Reading: Dummit–Foote Ch 12.1–12.2 (up to page 479).

Summary of definitions and main results

Definitions we've covered: Torsion submodule, rank of a module, free rank, invariant factors, elementary divisors, characteristic polynomial, minimal polynomial, companion matrix, rational canonical form

Main results: Fundamental theorem for finitely generated modules over a PID (invariant factor form and elementary divisor form), matrices are classified up to conjugacy by their rational canonical forms

Warm-Up Questions

- 1. Which of the following rings are PIDs? Let \mathbb{F} denote a field.
 - $\mathbb{F}, \mathbb{F}[x], \mathbb{F}[x,y], \mathbb{Z}, \mathbb{Z}/n\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z}[i], \mathbb{Z}[x], M_n(\mathbb{F}), \text{ division ring, quotient of a PID}$
- 2. Let R be a ring.
 - (a) Prove that if R is an integral domain, then for any R-module M the torsion submodule

 $Tor(M) = \{ m \in M \mid rm = 0 \text{ for some } r \in R, r \neq 0 \}$

is indeed an R-subdmoule of M.

- (b) Show by example that if R is not an integral domain, there may be R-modules M for which Tor(M) is not a submodule.
- (c) Prove that if $\phi: M \to N$ is a map of *R*-modules, then $\phi(\operatorname{Tor}(M)) \subseteq \operatorname{Tor}(N)$.
- 3. Compute the torsion submodules of the following:
 - (a) A finite abelian group G (as a \mathbb{Z} -module)
 - (b) $\mathbb{Z}/5\mathbb{Z}$ as a \mathbb{Z} -module, and as a $\mathbb{Z}/5\mathbb{Z}$ -module
 - (c) The \mathbb{Z} -modules \mathbb{Q} , \mathbb{R} , \mathbb{Q}/\mathbb{Z} , and \mathbb{R}/\mathbb{Z}
 - (d) A vector space V over a field \mathbb{F}
 - (e) A free R-module F
- 4. Let R be an integral domain.
 - (a) Let N be an R-module. Show that if its annihilator Ann(N) is nonzero, then N is a torsion module.
 - (b) Is the converse true? If N is torsion, must its annihilator be nonzero?
 - (c) What if N is finitely generated and torsion, then must its annihilator be nonzero?
- 5. Suppose that R is a PID and M a finitely generated R-module with invariant factors a_1, \ldots, a_m . Show that the annihilator of Tor(M) is the ideal generated by a_m .
- 6. Why is it reasonable to only discuss torsion and linear independence in R-modules when R is a domain? In what ways would these definitions behave badly if R had zero divisors or if R were noncommutative?
- 7. Suppose R is an integral domain and that $A = \{m_1, \ldots, m_n\}$ is a linearly independent subset of an *R*-module M. Prove or disprove: the submodule $RA \cong R^n$ is free on the basis A. In other words, a finite set is linearly independent iff it is the basis for a free submodule of M.
- 8. Let R be an integral domain. Let $\{m_1, m_2, \ldots, m_n\}$ be a generating set for an R-module M. Prove that any linearly independent set in M must have n or fewer elements. Conclude that the rank is well-defined for a finitely generated module over an integral domain. *Hint:* Use the method in Dummit-Foote 12.1 Proposition 3.

- 9. Let R be an integral domain. Suppose that \mathbb{F} is a field containing R. Show that any linearly independent set $\{m_1, \ldots, m_n\}$ in an R-module M will yield a linearly independent set of vectors $\{1 \otimes m_1, \ldots, 1 \otimes m_n\}$ in the \mathbb{F} -vector space $\mathbb{F} \otimes_R M$. Conclude that the rank $(M) = \dim_{\mathbb{F}}(\mathbb{F} \otimes_R M)$. *Remark*: When R is an integral domain, it is always possible to construct a field \mathbb{F} containing R (its field of fractions). The dimension $\dim_{\mathbb{F}}(\mathbb{F} \otimes_R M)$ is sometimes taken as the definition of the rank of M.
- 10. Let R be an integral domain.
 - (a) Conclude from Exercise 8 that any set of (n+1) elements in \mathbb{R}^n are linearly dependent, and therefore that \mathbb{R}^n has rank n.
 - (b) Prove that any torsion R-module has rank zero.
 - (c) Show that for any *R*-module M, rank(M)=rank(M/Tor(M)).
- 11. Let R be an integral domain. Suppose S and T are both finite linearly independent sets of an R-module M, and that each is maximal in the sense that adding any additional element of M would yield a linearly dependent set. Show that S and T must have the same cardinality.
- 12. Find the invariant factors and elementary divisors of the finitely generated abelian group

