Due: Friday 3 April 2015

Reading: Dummit-Foote Ch 10.1.

Please review the Math 122 Course Information posted on our webpage: http://web.stanford.edu/~jchw/2015Math122.

Summary of definitions and main results

Definitions we've covered: left R-module, right R-module, R-submodule, endomorphism, free R-module of rank n, annihilator of a submodule, annihilator of a (right) ideal.

Main results: Two equivalent definitions of an R-module; the submodule criterion, equivalence of vector spaces over a field \mathbb{F} and \mathbb{F} -modules; equivalence of abelian groups and \mathbb{Z} -modules; if I annihilates an R-module M then M inherits a (R/I)-module structure; structure of an $\mathbb{F}[x]$ -module for a field \mathbb{F} .

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded), however, you are responsible for understanding their solutions.

- 1. Let R be a ring with 1 and M a left R-module. Prove the following:
 - (a) 0m = 0 for all m in M.
 - (b) (-1)m = -m for all m in M.
 - (c) If $r \in R$ has a left inverse, and $m \in M$, then rm = 0 only if m = 0.
- 2. Show that if R is a commutative ring, then each left R-module defines a right R-module and vice versa.
- 3. (Restriction of scalars). Let M be an R-module, and let S be any subring of R. Explain how the R-module structure on M also gives M the structure of an S-module. This operation is called restriction of scalars from R to the subring S.
- 4. Verify that the axioms for a vector space over a field \mathbb{F} are equivalent to the axioms for an \mathbb{F} -module.
- 5. Verify that the axioms for an abelian group M are equivalent to the axioms for a \mathbb{Z} -module structure on M.
- 6. Let \mathbb{F} be a field, and x a formal variable. Prove that modules V over the polynomial ring $\mathbb{F}[x]$ are precisely \mathbb{F} -vector spaces V with a choice of linear map $T:V\to V$. Show by example that different maps T give different $\mathbb{F}[x]$ -module structures on V.
- 7. Prove the *submodule criterion*: If M is a left R-module and N a subset of M, then N is a left R-submodule if and only if:
 - $N \neq \emptyset$.
 - $x + ry \in N$ for all $x, y \in N$ and all $r \in R$.
- 8. Consider R as a module over itself. Prove that the R-submodules of the module R are precisely the left ideals I of R.
- 9. Let \mathbb{R}^n be the free module of rank n over R. Prove that the following are submodules:
 - (a) $I_1 \times I_2 \times \cdots \times I_n$, with I_i a left ideal of R.
 - (b) The i^{th} direct summand R of R^n .
 - (c) $\{(a_1, a_2, \dots, a_n) \in \mathbb{R}^n \mid a_1 + a_2 + \dots + a_n = 0\}.$

- Due: Friday 3 April 2015
- 10. Let M be a left R-module. Show that the intersection of a (nonempty) collection of submodules is a submodule.
- 11. (a) Let M be an R-module and N an R-submodule. Prove that the annihilator $\operatorname{ann}(N)$ is a 2-sided ideal of R.
 - (b) Let M be an R-module and I a right ideal of R. Show that $\operatorname{ann}(I)$ is an R-submodule of M.
 - (c) Compute the annihilator of the ideal $3\mathbb{Z} \subseteq \mathbb{Z}$ in the \mathbb{Z} -module $\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z}$.
- 12. For p prime, an elementary abelian p-group is an abelian group G where pg = 0 for all $g \in G$. Prove that an elementary abelian p-group is a $\mathbb{Z}/p\mathbb{Z}$ -module, equivalently, an \mathbb{F}_p -vector space.

Assignment Questions

The following questions should be handed in.

- 1. Let M be an abelian group (with addition), and R a ring.
 - (a) Define an *endomorphism* of M, and show that the set of enodomorphisms End(M) of M form a ring under composition and pointwise addition.
 - (b) Prove that a left R-module structure on M is equivalent to the data of a homomorphisms of rings $R \to \operatorname{End}(M)$. Use this result to formulate an alternative definition of a left R-module.
 - (c) What should the analogous definition be for right R-modules?
- 2. Let M be an R-module, and $\phi: S \to R$ a homomorphism of rings. Show how the map ϕ can be used to define an S-module structure on M. Explain why restriction of scalars is a special case of this construction. (Warm up Problem 3.)
- 3. Let M be a \mathbb{Z} -module.
 - (a) Fix an integer n > 1. Under what conditions on M does the action of \mathbb{Z} on M induce an action of $\mathbb{Z}/n\mathbb{Z}$ on M?
 - (b) Under what conditions on M can the action of \mathbb{Z} on M be extended to an action of \mathbb{Q} on M?
- 4. Let V be a module over the polynomial ring $\mathbb{F}[x]$. Classify all submodules of V, given that
 - (a) $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^2$, and x acts by rotation by $\frac{\pi}{2}$.
 - (b) $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^2$, and x acts by orthogonal projection onto the horizontal axis in \mathbb{R}^2 .
 - (c) \mathbb{F} any field, $V = \mathbb{F}^2$, and x acts by the scalar matrix cI_2 for some $c \in \mathbb{F}$. (Here I_2 denotes the 2×2 identity matrix).
 - (d) $\mathbb{F} = \mathbb{C}$, $V = \mathbb{C}^3$, and x acts by a diagonalizable matrix with three distinct eigenvalues λ_1, λ_2 , and λ_3 . (Recall: A matrix is *diagonalizable* iff it has a basis of eigenvectors, equivalently, iff it is conjugate to a diagonal matrix.)
- 5. For each of the following, prove the statement or find a counterexample. Let M be an R-module, I a (right) ideal of R, and N a R-submodule.
 - (a) If ann(N) = I, then ann(I) = N.
 - (b) If ann(I) = N, then ann(N) = I.