Reading: Dummit–Foote Ch 10.3 & pp 911-912.

## Summary of definitions and main results

**Definitions we've covered:** generators of an *R*-module, the *R*-submodule *RA* generated by a set *A*, finite generation, cyclic module, minimal set of generators, Noetherian ring, direct product, direct sum (externel and internal), free module, basis, rank of a free module, category, object, morphism, monomorphism, epimorphism, isomorphism, universal property

**Main results:** Equivalent definitions of (internal) direct sums, construction of the free module F(A), universal property of free modules, universal properties define objects up to unique isomorphism, in the category R-mod monomorphisms are precisely the injections.

## Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded), however, you are responsible for understanding their solutions.

- 1. Find an example of an R-module M that is isomorphic as R-modules to one of its proper submodules.
- 2. Let A and B be submodules of the R-module M. Show that A + B is equal to  $R(A \cup B)$ , the submodule generated by  $A \cup B$ , as R-submodules of M.
- 3. Let R be a ring and I a two-sided ideal of R. For each of the following R-modules M indicate whether M is finitely generated, cyclically generated, or more information is needed:  $M = \frac{D^2}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-$ 
  - $M = R^n$  for  $n \in \mathbb{N}$ , polynomials M = R[x], series M = R[[x]], M = I, and M = R/I.
- 4. (a) Prove that if M is a finitely generated R-module, and  $\phi: M \to N$  a map of R-modules, then its image  $\phi(M)$  is finitely generated by the images of the generators. Conclude in particular that all quotients of finitely generated modules are finitely generated.
  - (b) Let M be an R-module and N a submodule. Prove that if both N and M/N are finitely generated R-modules, then M is a finitely generated R-module.
- 5. (a) Let A be any finite set of n elements. Show that the free R-module on A is isomorphic as an R-module to  $R^n$ .
  - (b) For R commutative, are the polynomial rings R[x] and R[x, y] free R-modules? What about Laurent polynomials  $R[x, x^{-1}]$ ? Rational functions in x?
  - (c) Do these arguments work for series R[[x]]?
- 6. In class (and in Dummit-Foote 10.3 Theorem 6) we gave a construction of a free module F(A) on a set A. Verify that this construction is in fact a free module with basis A (as given in the definition on p354).
- 7. (a) Let M be an R-module generated by a set  $A \subseteq M$ . Show that there is a unique R-module map  $F(A) \to M$  that restricts to the identity map on the set A, and that this map is surjective.
  - (b) Conclude that an R-module M is finitely generated if and only if it admits a surjection from a finitely generated free module.
- 8. (a) Citing results from linear algebra, explain why every vector space over a field  $\mathbb{F}$  is a free  $\mathbb{F}$ -module.
  - (b) When  $\mathbb{F}$  is a field, any minimal finite generating set  $B = \{a_1, \ldots a_n\}$  of an  $\mathbb{F}$ -module must be linearly independent and therefore a basis. Prove that in general, if an *R*-module has a minimal generating set  $B = \{a_1, \ldots a_n\}$ , then *R* need not be free on *B*.

- (c) Suppose that M is an R-module containing elements  $\{a_1, a_2, \ldots, a_n\}$  such that  $M = Ra_1 \oplus Ra_2 \oplus \cdots \oplus Ra_n$ . Explain how  $A = \{a_1, a_2, \ldots, a_n\}$  could fail to be a basis for M. What conditions on the elements  $a_i$  could ensure that A is a basis?
- 9. (a) Citing results from linear algebra, explain why every field  $\mathbb{F}$  is Noetherian.
  - (b) Citing results from group theory, explain why  $\mathbb{Z}$  is Noetherian.
- 10. Show that  $M = \mathbb{Z}/10\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}$  is a free  $\mathbb{Z}/10\mathbb{Z}$ -module by finding a basis. Show that the element (2, 2) cannot be an element of any basis for M. Is the submodule  $N = \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}$  also free?
- 11. Let  $\{M_i \mid i \in I\}$  be a (possibly infinite) set of *R*-modules. Prove that the direct sum  $\bigoplus_{i \in I} M_i$  is a submodule of the direct product  $\prod_{i \in I} M_i$ , but show by example that these may not be isomorphic in general. *Hint*: What are their cardinalities?
- 12. (a) Prove that in the category of *R*-modules, a morphism is epic if and only if it is a surjective map.
  - (b) Prove that in the category of rings, the map  $\mathbb{Z} \to \mathbb{Q}$  is an epic morphism that is not surjective.
- 13. (a) A zero object **0** in a category is an object with the following property: For any object M, there is a unique morphism from M to **0**, and a unique morphism from **0** to M. Let C be the category of R-modules, and show that the zero object is the zero module  $\{0\}$ . This definition allows us to define the zero map 0 between R-modules M and N: it is the composition of the unique map  $M \to \mathbf{0}$  with the unique map  $\mathbf{0} \to N$ .
  - (b) Let  $\mathcal{C}$  be the category *R*-modules. Verify that the kernel of an *R*-module map satisfies the following universal property. If  $f: M \to N$  is a morphism in  $\mathcal{C}$ , then define the kernel  $i: K \to M$  of f to be the map i such that  $f \circ i$  is the zero morphism 0



