Reading: Dummit-Foote Ch 10.4, Ch 10.5 p398-402.

Summary of definitions and main results

Definitions we've covered: tensor products, (S, R)-bimodule and R-bimodule, R-balanced map, R bilinear map, universal property of the tensor product, extension of scalars, tensor product of R-linear maps.

Main results: Explicit construction of $M \otimes_{R} N$, verification that it satisfies the universal property, criteria for S-module structures on tensor products, $R / I \otimes_{R} N \cong N / I N$, tensor product distributes over direct sums, $R^{n} \otimes_{R} N \cong N^{n}$, tensor product is associative, $D \otimes_{R}$ - is a right-exact covariant functor, how to use the universal property (or right exactness) to compute tensor products in specific examples, hom-tensor adjunction

Warm-Up Questions

1. Let \mathscr{C} be a category containing objects A and B, and let F be a functor $F: \mathscr{C} \rightarrow \mathscr{D}$. Show that if A and B are isomorphic objects of \mathscr{C}, then $F(A)$ and $F(B)$ will be isomorphic objects of \mathscr{D}.
2. Let 0 denote the trivial abelian group. Give an example of a functor $F: \underline{\mathrm{Ab}} \rightarrow \underline{\mathrm{Ab}}$ such that $F(0)=0$, and a functor $F: \underline{\mathrm{Ab}} \rightarrow \underline{\mathrm{Ab}}$ such that $F(0) \neq 0$.
3. Explain why, when R is commutative, a left R-module M will also be a right R-module under the action $m r=r m$, and conversely any right R-module N will also have an induced left R-module structure. Will these actions automatically give an R-bimodule structure? Why will these constructions generally not work when R is non-commutative?
4. Let R be a ring with right $R-$ module M and left $R-$ module N. Show that the natural map

$$
M \times N \longrightarrow M \otimes_{R} N
$$

is not a group homomorphism. What are the constraints on this map, as imposed by the defining relations of $M \otimes_{R} N$?
5. Let R and S be rings (possibly the same ring). Let M be a right R-module and N a left R-module. When will the tensor product $M \otimes_{R} N$ have the structure of an abelian group, and under what conditions will it additionally have the structure of an S-module?
6. Let R be a ring with right R-module M and left R-module N. Which of the following maps are $R-$ balanced? Which are homomorphisms of abelian groups? For the maps that are R-balanced, describe how they factor through the tensor product.
(a) The identity map $M \times N \longrightarrow M \times N$.
(b) The natural projections of $M \times N$ onto M and N.
(c) The natural map $M \times N \longrightarrow M \otimes_{R} N$.
(d) Suppose M and N are ideals of R. The multiplication map

$$
\begin{aligned}
M \times N & \longrightarrow R \\
(m, n) & \longmapsto m n
\end{aligned}
$$

(e) Suppose R is commutative. The matrix multiplication map

$$
\begin{aligned}
M_{n \times k}(R) \times M_{k \times m}(R) & \longrightarrow M_{n \times m}(R) \\
(A, B) & \longmapsto A B
\end{aligned}
$$

(f) Suppose R is commutative and M, N, P are R-modules. The composition map:

$$
\begin{aligned}
\operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(N, P) & \longrightarrow \operatorname{Hom}_{R}(M, P) \\
(f, g) & \longmapsto g \circ f
\end{aligned}
$$

(g) Suppose R is commutative. The dot product map:

$$
\begin{aligned}
R^{n} \times R^{n} & \longrightarrow R \\
\quad(v, w) & \longmapsto v \cdot w
\end{aligned}
$$

(h) Suppose R is commutative. The cross product map:

$$
\begin{aligned}
R^{3} \times R^{3} & \longrightarrow R^{3} \\
(v, w) & \longmapsto v \times w
\end{aligned}
$$

(i) Suppose R is commutative. The determinant map:

$$
\begin{aligned}
R^{2} \times R^{2} & \longrightarrow R \\
\quad(v, w) & \longmapsto \operatorname{det}\left[\begin{array}{cc}
\mid & \mid \\
v & w \\
\mid & \mid
\end{array}\right]
\end{aligned}
$$

