Due: Friday 1 May 2015

Reading: Dummit-Foote Ch 10.4, Ch 10.5 p398-402.

Summary of definitions and main results

Definitions we've covered: tensor products, (S, R)-bimodule and R-bimodule, R-balanced map, R-bilinear map, universal property of the tensor product, extension of scalars, tensor product of R-linear maps.

Main results: Explicit construction of $M \otimes_R N$, verification that it satisfies the universal property, criteria for S-module structures on tensor products, $R/I \otimes_R N \cong N/IN$, tensor product distributes over direct sums, $R^n \otimes_R N \cong N^n$, tensor product is associative, $D \otimes_R -$ is a right-exact covariant functor, how to use the universal property (or right exactness) to compute tensor products in specific examples, hom-tensor adjunction

Warm-Up Questions

- 1. Let \mathscr{C} be a category containing objects A and B, and let F be a functor $F : \mathscr{C} \to \mathscr{D}$. Show that if A and B are isomorphic objects of \mathscr{C} , then F(A) and F(B) will be isomorphic objects of \mathscr{D} .
- 2. Let 0 denote the trivial abelian group. Give an example of a functor $F : \underline{Ab} \to \underline{Ab}$ such that F(0) = 0, and a functor $F : Ab \to Ab$ such that $F(0) \neq 0$.
- 3. Explain why, when R is commutative, a left R-module M will also be a right R-module under the action mr = rm, and conversely any right R-module N will also have an induced left R-module structure. Will these actions automatically give an R-bimodule structure? Why will these constructions generally not work when R is non-commutative?
- 4. Let R be a ring with right R-module M and left R-module N. Show that the natural map

$$M \times N \longrightarrow M \otimes_R N$$

is **not** a group homomorphism. What are the constraints on this map, as imposed by the defining relations of $M \otimes_R N$?

- 5. Let R and S be rings (possibly the same ring). Let M be a right R-module and N a left R-module. When will the tensor product $M \otimes_R N$ have the structure of an abelian group, and under what conditions will it additionally have the structure of an S-module?
- 6. Let R be a ring with right R-module M and left R-module N. Which of the following maps are R-balanced? Which are homomorphisms of abelian groups? For the maps that are R-balanced, describe how they factor through the tensor product.
 - (a) The identity map $M \times N \longrightarrow M \times N$.
 - (b) The natural projections of $M \times N$ onto M and N.
 - (c) The natural map $M \times N \longrightarrow M \otimes_R N$.
 - (d) Suppose M and N are ideals of R. The multiplication map

$$M \times N \longrightarrow R$$

 $(m,n) \longmapsto mn$

(e) Suppose R is commutative. The matrix multiplication map

$$M_{n \times k}(R) \times M_{k \times m}(R) \longrightarrow M_{n \times m}(R)$$

 $(A, B) \longmapsto AB$

(f) Suppose R is commutative and M, N, P are R-modules. The composition map:

$$\operatorname{Hom}_R(M,N) \times \operatorname{Hom}_R(N,P) \longrightarrow \operatorname{Hom}_R(M,P)$$

 $(f,g) \longmapsto g \circ f$

Due: Friday 1 May 2015

(g) Suppose R is commutative. The dot product map:

$$R^n \times R^n \longrightarrow R$$

 $(v, w) \longmapsto v \cdot w$

(h) Suppose R is commutative. The cross product map:

$$R^3 \times R^3 \longrightarrow R^3$$

 $(v, w) \longmapsto v \times w$

(i) Suppose R is commutative. The determinant map:

$$R^{2} \times R^{2} \longrightarrow R$$

$$(v, w) \longmapsto \det \begin{bmatrix} | & | & | \\ v & w & | & | \\ | & | & | & | \end{bmatrix}$$