and satisfying the following: whenever there is a map of R-modules  $g: P \to M$  such that  $f \circ g = 0$ , there is a unique map  $u: P \to K$  such that  $i \circ u = g$ . In other words, there is a unique map u that makes the following diagram commute.



(c) Explain why this universal property determines the map  $i : K \to M$  up to unique isomorphism. Conclude that this universal property can be taken as the definition of the kernel of an *R*-module map.

## **Assignment Questions**

- 1. Let V be an  $\mathbb{C}[x]$ -module with V finite dimensional over  $\mathbb{C}$ , and x acting by the linear map T. For which linear maps T will V be cyclically generated? Give conditions on the eigenvalues and eigenspaces of T.
- 2. Suppose a finitely generated *R*-module *M* has a minimal generating set  $A = \{a_1, a_2, \ldots, a_n\}$ . Prove or find a counterexample:  $M \cong Ra_1 \oplus Ra_2 \oplus \cdots \oplus Ra_n$ .
- 3. Let R be a ring. Show that an arbitrary direct sum of free R-modules is free, but an arbitrary direct product need not be. *Hint:* Dummit-Foote 10.3 # 24.
- 4. (a) Let  $M_1, \ldots, M_n$  be *R*-modules, and  $N_i$  a submodule of  $M_i$  for all *i*. Prove that

$$\frac{M_1 \times M_2 \times \dots \times M_n}{N_1 \times N_2 \times \dots \times N_n} \cong \left(\frac{M_1}{N_1}\right) \times \left(\frac{M_2}{N_2}\right) \times \dots \times \left(\frac{M_n}{N_n}\right).$$

(b) Let I be any left ideal of R, and let  $IR^n = \{$ finite sums  $\sum a_i x_i \mid a_i \in I, x_i \in R^n \}$ . Prove that

$$\frac{R^n}{IR^n} \cong \frac{R}{IR} \times \frac{R}{IR} \times \dots \times \frac{R}{IR}$$

- (c) Let R be a commutative ring, and let  $n, m \in \mathbb{N}$ . Prove that that  $R^n \cong R^m$  if and only if n = m. You can assume without proof that finite-dimensional vector spaces are isomorphic if and only if their dimensions are equal. You may also assume Zorn's Lemma.
- (d) Show that when R is not commutative, this statement is false that is, free R-modules need not have a unique rank. *Hint:* See Dummit-Foote 10.3 # 27.
- 5. Let C be a category with objects X and Y. The *coproduct* of X and Y (if it exists) is an object  $X \coprod Y$ in C with maps  $f_x : X \to X \coprod Y$  and  $f_y : Y \to X \coprod Y$  satisfying the following universal property: whenever there is an object Z with maps  $g_x : X \to Z$  and  $g_y : Y \to Z$ , there exists a unique map  $u : X \coprod Y \to Z$  that makes the following diagram commute:



- (a) Prove that in the category of R-modules, the coproduct of R-modules  $X \coprod Y$  is  $X \oplus Y$  with the canonical inclusions of X and Y. In other words, this universal property defines the direct sum operation on R-modules.
- (b) Prove that in the category of groups, the univeral property for the coproduct  $X \coprod Y$  of groups X and Y does *not* define the direct product of those groups. (It is a construction called the *free product* of groups).
- (c) Prove that in the category of sets, the coproduct  $X \coprod Y$  of sets X and Y is their disjoint union.