Name: Score (Out of 9 points):

A non-programmable, non-scientific calculator may be used.

1. (a) [2 points] Use the Euclidean algorithm to compute the greatest common divisor of 170 and 245.

We use the Euclidean algorithm:

 $245 = 1(170) + 75$ $170 = 2(75) + 20$ $75 = 3(20) + 15$ $20 = 1(15) + 5$ $15 = 3(5)$

The gcd is the last nonzero remainder; $gcd(245, 170) = 5$.

(b) [2 points] Find integers u and v such that $245u + 170v = \gcd(245, 170)$.

Working backward through our Euclidean algorithm computation:

Thus we have found a solution $u = -9$ and $v = 13$.

 \Box

- 2. Suppose that $a, b \in \mathbb{Z}$ and that $gcd(a, b) = d$. Let $c > 0$ be a common divisor of a and b. Recall that we proved that $\frac{d}{c}$ is an integer.
	- (a) [4 points] Using the definitions of divisibility and gcd, prove that $gcd(\frac{a}{c})$ $\frac{a}{c}, \frac{b}{c}$ c $\Big) = \frac{d}{ }$ $\frac{a}{c}$.
		- To prove that $\gcd\left(\frac{a}{a}\right)$ $\frac{a}{c}, \frac{b}{c}$ c $\Big) = \frac{d}{ }$ $\frac{d}{c}$, we must show two things: that $\frac{d}{c}$ is a divisor of $\left(\frac{a}{c}\right)$ c) and \int c), and that it is the largest such common divisor.

Claim: $\Big(\frac{d}{d}\Big)^2$ c \int divides both $\left(\frac{a}{a}\right)$ c $\Big)$ and $\Big(\frac{b}{a}\Big)$ c .

Proof. That $gcd(a, b) = d$ means that d is a divisor of both a and b: by definition, there are integers n and m so that $a = md$ and $b = nd$. But then dividing by c,

$$
\left(\frac{a}{c}\right) = m\left(\frac{d}{c}\right) \quad \text{and} \quad \left(\frac{b}{c}\right) = n\left(\frac{d}{c}\right),
$$

so we conclude that $\left(\frac{d}{c}\right)$ is a divisor of both $\left(\frac{a}{c}\right)$ and $\left(\frac{b}{c}\right)$.

Claim: $\Big(\frac{d}{d}\Big)^2$ c is the largest common divisor of $\left(\frac{a}{c}\right)$ c $\big)$ and $\big(\frac{b}{a}\big)$ c .

Proof. First note that $d = \gcd(a, b)$ must be positive, by virtue of being the greatest common divisor, so since $c > 0$ the integer $\left(\frac{d}{d}\right)$ c must be positive. By a result from class, there exist integers u and v so that

$$
au + bv = \gcd(a, b) = d.
$$

Dividing through by c :

$$
\left(\frac{a}{c}\right)u + \left(\frac{b}{c}\right)v = \left(\frac{d}{c}\right)
$$

Any common divisor of $\begin{pmatrix} a \\ -b \end{pmatrix}$ c) and $\begin{pmatrix} b \\ -b \end{pmatrix}$ c must divide the left-hand side of this equation, and hence divides $\left(\frac{d}{dx}\right)$ c). Thus $\left(\frac{d}{dx}\right)$ c) is at least as large as any divisor of $\left(\frac{a}{c}\right)$ c $\big)$ and $\big(\frac{b}{a}\big)$ c .

This concludes the proof that $\gcd\left(\frac{a}{b}\right)$ $\frac{a}{c}, \frac{b}{c}$ c $\Big) = \frac{d}{ }$ $\frac{a}{c}$.

(b) [1 point] Conclude as a special case that $gcd\left(\frac{a}{b}\right)$ $\frac{a}{d}, \frac{b}{d}$ d $\Big) = 1.$

Taking the particular divisor $c = d$ of a and b, the above result gives $gcd\left(\frac{a}{d}\right)$ $\frac{a}{d}, \frac{b}{d}$ d $=\frac{d}{d}$ $\frac{a}{d} = 1$