
Math 110 Homework 9 Solutions

March 12, 2015

1. For this question, refer to your handout on Field Axioms.

(a) State which of the examples in Section 2 are fields, and for each of the non-fields, cite at least one
axiom that fails. No proof needed.

(b) Using the definition of a multiplicative inverse, prove that for any nonzero a ∈ F, (a−1)−1 = a.

(c) Using the field axioms, prove that a · 0 = 0 for any a ∈ F. Hint : Expand a · (1 + 0) in two ways.

(d) Using the field axioms and Part (b), prove that fields have no (nonzero) zero divisors.

(e) Let F be a finite field with multiplicative identity 1. We define the characteristic of F to be the
smallest positive number n such that the sum

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

is equal to the additive identity zero. Prove that, if F is finite, then it has a finite characteristic n.
Further prove that the characteristic of F must be prime.

Note: For some infinite fields, such as Q and R, the sum of any number of 1’s is nonzero. These fields
are said to have characteristic zero.
Note: For a field F, it is standard to refer to the sum

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

by the number n. With this convention, we can identify a copy of the integers Z in any field of charac-
teristic zero, and a copy of the field Z/pZ in any field of characteristic p.

Solution:

(a) The integers Z are not a field because there are not multiplicative inverses. Q and R and fields.
R>0 is not a field because there are not additive inverses. The complex numbers are a field. Three
by three matrices are not because some do not have multiplicative inverses. The invertible matrices
are not because there is no way to add them. Z/pZ is a field, Z/nZ is not a field if n is not prime
because multiplicative inverses do not exist. (Z/nZ)× is not a field because there is no way to add
elements. Q[x] is not a field because there are no multiplicative inverses for a polynomial like x.

(b) A multiplicative inverse for a satisfies aa−1 = 1. Let b = a−1. A multiplicative inverse for b satisfies
b−1b = 1, ie (a−1)−1a−1 = 1. But taking

(a−1)−1a−1 = aa−1

and multiplying by a gives ((a−1)−1a−1)a = (aa−1)a. By associativity and the definition of multi-
plicative inverse, we see that (a−1)−1 · 1 = a · 1. Using the definition of a multiplicative identity, we
see that (a−1)−1 = a.
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(c) Consider a ·(1+0). We know 1+0 = 1 by the definition of additive identity, and by the definition of
multiplicative identity we see a · 1 = a. On the other hand, a · (1 + 0) = a · 1 +a · 0 by distributivity.
By the definition of multiplicative identity, we have a · 1 = a. Comparing, we see

a = a+ a · 0.

Adding −a on the right, invoking associativity, and the definition of additive inverse, we obtained

0 = 0 + a · 0.

By the definition of an additive identity, we see a · 0 = 0.

(d) Suppose a · b = 0 and b 6= 0. Then b has a multiplicative inverse, so (a · b) · b−1 = 0 · b−1. Using
associativity and the definition of multiplicative inverse, the left side is a · 1 which is a by the
definition of multiplicative identity. The right side is 0 by commutativity and the previous part.
Thus a = 0, so a field has no zero divisors.

(e) For a positive integer n define n · 1 to be the sum of n copies of 1. If a field is finite, consider
the infinitely many expressions of the form {n · 1}n∈N. There must be overlap, so for some n and
m we must have n · 1 = m · 1. Say n > m. Hence using additive inverses to cancel ones we see
(n−m) · 1 = 0. Thus the field has finite characteristic.

Let a field have finite characteristic n. Suppose we can factor n = m′ ·m′′. Then consider (m′ ·
1)(m′′ · 1). By expanding using the distributive law and the fact that 1 · 1 = 1, we see that this
product is just a sum of n ones, ie n · 1. This is 0. But a field has no zero divisors, so without loss
of generality we may assume m′ · 1 = 0. But the characteristic n is the minimal positive integer
with this property, so n = m′. Thus we cannot factor n non-trivially. Thus n is prime.

2. Let Fp denote the field Z/pZ for some positive prime p. Let Fp[x] denote the set of polynomials in the
variable x with coefficients in Fp.

(a) What is an irreducible polynomial P (x)? Show by example that polynomials that are irreducible
over the integers may not be irreducible over Fp[x], and that polynomials that are irreducible over
Fp[x] may not be irreducible over Fq[x] for q 6= p.

(b) Let P (x) ∈ Fp[x] be a polynomial of degree d. Define the congruence classes of Fp[x] modulo P (x),
and compute how many congruence classes there are.

(c) Explain how to construct a finite field with pk elements (Chapter 3.11).

(d) Explain why the object you’ve constructed is a field. Specifically, explain why the one non-obvious
field axiom holds: nonzero elements have multiplicative inverses.

(e) Remark that every polynomial in P (x) ∈ Fp[x] defines a polynomial function on Fp, mapping b ∈ Fp

to the congruence class P (b) ∈ Fp obtained by substituting x = b. Give an example of how two
different polynomials can define the same function on Fp (Hint : If a ∈ Fp, what is ap (mod p)?)
Note that the two polynomials in your example are still considered distinct elements in Fp[x], even
if they define the same function Fp → Fp.

