in the ball B(w, r) for fixed radius r ≥ 0?

(e) Prove the Hamming Bound, the theorem on page 404.

If you’re not sure how to proceed, start by working out the answer for some small values of q and n.

Recall that

(
a

b

)
=

a!

(b!)(a− b)!
is the number of ways to select a subset of b (unordered) elements from

a set of a elements.

Solution: There are qn elements in An.

There is one word (w) with Hamming distance 0 from w. There are (q − 1)n words that are Hamming
distance one: modify one of the positions to any of the q − 1 other choices.

In general, a word that is Hamming distance m from w arises by picking m spots from the n symbols of
w and changing the entry. There are

(
n
m

)
ways to choose m things from n things when the order doesn’t

matter. For each of these, we can change the symbol to any of the other q − 1 choices. So there are(
n
m

)
(q − 1)m words of Hamming distance exactly m from w.

For a ball of radius r, we sum up the words of Hamming distance m for m = 0, 1, . . . [r]:∑
0≤m≤r

(
n

m

)
(q − 1)m

For the Hamming bound, the idea is you have non-overlapping spheres around each code word. Since you
know how many elements are in each sphere, the number of spheres times the number of the elements
of the sphere must be less than the total number of words. There are qn possible words, the sphere of
radius t has ∑

0≤m≤t

(
n

m

)
(q − 1)m

elements, and there are M code words, giving the stated bound.
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11. Read Example 4 in Section 18.1, on the Hamming [7,4] code. Complete Trappe–Washington Chapter 18
Problem 1.

Solution: Using the notation of Example 4, to detect the errors we want to multiply the vectors
(0, 1, 0, 0, 1, 1, 1) and (0, 1, 0, 1, 0, 1, 0) by the transpose of H. We obtain (0, 1, 0) (the sixth row of H) for
the first and (0, 0, 0) for the second. This means there was an error in the sixth entry of the first, and
no error in the second. Therefore the correct code words are 0100101 and 0101010. The first four digits
give the original messages of 0100 and 0101.
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