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1. Let R be a ring, M and R–module and N an R–submodule of N .

(a) Define the quotient module M/N , and prove that (in contrast to groups modulo subgroups) it
always forms a well-defined R–module.

(b) Show that MN satisfies the following universal property: If ϕ : M → Q is any map of R–modules
satisfying φ(n) = 0 for any n ∈ N , then ϕ factors uniquely through M/N .

(c) Show that this universal property defines the quotient M/N uniquely up to unique isomorphism.

2. Suppose the following diagram is commutative and has exact rows. Prove that if m and p are injective,
and l is surjective, then n is injective.

A
f //

l

��

B
g //

m

��

C h //

n

��

D

p

��
A′

r
// B′

s
// C ′

t
// D′

3. Let k be a field, and x, y indeterminates. Prove or disprove the following isomorphism of k–modules:
k[x, y] ∼= k[x]⊗k k[y].

4. Let R be commutative and let M,N be R–modules. Show that there is a canonical isomorphism

M ⊗R N ∼= N ⊗RM.

5. Let M,Mi be right R–modules and N,Ni be left R–modules. Use the universal property of the tensor
product and the universal property of the direct sum to prove the following isomorphisms of abelian
groups:

(M1 ⊕M2)⊗R N ∼= (M1 ⊗R N)⊕ (M2 ⊗R N) M ⊗R (N1 ⊕N2) ∼= (M ⊗R N1)⊕ (M ⊗R N2)

6. Let V and W be vector spaces over a field F with bases {e1, . . . , en} and {f1, . . . , fm}, respectively.

(a) Show that {ei ⊗ fj}n,mi=1,j=1 is a basis for V ⊗F W .

(b) It follows from part (a) that any element α of V⊗FW can be written in the form α =
∑
i,j ci,j(ei⊗fj).

Prove that α can be expressed as a simple tensor (that is, in the form v ⊗ w for v ∈ V,w ∈ W ) if
and only if the matrix (ci,j) has rank 1.

7. Classify (up to conjugacy) all linear maps T : Q5 → Q5 with characteristic polynomial c(x) = x2(x−2)3.

8. Let R be an integral domain, and consider a short exact sequence of finite-rank R–modules:

0 −→ A
ψ−→ B

φ−→ C −→ 0

Show that rank(B) = rank(A)+ rank(C).

9. Let M be a finitely generated module over a PID R. Give necessary and sufficient conditions on the
elementary divisors of M for M to irreducible.

10. Let M be a simple R–module. Prove that M is cyclic.

11. Let V be a finite dimensional complex vector space and T : V → V a linear map. Under what conditions
is the associated C[x]–module V completely irreducible?

12. Prove that 3 × 3 matrices over a field k are similar if and only if they have the same minimal and
characteristic polynomials.
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13. Determine representatives for all the conjugacy classes of GL2(F3).

14. Prove that any matrix A is similar to its transpose AT .

15. Determine the rational and Jordan canonical form of the matrix
1 2 0 0
0 1 2 0
0 0 1 0
0 0 0 1


Use these results to compute its characteristic and minimal polynomials, invariant factors, elementary
divisors, eigenvalues, and dimensions of its (generalized) eigenspaces.

16. Prove that a linear map is diagonalizable if and only if its minimal polynomial has distinct roots.

17. Let k be a field and V a vector space over k. Prove that any group representation G→ GL(V ) extends
uniquely to a map of rings k[G]→ End(V ). Explain how this defines a k[G]–module structure on V .

18. Prove that there is a bijective correspondence between degree-1 representations of a group G, and degree-
1 representations of its abelianization G/[G,G].

19. Let G be a finite group, and F a field containing 1
|G| .

(a) State Maschke’s theorem.

(b) Show by example that if |G| divides the characteristic of F, then not all G–representations over F
are completely reducible.

20. Prove that if G is a nontrivial group and F a field, then every irreducible F[G]–module has dimension
< |G|.

21. Prove that isomorphic G–representations have the same character.

22. Let V be a G-representation. Show that the action of a group element g ∈ G on V is G–equivariant if
and only if g is in the center of G.

23. Prove that if U is a complex irreducible representation of G, and V = U ⊕ U , then there are infinitely
many ways that V can be decomposed into two copies of U . What is HomC[G](U, V )? HomC[G](V,U)?

24. (a) Let F be a field. Given any finite set B = {b1, . . . , bm}, with an action of G, show how to construct
a permutation representation by G on the vector space over F with basis B. Show that each G-orbit
of B corresponds to a G subrepresentation of V .

(b) Suppose that G acts transitively on the basis B (more generally, you can reply this result to the
span of each G-orbit of B). Show that the diagonal subspace D = 〈b1 + b2 + · · ·+ bm〉 is invariant
under G, and that G acts on it trivially. Show the orthogonal complement of D,

D⊥ =
{
a1b1 + . . .+ ambm

∣∣∣ ∑ ai = 0
}

is also invariant under the action of G, so that V decomposes as a direct sum of G subrepresentations
V ∼= D ⊕D⊥. Compute the degrees of D and D⊥.