$$M \cong \mathbb{Z}^{12} \oplus \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{4\mathbb{Z}} \oplus \frac{\mathbb{Z}}{3\mathbb{Z}} \oplus \frac{\mathbb{Z}}{9\mathbb{Z}} \oplus \frac{\mathbb{Z}}{5\mathbb{Z}} \oplus \frac{\mathbb{Z}}{18\mathbb{Z}} \oplus \frac{\mathbb{Z}}{15\mathbb{Z}}.$$

- 13. (a) Show that the ideal $I = \langle x, y \rangle \subseteq R = \mathbb{Q}[x, y]$ is a finitely generated, torsion-free *R*-module, but not a free *R*-module. What is the rank of *I*?
 - (b) In contrast, what can you say about finitely generated torsion-free modules over a PID?

14. (Linear algebra review.)

- (a) Consider a linear map $A: V \to V$, dim(V) = n (equivalently, of an $n \times n$ matrix A). Show that the following are equivalent. If A satisfies any of these conditions, it is called *singular*.
 - 1. A has a nontrivial kernel
 - 2. $\operatorname{rank}(A) < n$
 - 3. A is not invertible
 - 4. The columns of A are linearly dependent
 - 5. The rows of A are linearly dependent
 - 6. det(A) = 0
 - 7. $\lambda = 0$ is an eigenvalue of A
- (b) Let T be a linear transformation on a finite-dimensional \mathbb{F} -vector space V. Show that the following are equivalent
 - 1. λ is an eigenvalue of T
 - 2. $(\lambda I T)$ is singular
 - 3. λ is a root of the characteristic polynomial of T
- (c) 1. Define what it means for two matrices to be *conjugate* (or *similar*)
 - 2. What is the conjugacy class of the zero matrix? The identity matrix? A scalar matrix?
 - 3. Explain why two matrices are conjugate if and only if they represent the same linear map with respect to different bases.
 - 4. Show that conjugate matrices have the same determinant.
 - 5. Show that $(ABA^{-1})^n = AB^n A^{-1}$.

15. Let $A: V \to V$ be a linearly transformation on a finite dimensional vector space V.

(a) Suppose A is given by a *block diagonal matrix*, that is, a matrix with square matrices \mathbf{A}_i (its *blocks*) on the diagonal:

$$A = \begin{bmatrix} \mathbf{A}_{1} & 0 & \cdots & 0 \\ 0 & \mathbf{A}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{A}_{n} \end{bmatrix}$$
$$\begin{pmatrix} \text{eg.} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 6 & 4 \end{bmatrix} \text{ has } \mathbf{A}_{1} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \text{ and } \mathbf{A}_{2} = \begin{bmatrix} 4 & 2 \\ 6 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 5 & 0 \\ 0 & 3 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \text{ has } \mathbf{A}_{1} = \begin{bmatrix} 1 \end{bmatrix}, \quad \mathbf{A}_{2} = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix} \text{ and } \mathbf{A}_{3} = \begin{bmatrix} 4 \end{bmatrix}$$

Explain how the blocks of A correspond to a decomposition of V into a direct sum of subspaces $V = V_1 \oplus \cdots \oplus V_n$ where each V_i is invariant under the action of A. (The matrix A is sometimes called the *direct sum* of its blocks $A = \mathbf{A}_1 \oplus \mathbf{A}_2 \oplus \cdots \oplus \mathbf{A}_n$.)