7. Let R be a ring with right R-module M and left R-module N.
(a) What is the additive identity in $M \otimes_{R} N$? Show that the simple tensors $0 \otimes n$ and $m \otimes 0$ will be zero in any tensor product $M \otimes_{R} N$.
(b) Show there are always maps of abelian groups $N \rightarrow M \otimes_{R} N$, but that these maps may not be injective.
8. Let $V \cong \mathbb{C}^{2}$ be a complex vector space, and let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix with respect to the standard basis e_{1}, e_{2}. Write down the matrix for the linear map induced by A on the four-dimensional vector space $V \otimes V$ with respect to the basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$.
9. Let V be a complex vector space. Let $T: V \rightarrow V$ be a diagonalizable linear map with eigenbasis $v_{1}, v_{2}, \ldots v_{n}$, and associated eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. What are the eigenvalues of the map induced by T on $V \otimes V$, and what are the associated eigenvectors?
10. Let R be a ring and S a subring.
(a) Give an example of R, S and an S-module that embeds into a R-module.
(b) Give an example of R, S, and an S-module that cannot embed into any R-module.
11. (a) Suppose that A is a finite abelian group. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} A=0$.
(b) Suppose that B is a finitely-generated abelian group. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} B$ is a \mathbb{Q}-vector space. What determines its dimension?
12. Let M be a right R-module and N_{1}, \ldots, N_{n} a set of left R-modules. Verify that the tensor product distributes over direct sums (Dummit-Foote 10.4 Theorem 17). There is a unique group isomorphism

$$
M \otimes_{R}\left(N_{1} \oplus \cdots \oplus N_{n}\right) \cong\left(M \otimes_{R} N_{1}\right) \oplus \cdots \oplus\left(M \otimes_{R} N_{n}\right)
$$

Conclude that if N is a left R-module, $R^{n} \otimes_{R} N \cong N^{n}$.
13. (a) Let R be a ring, I a left ideal of R, and N a left R-module. Prove that $R / I \otimes_{R} N \cong N / I N$.
(b) Let R be a commutative ring with ideals I and J. Prove the isomorphism of R-modules:

$$
\begin{aligned}
R / I \otimes_{R} R / J & \longrightarrow R /(I+J) \\
(r+I) \otimes(s+J) & \longmapsto r s+(I+J)
\end{aligned}
$$

14. Verify the associativity of the tensor product (Dummit-Foote 10.4 Theorem 14).

Assignment Questions

(c) Compute the rational vector space $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}$.
(d) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic as vector spaces over \mathbb{R}.
(e) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as vector spaces over \mathbb{Q}.

Note: By "compute" an abelian group I mean describe the group in terms of the classification of finitely generated abelian groups, as a product of cyclic groups. By "compute" a vector space I mean determine its dimension.
2. Let R be a ring, let A be a right R-module and B a left R-module. Prove that the universal property of the tensor product defines $A \otimes_{R} B$ uniquely up to unique isomorphism.
3. (The functor $D \otimes_{R}$ - is right exact.) Let R be any ring, and D a right R-module.
(a) Show that the following map of categories is well-defined and a covariant functor:

$$
\begin{aligned}
D \otimes_{R}-: R-\underline{\text { Mod }} & \longrightarrow \underline{\mathrm{Ab}} \\
M & \longmapsto D \otimes_{R} M \\
\{f: M \rightarrow N\} & \longmapsto\left\{\begin{array}{c}
f_{*}: D \otimes_{R} M \mapsto D \otimes_{R} N \\
f_{*}(d \otimes m)=d \otimes f(m)
\end{array}\right\}
\end{aligned}
$$

(b) Show that the functor $D \otimes_{R}$ - is right exact.

Hint: Dummit-Foote 10.5 Theorem 39.
4. For any ring R and right R-module D, the functor $D \otimes_{R}$ - is right exact. A similar argument shows that for any left R-module D the functor $-\otimes_{R} D$ is right exact.
(a) Use the right-exactness of the functor $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}}$ - and the short exact sequence of \mathbb{Z}-modules

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z} \longrightarrow 0
$$

to (re)compute $\mathbb{Z} / m \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / n \mathbb{Z}$.
(b) More generally, let R be a ring and I a two-sided ideal. Use the right exactness of $-\otimes_{R} N$ and the short exact sequence of R-modules

$$
0 \longrightarrow I \longrightarrow R \longrightarrow R / I \longrightarrow 0
$$

to (re)prove the result: $R / I \otimes_{R} N \cong N / I N$.
(c) Let k be a field and let $R=k[x, y]$. Give simple descriptions of the following tensor products, and determine their dimensions over k.

$$
\frac{R}{\langle x\rangle} \otimes_{R} \frac{R}{\langle x-y\rangle} \quad \frac{R}{\langle x\rangle} \otimes_{R} \frac{R}{\langle x-1\rangle} \quad \frac{R}{\langle y-1\rangle} \otimes_{R} \frac{R}{\langle x-y\rangle}
$$

5. (The hom-tensor adjunction: the commutative case.) Let R be a commutative ring, and suppose that A, B, and C are R-modules. (Since R is commutative, they are all naturally R-bimodules). Prove the following isomorphism of R-modules:

$$
\operatorname{Hom}_{R}\left(A \otimes_{R} B, C\right) \cong \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{R}(B, C)\right)
$$