Solution:

(a) An irreducible polynomial is a polynomial such that if P (x) = q(x)r(x) then either q(x) or r(x)
is a unit. (A unit is an element with a multiplicative inverse. In Fp[x], the units are non-zero
constants.) In other words, it is impossible to factor P (x) in a non-trivial way. Consider x2 + 1.
This is irreducible if and only if there is no root. So it is irreducible over Z, but there is a root
modulo 5 so it is reducible in F5[x]. Now consider the polynomial x2 + 2 ∈ F5[x]. It has no roots
in F5, so is irreducible. But one construction of F25 is as F5[y]/(y2 + 2), and the element y in this
field is a solution to x2 + 2 = 0. Therefore x2 + 2 is reducible over F25.

(b) The congruence classes are polynomials that differ by a multiple of P (x). Using the division
algorithm, any polynomial is seen to be congruent to a polynomial of degree less than d. All of

Page 2



these are obviously not congruent, as any multiple of P (x) has too large degree to change one into
another. Thus there are pd such congruence classes, coming from choosing the d coefficients from
Fp.

(c) For details, see the book on page 97. The idea is pick an irreducible polynomial P (x) of degree d
over Fp, then use Fp[x]/P (x).

(d) To show multiplicative inverses exist, use the Euclidean algorithm. Given a non-zero residue class,
pick a polynomial q(x) ∈ Fp[x] representing it. Note that q(x) and P (x) are relatively prime. Then
as with Euclidean algorithm in Z, we can find solutions r(x) and t(x) such that

P (x)r(x) + q(x)t(x) = 1.

Looking at this modulo P (x), we have a multiplicative inverese for q(x).

(e) Consider x3 and x in F3[x]. They are different polynomials, but define the same function as α3 ≡ α
(mod 3) by Fermat’s little theorem.

3. (a) Determine all irreducible polynomials in F3[x] of degree 2 or less.

(b) Write down the addition and multiplication table for F2[x] modulo (x2 + x+ 1).

(c) The polynomials P (x) = 1 + x + x3 and Q(x) = 1 + x2 + x3 are both irreducible in F2[x]. Since
both have degree 3, we can identify the congruence classes of F2[x] modulo P (x) and the congru-
ence classes of F2[x] modulo Q(x) with the eight polynomials F2[x] of degree 2 or less (all possible
remainders on division by a degree 3 polynomial). Show by example that the addition and mul-
tiplication rules for these small-degree polynomials are different in F2[x] modulo P (x) and F2[x]
modulo Q(x). This is one reason it should be surprising that these two fields (and any two finite
fields with the same number of elements) are “isomorphic”, possibly after re-labeling the elements.

(d) Use the Euclidean algorithm (and polynomial division) to find a multiplicative inverse for x + 1
(mod x3 + x2 + 1) in F2[x].

Solution:

(a) Remember that a degree 2 polynomial will be irreducible if and only if it has no roots. So the
degree two irreducible polynomials that are irreducible are x2 + 1, 2x2 + 2, x2 + 2x+ 2, 2x2 +x+ 1,
x2 + x+ 2 and 2x2 + 2x+ 1 by running through and checking if 0, 1, or 2 are roots of each of the
polynomials. All of the degree one polynomials are also irreducible because they can’t be written
as a product of two positive degree polynomials. Usually constant polynomials are not considered
irreducible (for the same reason that −1 and 1 are not called primes – numbers with inverses are
neither prime nor composite), but this is a point we did not emphasize in class, so either listing the
constant polynomials or not is acceptable on this assignment.

(b) Representatives are 0, 1, x, x+ 1. The multiplication table is

0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

For example, x2 ≡ x2 − (x2 + x+ 1) ≡ x+ 1 (mod 2) because

x2 + x+ 1 is zero.

(c) For example, in F2[x]/P (x) we have x3 ≡ −x − 1 and in F2[x]/Q(X) we have x3 ≡ −x2 − 1. So
the multiplication of x by x2 gives different answers. Likewise, the addition of x3 + x and 2x gives
different answers.

(d) We divide and see that x3 + x2 + 1 = (x+ 1)(x2) + 1, so a multiplicative inverse is x2.

4. Let E be an elliptic curve defined over a field K. As usual, assume that 2 and 3 have multiplicative
inverses in K.

Page 3



(a) Explain why the addition law is commutative, that is, why P +Q = Q+ P for any points P,Q.

(b) Explain what it means to say that the addition law is associative. (This result is onerous to prove,
and we will omit the proof.)

(c) Given a point P 6= ∞ on an elliptic curve, what is its negative (−P )? Use the equation for E
to explain why −P will always be a point on the elliptic curve (that is, why the curve must have
reflectional symmetry in the x-axis).

(d) Give an algebraic description of the addition law (as on Page 362).

