
Math 110 Homework #9 Due: Thursday 12 March 2015

Suggested reading: handout on Field Axioms; Trappe-Washington 3.11, 16.1–3.

1. For this question, refer to your handout on Field Axioms.

(a) State which of the examples in Section 2 are fields, and for each of the non-fields, cite at least one
axiom that fails. No proof needed.

(b) Using the definition of a multiplicative inverse, prove that for any nonzero a ∈ F, (a−1)−1 = a.

(c) Using the field axioms, prove that a · 0 = 0 for any a ∈ F. Hint : Expand a · (1 + 0) in two ways.

(d) Using the field axioms and Part (b), prove that fields have no (nonzero) zero divisors.

(e) Let F be a finite field with multiplicative identity 1. We define the characteristic of F to be the
smallest positive number n such that the sum

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

is equal to the additive identity zero. Prove that, if F is finite, then it has a finite characteristic n.
Further prove that the characteristic of F must be prime.

Note: For some infinite fields, such as Q and R, the sum of any number of 1’s is nonzero. These fields
are said to have characteristic zero.
Note: For a field F, it is standard to refer to the sum

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

by the number n. With this convention, we can identify a copy of the integers Z in any field of charac-
teristic zero, and a copy of the field Z/pZ in any field of characteristic p.

2. Let Fp denote the field Z/pZ for some positive prime p. Let Fp[x] denote the set of polynomials in the
variable x with coefficients in Fp.

(a) What is an irreducible polynomial P (x)? Show by example that polynomials that are irreducible
over the integers may not be irreducible over Fp[x], and that polynomials that are irreducible over
Fp[x] may not be irreducible over Fq[x] for q 6= p.

(b) Let P (x) ∈ Fp[x] be a polynomial of degree d. Define the congruence classes of Fp[x] modulo P (x),
and compute how many congruence classes there are.

(c) Explain how to construct a finite field with pk elements (Chapter 3.11).

(d) Explain why the object you’ve constructed is a field. Specifically, explain why the one non-obvious
field axiom holds: nonzero elements have multiplicative inverses.

(e) Remark that every polynomial in P (x) ∈ Fp[x] defines a polynomial function on Fp, mapping b ∈ Fp

to the congruence class P (b) ∈ Fp obtained by substituting x = b. Give an example of how two
different polynomials can define the same function on Fp (Hint : If a ∈ Fp, what is ap (mod p)?)
Note that the two polynomials in your example are still considered distinct elements in Fp[x], even
if they define the same function Fp → Fp.

3. (a) Determine all irreducible polynomials in F3[x] of degree 2 or less.

(b) Write down the addition and multiplication table for F2[x] modulo (x2 + x + 1).

(c) The polynomials P (x) = 1 + x + x3 and Q(x) = 1 + x2 + x3 are both irreducible in F2[x]. Since
both have degree 3, we can identify the congruence classes of F2[x] modulo P (x) and the congru-
ence classes of F2[x] modulo Q(x) with the eight polynomials F2[x] of degree 2 or less (all possible
remainders on division by a degree 3 polynomial). Show by example that the addition and mul-
tiplication rules for these small-degree polynomials are different in F2[x] modulo P (x) and F2[x]
modulo Q(x). This is one reason it should be surprising that these two fields (and any two finite
fields with the same number of elements) are “isomorphic”, possibly after re-labeling the elements.
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(d) Use the Euclidean algorithm (and polynomial division) to find a multiplicative inverse for x + 1
(mod x3 + x2 + 1) in F2[x].

4. Let E be an elliptic curve defined over a field K. As usual, assume that 2 and 3 have multiplicative
inverses in K.

(a) Explain why the addition law is commutative, that is, why P + Q = Q + P for any points P,Q.

(b) Explain what it means to say that the addition law is associative. (This result is onerous to prove,
and we will omit the proof.)

(c) Given a point P 6= ∞ on an elliptic curve, what is its negative (−P )? Use the equation for E
to explain why −P will always be a point on the elliptic curve (that is, why the curve must have
reflectional symmetry in the x-axis).

(d) Give an algebraic description of the addition law (as on Page 362).

(e) Suppose that P and Q are two distinct points on an elliptic curve not equal to ∞. Let the line
through P and Q intersect the curve in a third point R. Verify that the coordinates of P + Q,
defined to be the reflection over the x-axis of R, are given by the formula you wrote down in the
previous part. You may assume that K = R so you are comfortable with the geometry, but your
solution (plus knowledge of algebraic geometry) will work in general.

5. Trappe–Washington Chapter 16 Exercise 2.

6. Trappe–Washington Chapter 16 Exercise 4.

7. Trappe–Washington Chapter 16 Exercise 15.

The following two bonus questions (which are very challenging) together prove our claim that every finite
field can be realized by the construction described in Chapter 3.11.

8. Bonus. Prove that the number of elements in any finite field must be a prime power.

9. Bonus. Prove that any two finite fields with the same number of elements are isomorphic.

The following questions give applications of elliptic curves to cryptography.

10. Bonus.

(a) Let n = pq. Explain how we can factor n by analyzing elliptic curves over Z/nZ.

(b) Trappe–Washington Chapter 16 Exercise 6(a).

11. Bonus. Trappe-Washington Chapter 16 Exercise 9.
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