(c) Suppose that G acts transitively on the basis B. Prove that D⊥ does not contain any vectors fixed
by G (and therefore does not contain any trivial subrepresentations).

(d) Conclude that the regular representation V ∼= F[G] decomposes into a direct sum of invariant
subspaces: ∑

g∈G
aeg

∣∣∣∣∣∣ a ∈ F

⊕
∑
g∈G

ageg

∣∣∣∣∣∣
∑
g∈G

ag = 0
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(e) Use this decomposition and the averaging map to give a new proof that the multiplicity of the
trivial representation in F[G] is 1.

25. Let V be a vector space over F with basis x1, . . . , xn. Construct an isomorphism of rings Sym∗V ∼=
F[x1, x2, . . . , xn] that commutes with scalar multiplication by F.

26. Let M be a module over a commutative ring R. Show that the constructions T ∗M , Sym∗M , and ∧∗M
define functors from R–modules to rings (in fact, R–algebras).

27. Let V be a vector space over a field F of characteristic zero.

(a) Show that you can identify Sym∗M , and ∧∗M as subspaces of T ∗M via the maps

x1x2 · · ·xk 7−→
1

k!

∑
σ∈Sk

σ(x1⊗x2⊗· · ·⊗xk) and x1∧x2∧· · ·∧xk 7−→
1

k!

∑
σ∈Sk

sgn(σ)σ(x1⊗x2⊗· · ·⊗xk)

(b) Show that V ⊗F V ∼= Sym2(V )⊕ ∧2V .

(c) Show that V ⊗F V ⊗F V % Sym3(V )⊕ ∧3V .

28. Prove that a finite group G is abelian if and only if all its complex irreducible representations are
1-dimensional.

29. Let G be a finite group. Prove that every short exact sequence of finite dimensional C[G]–modules splits.
What conditions on a field F would ensure that every short exact sequence of finite F–dimensional F[G]–
modules split?

30. Let V be an irreducible complex representation of a finite group G. Show that the multiplicity of V in
a G–representation U is equal to dimC HomC[G](V,U) = dimC HomC[G](U, V ).

31. It is a nonobvious fact that all values of the irreducible complex characters of the symmetric groups are
integers. Prove that if V is an irreducible representation of Sn of degree at least 2, then there must be
at least one conjugacy class of Sn where χV takes on the value zero.

32. (a) Let g be a diagonalizable linear transformation acting on a vector space V , with eigenvalues
λ1, . . . , λn. Describe the set of eigenvalues of the map induced by g on the spaces V ⊗V , V ⊗V ⊗V ,
∧2V , ∧3V , Sym2V , and Sym3V .

(b) Suppose G is a finite group, and V a representation of G. Derive formulas for the characters of the
representations V ⊗ V , V ⊗ V ⊗ V , ∧2V , ∧3V , Sym2V , and Sym3V in terms of the character χV
for V .

33. Consider the complex S4–representation C4 ∼= Trv ⊕ Std.

(a) Prove that Std is irreducible.

(b) Compute the character table of S4.

(c) Compute the characters of ∧3C3 and Sym2Std, and compute their decompositions into irreducible
representations.

34. Let G be a group. When are two 1-dimensional representations of G isomorphic?

35. Let G be a finite group.

(a) Prove that the dimension of the space of class functions G → F over F is equal to the number of
conjugacy classes of G.

(b) Prove that a complex-valued class function on G is a character if and only if it is a nonnegative
integer linear combination of irreducible characters.

36. Let G be a finite group and C be its character table (of all irreducible characters).
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(a) Show that the “orthogonality of characters” result is equivalent to the statement that the matrix
C satisfies the relation CDCT = Id for a certain diagonal matrix D. What is D?

(b) Conclude from this equation that CTC = D−1. Use this equation to derive the second orthogonality
result for characters.

(c) Explicitly verify the relations CDCT = Id and CTC = D−1 for the character table for S3.

37. (a) State the two versions of the orthogonality results for the complex character table of a finite group
G (the version for rows, and the version for columns).

(b) Describe the C–vector space of class functions on G, and explain why this space is an inner prod-
uct space. Explain how this inner product structure relates to the our orthogonality theorem of
characters.

(c) Explain the utility of the orthogonality relations for decomposing G–representations into their
irreducible components.

(d) Write down the character table for S3. Verify that all rows and columns satisfy the orthogonality
relations.

38. Prove that the character table is an invertible matrix.

39. Let A be a finite abelian group.

(a) Explain why the complex representations of A are precisely the set of group homomorphisms from
A to the multiplicative group of units C× of C.

(b) Let a ∈ A be an order of element k. What are the possible homomorphic images of a in C×?

(c) Let A be a finite cyclic group of order n. State the number of non-isomorphic representations of A,
and describe these explicitly.

(d) Let ξn denote an nth root of unity. Write down the character tables for the groups Z/4Z and
Z/2Z× Z/2Z.

40. Let G be a group, and V and U be irreducible complex representations of G.

(a) Show by example that U ⊗C V may or may not be an irreducible G–representation.

(b) Prove that if U is 1-dimensional, then U ⊗C V is an irreducible G–representation.
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