(e) Suppose that P and Q are two distinct points on an elliptic curve not equal to ∞. Let the line
through P and Q intersect the curve in a third point R. Verify that the coordinates of P + Q,
defined to be the reflection over the x-axis of R, are given by the formula you wrote down in the
previous part. You may assume that K = R so you are comfortable with the geometry, but your
solution (plus knowledge of algebraic geoemtry) will work in general.

Solution: The fact that 2 and 3 have multiplicative inverses means that the form of the group law given
in class and the textbook is valid.

(a) The group law is defined such that P + Q + R = ∞ if P , Q, and R lie on the same line. The line
through P and Q is independent of the ordering, so the group law is commutative. Alternately,
note that the formulas given in the book don’t change if we swap the points.

(b) To be commutative means for points P , Q, and R the way we group things doesn’t matter: ie
(P + Q) + R = P + (Q + R). Without a better definition of the group law using more advanced
algebraic geometry, this is painful to prove.

(c) Recall the negative is the reflection of P over the x-axis. If (x, y) satisfies y2 = x3 + ax+ b, then so
does (x,−y), the reflection over the x−axis, because (−y)2 = y2.

(d) See page 352.

(e) Let P = (x1, y1) and Q = (x2, y2). If x2 = x1, the line through them is vertical. Then the geometric
description of the group law tells us that the point at infinity is the third point of intersection of
this line with the curve.

Letting m = y2−y1

x2−x1
, we see an equation for the line through P and Q is y = m(x − x1) + y1.

Substituting into the equation for the curve, we see

(m(x− x1) + y1)2 = m2(x− x1)2 + 2m(x− x1)y1 + y21 = x3 + ax+ b.

Two of the solutions to this cubic in x are x1 and x2. We are interested in the third, x3. The sum
of the roots of a polynomial t3 + r2t

2 + r1t+ r0 is −r2, so we see that

x1 + x2 + x3 = m2

(negative the the coefficient of x2). Thus x3 = m2−x2−x1. Substituting into the equation for the
line gives

y3 = m(x3 − x1) + y1 = m(x3 − x1) + y1.

The sum of P and Q is the reflection of (x3, y3) over the x-axis, ie (x3,−y3).

Note that this derivation used nothing more than algebra, which means it will work over a finite
field as well provided one interprets the geometry correctly.

5. Trappe–Washington Chapter 16 Exercise 2.

Solution: For each value of x, finding the values of y that solve the equation modulo 7, together with
the point at infinity, gives the set of points on the curve: {(3, 2) , (3, 5) , (5, 2) , (5, 5) , (6, 2) , (6, 5) ,∞}.
To add the points, use the formula or do geometry. The results are (3, 5) and (5, 2). Number theoristis
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use the computer algebra package SAGE to do calculations with elliptic curves, which is what I used to
verify these calculations.

6. Trappe–Washington Chapter 16 Exercise 4.

Solution: Given the point P = (3, 5) on this elliptic curve, we can apply the group law to calculate
2P = P + P , another rational point on the curve. This has coordinates ( 129

100 ,
−383
1000 ).

7. Trappe–Washington Chapter 16 Exercise 15.

Solution: If k ≡ k′ (mod 2n), then kA = (k′ + l2n)A = k′A+ l(2nA) = k′A.

Now consider T = 2n−1A. We know that 2T = 2nA =∞ by definition. So any even multiple of T is ∞.
If j is odd, then jT = (j − 1)T + T . But (j − 1)T =∞, so jT = T 6=∞.

Writing k = x0 + . . .+ 2n−1xn−1, we consider B = kA. Note that 2n−1B = kT , hence k is even (x0 = 0)
if and only if 2n−1B =∞.

For the last part, note that 2n−m−1Qm = 2n−m−1(2mxm + . . . 2n−1xn−1)A. This is 2n−1xmA, because
every larger term includes a 2nA which is the identity element. The second part shows that xm is even
(0) if and only if 2n−m−1Qm = 2n−1xmA =∞.

The following two bonus questions (which are very challenging) together prove our claim that every finite
field can be realized by the construction described in Chapter 3.11.

8. Bonus. Prove that the number of elements in any finite field must be a prime power.

9. Bonus. Prove that any two finite fields with the same number of elements are isomorphic.

Solution: See section 14.3 of Dummit and Foote or your favorite reference on abstract algebra.

The following questions give applications of elliptic curves to cryptography.

10. Bonus.

(a) Let n = pq. Explain how we can factor n by analyzing elliptic curves over Z/nZ.

(b) Trappe–Washington Chapter 16 Exercise 6(a).

Solution: The algorithm is discussed on page 356 of the textbook. For the problem, you can calculate
2P = (5, 16). Then 3P = 2P + P causes you to try to divide by the difference in the x-coordinates,
which is 5− 10. This is not invertible modulo 30 because 5 and 30 share a common factor.

11. Bonus. Trappe-Washington Chapter 16 Exercise 9.

Solution: If interested, you can read around Algorithm 7.3 of http://math.arizona.edu/~mleslie/
files/ecc.pdf.
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