Reading: Dummit–Foote Ch 10.2–10.3.

Recall: We assume that all rings have a multiplicative identity 1, that a subring of R must contain 1_R , and that a ring homomorphism $R \to S$ must map 1_R to 1_S .

Summary of definitions and main results

Definitions we've covered: Homomorphism of R-modules, isomorphism of R-modules, kernel, image, Hom_R(M, N), End_R(M), quotient of R-modules, sum of R-submodules.

Main results: *R*-linearity criterion for maps, kernels and images are *R*-submodules, for *R* commutative $\operatorname{Hom}_R(M, N)$ is an *R*-module, $\operatorname{End}_R(M)$ is a ring, factor theorem, four isomorphism theorems.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded), however, you are responsible for understanding their solutions.

- 1. Define an *R*-module *M* by a ring homomorphism $R \to \text{End}(M)$. We have another name for the kernel of this ring map what is it?
- 2. We saw that a *R*-module structure on *M* can also be defined by a homomorphism of rings $R \to \text{End}(M)$. From this perspective, give an alternate equivalent definition of the *R*-linear endomorphisms $\text{End}_R(M)$.
- 3. (a) Prove the *R*-linearity criterion: $\phi: M \to N$ is an *R*-module map if and only if

 $\phi(rm+n) = r\phi(m) + \phi(n)$ for all $m, n \in M$ and $r \in R$.

- (b) Prove that the composition of R-module homomorphisms is again an R-module homomorphism.
- (c) Let $\phi: M \to N$ be an *R*-module homomorphism. Show that ker(ϕ) is an *R*-submodule of *M*, and that im(ϕ) is an *R*-submodule of *N*.
- (d) Show that an isomorphism of R-modules $\phi : M \to N$ has an inverse ϕ^{-1} which is also R-linear, and an isomorphism of R-modules $N \to M$.
- (e) Show that a homomorphism of *R*-modules ϕ is injective if and only if ker(ϕ) = {0}.
- 4. (a) Let M and N be R-modules. Show that every R-module map $M \to N$ is also a group homomorphism of the underlying abelian groups M and N.
 - (b) Show that if R is a field, then R-module maps are precisely linear transformations of vector spaces.
 - (c) Show that if $R = \mathbb{Z}$, then *R*-module maps are precisely group homomorphisms.
 - (d) Show by example that a homomorphism of the underlying abelian groups M and N need not be a homomorphism of R-modules.
 - (e) Now let M = N. Show that the set $\operatorname{End}(M) = \operatorname{End}_{\mathbb{Z}}(M)$ (the group endormophisms of the underlying abelian group M) and the set $\operatorname{End}_R(M)$ (the *R*-linear endomorphisms of the *R*-module M) may not be equal.
- 5. Consider R as a module over itself.
 - (a) Show by example that not every map of R-modules $R \to R$ is a ring homomorphism.
 - (b) Show by example that not every ring homomorphism is an *R*-module homomorphism.
 - (c) Suppose that ϕ is both a ring map and a map of *R*-modules. What must ϕ be?
- 6. (a) For *R*-modules *M* and *N*, prove that $\operatorname{Hom}_R(M, N)$ is an abelian group, and $\operatorname{End}_R(M)$ is a ring.

- (b) For a commutative ring R, what is the ring $\operatorname{End}_R(R)$?
- (c) When R is commutative, show that $\operatorname{Hom}_R(M, N)$ is an R-module. What if R is not commutative?
- (d) Let M be a right R-module. Prove that $\operatorname{Hom}_{\mathbb{Z}}(M, R)$ is a left R-module. What if M is a left R-module?
- 7. (a) Let M be an R-module. For which ring elements $r \in R$ will the map $m \mapsto rm$ define an R-module homomorphism on M?
 - (b) Show that if R is commutative then there is a natural map of rings $R \to \operatorname{End}_R(M)$.
 - (c) Show by example that the map $R \to \operatorname{End}_R(M)$ may or may not be injective.
- 8. (a) Compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/12\mathbb{Z},\mathbb{Z}/15\mathbb{Z})$ as a \mathbb{Z} -module.
 - (b) For integers m, n, compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ as a \mathbb{Z} -module.
- 9. Let A and B be R-submodules of an R-module M.
 - (a) Prove that the sum A + B is an *R*-submodule of *M*.
 - (b) Prove that A + B is the smallest submodule of M containing A and B in the following sense: if any submodule N of M contains both A and B, then N contains A + B.
- 10. State and prove the four isomorphism theorems for modules (Section 10.2 Theorem 4.)
- 11. Use the first isomorphism theorem to prove that if $x \in R$ then the cyclic module Rx is isomorphic to the *R*-module $R/\operatorname{ann}(x)$. Deduce that if *R* is an integral domain, then $Rx \cong R$ as *R*-modules.
- 12. Show that the rank-nullity theorem for linear transformations of vector spaces is a consequence of the first isomorphism theorem for modules.
- 13. Let R be a ring. A left ideal I in R is maximal if the only left ideals in R containing I are I and R. Use the fourth isomorphism theorem to show that R/I is simple (it has no proper nontrivial submodules).

Assignment Questions

The following questions should be handed in.

- 1. Let $\phi: M \to N$ be a homomorphism of R-modules. Let I be a right ideal of R. Let $\operatorname{ann}_M(I)$ denote the annihilator of I in M, and $\operatorname{ann}_N(I)$ the annihilator of I in N. Prove or find a counterexample: $\phi(\operatorname{ann}_M(I)) \subseteq \operatorname{ann}_N(I)$.
- 2. Let R be a commutative ring and N an R-module.
 - (a) Prove that there is an isomorphism of left R-modules $N \cong \operatorname{Hom}_R(R, N)$.
 - (b) Let n be a positive integer. Compute $\operatorname{Hom}_R(\mathbb{R}^n, N)$.
 - (c) What can you say about $\operatorname{Hom}_R(N, R)$?
- 3. For any ring R and positive integer n, show that $\operatorname{End}_R(\mathbb{R}^n)$ is isomorphic (as a ring) to the ring of $n \times n$ matrices with entries in R.
- 4. For *R*-modules M, N, P, there is a composition map $\operatorname{Hom}_R(M, N) \times \operatorname{Hom}_R(N, P) \longrightarrow \operatorname{Hom}_R(M, P)$ given by $(f, g) \longmapsto g \circ f$.
 - (a) When R is commutative, is this map a homomorphism of R-modules?
 - (b) Give examples of a ring R and distinct R-modules M, N, P such that this map is surjective, and where this map is not surjective.
- 5. Let R[x, y] be the polynomials in indeterminates x and y over a commutative ring R. Use the isomorphism theorems to prove the following isomorphisms of R-modules.

- (a) $R[x,y]/\langle x \rangle \cong R[y].$
- (b) Let p(x,y) be a polynomial in x and y. Then $R[x,y]/\langle x,p(x,y)\rangle \cong R[y]/\langle p(0,y)\rangle$.
- (c) Let q(x) be a polynomial in x. Then $R[x, y]/\langle y q(x) \rangle \cong R[x]$.
- 6. Let U, V, W be vector spaces over a field \mathbb{F} . Let $\phi : U \to V$ be an injective linear map, and let $\psi : V \to W$ be a surjective linear map. Prove that both ϕ and ψ have one-sided inverses. Show by example that when R is not a field, not all surjective maps of R-modules have (one-sided) inverses, and show that not all injective maps of R-modules have (one-sided) inverses.