
Math 122 Homework #8 Due: 22 May 2015

Reading: Dummit–Foote Ch 12.1, 18.1

Summary of definitions and main results

Definitions we’ve covered: ACC (Ascending chain condition), Noetherian R–module, Noetherian ring,
Smith normal form, group ring, (linear) representation, degree of a representation, faithful representation,
trivial representation, permutation representation, regular representation, homomorphism and isomorphism
of representations, G-equivariant map, intertwiner, simple (or irreducible) module, decomposable module,
completely reducible module

Main results: Equivalent definitions of Noetherian module, Proof outline of structure theorem for finitely
generated modules over PID (existence, uniqueness), equivalent definitions of a group representation, prop-
erties of the averaging map

Warm-Up Questions

1. Explain why all PIDs are Noetherian rings.

2. Let R be a Euclidean domain and M a finitely generated submodule. To prove the invariant factor
decomposition for M , we first constructed a surjection ϕ

0 −→ ker(ϕ) −→ Rn
ϕ−→M −→ 0

and then computed the Smith normal form of the m×n relations matrix between a basis x1, . . . , xn for
Rn and a generating set y1, . . . ym for ker(ϕ).

(a) Define the relations matrix. Explain the sense in which the rows of the relations matrix correspond
to generators yi of ker(ϕ), and the columns of the matrix correspond to basis elements xj of Rn.

(b) Explain how column operations on the relations matrix correspond to operations on the basis {xj},
and how row operations correspond to operations on the generators {yi}.

(c) Verify that for each row and column operation, the modified set {xj} will still be a basis for Rn,
and the modified set {yi} will still be a generating set for ker(ϕ).

(d) Describe what it means for the relations matrix to be in Smith normal form, and the structure of
the basis for Rn and generating set of ker(ϕ) constructed in the process of putting the matrix in
this form.

(e) Explain how to compute the invariant factor decomposition of M ∼= Rn/ ker(ϕ) from the Smith
normal form of the matrix.

3. Assume the same set up as in the previous question, with R = Z.

(a) For each of the matrices in Smith normal form, concretely describe the short exact sequence

0 −→ ker(ϕ) −→ Zn ϕ−→M −→ 0

and state the free rank and invariant factors for M .

A =

2 0 0
0 4 0
0 0 0

 B =

[
2 0 0
0 4 0

]
C =

[
2 0
0 4

]
D =

2 0
0 4
0 0

 E =

1 0 0
0 2 0
0 0 4


(b) Explain how the rows of zeroes in matrices A and D correspond to a redundancy in our choice of

generators {y1, . . . , ym} for the kernel ker(ϕ).

(c) Explain how the column of zeroes in matrices A and B corresponds to the free part of M .
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(d) Explain how the unit 1 in E corresponds to a redundancy in our choice of generators {ϕ(x1), . . . , ϕ(xn)}
for M .

4. Fill in the details of the following result from class: Let R be a PID, p ∈ R prime, and denote by F the
field R/(p).

(a) Rr/p(Rr) ∼= Fr.
(b) Let M = R/(a), a 6= 0. Then M/pM is isomorphic to F if p divides a, and zero otherwise.

(c) If M ∼= R/(a1)⊕ · · · ⊕R/(ak) where p divides each ai, then M/pM ∼= Fk.

5. Let G be a group and V an F-vector space. Show that the following are all equivalent ways to define a
(linear) representation of G on V .

i. A group homomorphism G→ GL(V ).

ii. A group action (by linear maps) of G on V .

iii. An F[G]–module structure on V .

6. (a) Describe the canonical representation on Fn of the symmetric group Sn by permutation matrices.

(b) Let 〈e1, . . . , en〉 be the standard basis for Fn. Show that if Sn acts by permuting the basis

σei 7→ eσ(i) for all σ ∈ Sn, i = 1, . . . , n,

then σ acts on a vector (v1, v2, . . . , vn) := v1e1 + . . .+ vnen in Fn by

σ(v1, v2, . . . , vn) 7→ (vσ−1(1), vσ−1(2), . . . , vσ−1(n)).

(c) Verify that Fn decomposes into the direct sum D⊕U of two invariant subspaces under this action:
the diagonal

D = spanF(e1 + e2 + . . .+ en) = {(a, a, . . . , a) ∈ Fn | a ∈ F},

and the subspace with coefficient-sum-zero

U = spanF(e1 − e2, e1 − e3, . . . , e1 − en) = {(a1, a2, . . . , an) ∈ Fn | a1 + a2 + . . .+ an = 0} .

7. (a) Compute the sum and product of the elements (1 + 3e(1 2) + 4e(1 2 3)) and (4 + 2e(1 2) + 4e(1 3)) in
the group ring Q[S3].

(b) Compute the sum and product of (2 + e2 + e3) and (3− e1 − 3e2) in the group ring Q[Z/4Z].
(Explain why it is prudent to denote group elements by eg instead of g in situations like this one).

8. Let R be a commutative ring. Show that the group ring R[Z] ∼= R[x, x−1]. What is the group ring
R[Zn]? The group ring R[Z/nZ]?