- (b) Conversely, explain why, if V decomposes into a direct sum of subspaces that are invariant under A, then the corresponding matrix for A will be block diagonal. (What are the sizes of the blocks?)
- (c) Observe that $\operatorname{Trace}(A) = \operatorname{Trace}(\mathbf{A}_1) + \cdots + \operatorname{Trace}(\mathbf{A}_n)$, and $\operatorname{Det}(A) = \operatorname{Det}(\mathbf{A}_1) \cdots \operatorname{Det}(\mathbf{A}_n)$.
- (d) What is the product of two block diagonal matrices (assuming blocks of the same sizes)?
- 16. (a) Let A be an $n \times n$ matrix. Show that A satisfies its minimal polynomial (ie, $m_A(A)$ is the zero matrix), and that it is the smallest-degree polynomial that vanishes on A.
 - (b) Let T be a linear map. Show that $m_T(A) = 0$ for any matrix representation A of T, and that the minimal polynomial $m_T(x)$ is the smallest-degree polynomial with this property.
 - (c) Show that the matrix $\begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ satisfies the polynomial $x^2 x 2$. Conclude that this polynomial must be in the ideal $\langle m_T(x) \rangle$ and therefore a multiple of the minimal polynomial $m_T(x)$. What are the possibilities for $m_T(x)$?
- 17. Suppose that V is an $\mathbb{F}[x]$ -module that is n dimensional over the field \mathbb{F} . Let T be the linear map on V given by multiplication by x.
 - (a) What does the dimension of V imply about the possible degrees of the invariant factors $a_1(x)$, $a_2(x)$, ..., $a_m(x)$?
 - (b) Show in particular that the minimal polynomial of T has degree at most n.
 - (c) If $m_T(x)$ has degree exactly n, what does this tell you about the invariant-factor decomposition of V?
 - (d) Conversely, suppose that V is a cyclic $\mathbb{F}[x]$ -module. What can you conclude about the minimal polynomial of T?
- 18. What is the characteristic polynomial of a companion matrix $\mathcal{C}_{a(x)}$?
- 19. A linear map $L: V \to V$ is called *nilpotent* if $L^k = 0$ for some positive $k \in \mathbb{Z}$. Show that the following $n \times n$ matrices $J_{0,n}$ are nilpotent, and find the minimal k such that $J_{0,n}^k = 0$.

$$J_{0,1} = \begin{bmatrix} 0 \end{bmatrix} \qquad J_{0,2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad J_{0,3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad J_{0,4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$J_{0,n} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix} \qquad \begin{bmatrix} J_{0,2} & 0 & 0 \\ 0 & J_{0,2} & 0 \\ 0 & 0 & J_{0,3} \end{bmatrix}$$
(here 0 denotes the zero matrix).

20. Find the characteristic polynomial and the minimal polynomials of the following matrices.

$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

21. Let A be an $n \times n$ square matrix and B the $2n \times 2n$ block diagonal matrix $\begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$. Let $c_A(x)$ and $m_A(x)$ be the characteristic and minimal polynomials of A. What are the characteristic and minimal polynomials of B? Observe in particular that the minimal polynomial of B can have degree at most n.

22. Prove that the minimal polynomial of

$$A = \begin{bmatrix} \mathbf{A}_1 & 0 & \cdots & 0 \\ 0 & \mathbf{A}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{A}_n \end{bmatrix}$$

is the least common multiple of the minimal polynomial of the blocks A_i .

- 23. Prove that conjugate matrices have the same characteristic polynomial and the same minimal polynomial.
- 24. Let \mathbb{F} be a field and all matrices taken over \mathbb{F} .
 - (a) Show that 2×2 matrices are conjugate iff they have the same characteristic polynomial.
 - (b) Show that 3×3 matrices are conjugate iff they have the same characteristic and minimal polynomials.
 - (c) Write down two nonconjugate 4×4 matrices with the same minimal and characteristic polynomials.