- 7. Let R be a ring with right R-module M and left R-module N.
 - (a) What is the additive identity in $M \otimes_R N$? Show that the simple tensors $0 \otimes n$ and $m \otimes 0$ will be zero in any tensor product $M \otimes_R N$.
 - (b) Show there are always maps of abelian groups $N \to M \otimes_R N$, but that these maps may not be injective.
- 8. Let $V \cong \mathbb{C}^2$ be a complex vector space, and let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a matrix with respect to the standard basis e_1, e_2 . Write down the matrix for the linear map induced by A on the four-dimensional vector space $V \otimes V$ with respect to the basis $e_1 \otimes e_1$, $e_1 \otimes e_2$, $e_2 \otimes e_1$, $e_2 \otimes e_2$.
- 9. Let V be a complex vector space. Let $T: V \to V$ be a diagonalizable linear map with eigenbasis $v_1, v_2, \ldots v_n$, and associated eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. What are the eigenvalues of the map induced by T on $V \otimes V$, and what are the associated eigenvectors?
- 10. Let R be a ring and S a subring.
 - (a) Give an example of R, S and an S-module that embeds into a R-module.
 - (b) Give an example of R, S, and an S-module that cannot embed into any R-module.
- 11. (a) Suppose that A is a finite abelian group. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} A = 0$.
 - (b) Suppose that B is a finitely-generated abelian group. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} B$ is a \mathbb{Q} -vector space. What determines its dimension?
- 12. Let M be a right R-module and N_1, \ldots, N_n a set of left R-modules. Verify that the tensor product distributes over direct sums (Dummit-Foote 10.4 Theorem 17). There is a unique group isomorphism

$$M \otimes_R (N_1 \oplus \cdots \oplus N_n) \cong (M \otimes_R N_1) \oplus \cdots \oplus (M \otimes_R N_n).$$

Conclude that if N is a left $R\text{--module},\,R^n\otimes_R N\cong N^n$.

- 13. (a) Let R be a ring, I a left ideal of R, and N a left R-module. Prove that $R/I \otimes_R N \cong N/IN$.
 - (b) Let R be a commutative ring with ideals I and J. Prove the isomorphism of R-modules:

$$R/I \otimes_R R/J \longrightarrow R/(I+J)$$

 $(r+I) \otimes (s+J) \longmapsto rs + (I+J)$

14. Verify the associativity of the tensor product (Dummit-Foote 10.4 Theorem 14).

Due: Friday 1 May 2015

Assignment Questions

- 1. (a) For integers m, n > 1, compute the abelian groups $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ and $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$.
 - (b) For integer n > 1, compute the abelian groups $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$ and $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$.
 - (c) Compute the rational vector space $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$.
 - (d) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are **not** isomorphic as vector spaces over \mathbb{R} .
 - (e) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as vector spaces over \mathbb{Q} .

Note: By "compute" an abelian group I mean describe the group in terms of the classification of finitely generated abelian groups, as a product of cyclic groups. By "compute" a vector space I mean determine its dimension.

- 2. Let R be a ring, let A be a right R-module and B a left R-module. Prove that the universal property of the tensor product defines $A \otimes_R B$ uniquely up to unique isomorphism.
- 3. (The functor $D \otimes_R$ is right exact.) Let R be any ring, and D a right R-module.
 - (a) Show that the following map of categories is well-defined and a covariant functor:

$$D \otimes_{R} -: R - \underline{\text{Mod}} \longrightarrow \underline{\text{Ab}}$$

$$M \longmapsto D \otimes_{R} M$$

$$\{f : M \to N\} \longmapsto \begin{cases} f_{*} : D \otimes_{R} M \mapsto D \otimes_{R} N \\ f_{*} (d \otimes m) = d \otimes f(m) \end{cases}$$

(b) Show that the functor $D \otimes_R$ – is right exact.

Hint: Dummit-Foote 10.5 Theorem 39.

- 4. For any ring R and right R-module D, the functor $D \otimes_R -$ is right exact. A similar argument shows that for any left R-module D the functor $\otimes_R D$ is right exact.
 - (a) Use the right-exactness of the functor $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}}$ and the short exact sequence of \mathbb{Z} -modules

$$0 \longrightarrow \mathbb{Z} \stackrel{n}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

to (re)compute $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$.

(b) More generally, let R be a ring and I a two-sided ideal. Use the right exactness of $-\otimes_R N$ and the short exact sequence of R-modules

$$0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0$$

to (re)prove the result: $R/I \otimes_R N \cong N/IN$.

(c) Let k be a field and let R = k[x, y]. Give simple descriptions of the following tensor products, and determine their dimensions over k.

$$\frac{R}{\langle x \rangle} \otimes_R \frac{R}{\langle x - y \rangle} \qquad \frac{R}{\langle x \rangle} \otimes_R \frac{R}{\langle x - 1 \rangle} \qquad \frac{R}{\langle y - 1 \rangle} \otimes_R \frac{R}{\langle x - y \rangle}$$

5. (The hom-tensor adjunction: the commutative case.) Let R be a commutative ring, and suppose that A, B, and C are R-modules. (Since R is commutative, they are all naturally R-bimodules). Prove the following isomorphism of R-modules:

$$\operatorname{Hom}_R(A \otimes_R B, C) \cong \operatorname{Hom}_R(A, \operatorname{Hom}_R(B, C)).$$