9. Let G be a group and R a commutative ring. Show that the group ring R[G] is commutative if and only
if G is abelian.

10. Prove that if φ : G→ GL(V ) is any representation, then φ defines a faithful representation of the group
G/ ker(φ).

11. Let ρ : G → GL(V ) be a representation of a finite group G, and let V ∼= U ⊕W be a decomposition
of V into G-invariant subspaces. Show that, in a suitably chosen basis for V , every matrix ρ(g) will be
block diagonal, with a block acting on U and a block acting on V .
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12. (a) Find an explicit isomorphism T between the following two representations of S2.

S2 → GL(R2) S2 → GL(R2)

(1 2) 7→
[
0 1
1 0

]
(1 2) 7→

[
1 0
0 −1

]
id 7→

[
1 0
0 1

]
id 7→

[
1 0
0 1

]
Give a geometric description of the action and the two bases for R2 associated to each matrix group.

(b) Prove that the following two representations of S2 are not isomorphic.

S2 → GL(R2) S2 → GL(R2)

(1 2) 7→
[
0 1
1 0

]
(1 2) 7→

[
−1 0
0 −1

]
id 7→

[
1 0
0 1

]
id 7→

[
1 0
0 1

]
13. Given representations G→ GL(V ) and G→ GL(U), construct a representations G→ GL(V ⊕ U) and

G→ GL(V ⊗ U).

14. Show that a representation of a group G is equivalent to the data of a functor from the category G (with
one object and morphisms G) to the category VectF of F–vector spaces. Conclude that (by composing
functors) any representation of G on vector space V and covariant functor F : VectF → VectF will define
a G–representation F(V ).

Assignment Questions

1. Define a ring R to be (left) Noetherian if R is Noetherian as a left module over itself. In this question we
will show this definition is equivalent to our earlier definition of a Noetherian ring: R is (left) Noetherian
if every finitely generated left R–module is Noetherian.

(a) Suppose R is Noetherian as a left R–module. Let M be a submodule of Rn. Prove that

{ r | r appears as a first coordinate in an element of M} ⊆ R and M ∩ ({0} ×Rn−1) ⊆ Rn

are R–modules.

(b) Using part (a) and induction on n, prove that Rn is a Noetherian R–module.
Hint: Consider the relationship between M and the short exact sequence

0 −→ {0} ×Rn−1 −→ Rn
π1−→ R −→ 0.

(c) Prove that an R–module N is finitely generated if and only if it is quotient of a finite rank free
R–module Rn.

(d) Prove that a quotient of a Noetherian R–module is Noetherian.

(e) Conclude that any finitely generated R–module is Noetherian.

2. In class, we sketched a proof of the structure theorem for finitely generated modules over a Euclidean
domain R. Reference: Dummit–Foote Ch 12.1 Exercises 17–19.

(a) Let K be a submodule of Rn. Since Rn is Noetherian, K is finitely generated. Show that the
result of our proof-sketch from class in fact showed that K is a free R–module of rank at most n,
with the following property: there exists a basis x1, . . . , xn for Rn such that K is free on the basis
a1x1, a2x2, . . . , akxk for some nonzero ai ∈ R satisfying a1|a2| · · · |ak.
(You do not need to re-prove the arguments from the class, you can just quote the conclusion
concerning the relations matrix in Smith normal form).
Remark: This property holds for all PID’s. Those interested should refer to 12.1 Theorem 4.
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(b) Let Z4 be the free abelian group on the standard basis e1 = (1, 0, 0, 0), . . . , e4 = (0, 0, 0, 1). Let M
be the submodule generated by the elements

M =

〈
1
1
1
0

 ,


3
1
3
0

 ,


0
0
4
−2

 ,


6
0
−4
−6


〉

Find bases for Z4 and M as described in part (a), by performing row and column operations to
put an appropriately defined matrix into Smith normal form. (You can optionally use computer
software to do these computations, but include a print-out of your computer work).

(c) What is the invariant factor decomposition for Z4/M?

3. Let G be a finite group, and F a field. A permutation representation of G on a finite-dimensional F-
vector space V is a linear representation ρ : G→ GL(V ) in which elements act by permuting some basis
B = {b1, . . . bm} for V .

(a) Show that, with respect to the basis {b1, . . . , bm}, for each element g ∈ G, ρ(g) is represented by
an m×m permutation matrix, a square matrix that has exactly one entry 1 in each row and each
column, and zero elsewhere. Use this description of matrices ρ(g) to show that the trace of ρ(g) is
equal to the number of basis elements bi fixed by ρ(g).

(b) The group ring of F[G] is a left module over itself. Show that this corresponds to permutation repre-
sentation of the group G on the underlying vector space F[G], called the (left) regular representation
of G. Find the degree of this representation. In what basis is this a permutation representation,
and how many G-orbits does this basis have?

(c) For any g ∈ G, compute the trace of the matrix representing g in the regular representation.

4. (Schur’s Lemma). Let R be a ring, and let V,U be simple R–modules.

(a) Prove that every nonzero R–module homomorphism from V to U is either an isomorphism or the
zero map. Conclude that HomR(V, V ) is a division ring, a ring (not necessarily commutative) in
which every nonzero element has a multiplicative inverse.

(b) Suppose R is an algebraically closed field. Show that any R–module map φ : V → V is equal to the
scalar map λI for some λ ∈ R.

5. Let G be a finite abelian group, and V a finite-dimensional complex representation of G. Show that
V decomposes into a direct sum of 1-dimensional G–representations. Conclude that the image of G in
GL(V ) is simultaneously diagonalizable, that is, there is some basis for V with respect to which every
matrix is diagonal.
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