Reading: Dummit-Foote Ch 11.3, 11.5, 18.1, 18.3
Other suggested reading: Fulton-Harris "Representation Theory: A first course", Ch 1-2.

Summary of definitions and main results

Definitions we've covered: V^{G}, dual space V^{*} of V, exterior powers, symmetric powers, character
Main results: Maschke's theorem; induced $\mathbb{F}[G]$-modules structures on $V \oplus W, \operatorname{Hom}_{k}(V, W), V^{*}, V \otimes W$, $\wedge^{k} V, \operatorname{Sym}^{k}(V)$; orthogonality of characters

Warm-Up Questions

1. Given an example of a ring R and an R-module M that is:
(a) irreducible
(b) reducible, but not decomposable
(c) decomposable, but not completely reducible
(d) completely reducible, but not irreducible
2. Let V be a representation of a group G, and recall that V^{G} denotes the set of vectors in V that are fixed pointwise by the action of every group element $g \in G$. Verify that V^{G} is a linear subspace of V.
3. Let V and W be representations of a group G over a field k. Define the induced action of G on the k-vector space $\operatorname{Hom}_{k}(V, W)$, and verify that it satisfies the definition of a representation of G.
4. (a) Let $\mathbb{C}^{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ be the canonical representation of the symmetric group S_{n} by signed permutation matrices. Explicitly describe the action of the averaing map on \mathbb{C}^{n} :

$$
\begin{aligned}
\psi_{a v}: \mathbb{C}^{n} & \longrightarrow \mathbb{C}^{n} \\
v & \longmapsto \frac{1}{n!} \sum_{\sigma \in S_{n}} \sigma \cdot v
\end{aligned}
$$

(b) Suppose v is an element of the standard subrepresentation $\underline{S t d}=\left\{a_{1} e_{1}+\cdots+a_{n} e_{n} \mid \sum a_{i}=0\right\}$. What is $\psi_{a v}(v)$? Hint: First check $\psi_{a v}(v)$ on the basis vectors $v=\left(e_{1}-e_{i}\right)$ for $\underline{S t d}$.
(c) Interpret your answer to the previous question, given that we know $\psi_{a v}: V \rightarrow V$ is a linear projection onto V^{G}.
5. Let V denote the standard representation of S_{3} over \mathbb{C}.
(a) Use character theory to show that $V \otimes V$ demcomposes into a sum of one copy of each of the trivial representation, the alternating representation, and V.
(b) Let $\omega=e^{2 \pi i / 3}$. Verify that the vectors $\alpha=\left(\omega, 1, \omega^{2}\right)$ and $\beta=\left(1, \omega, \omega^{2}\right)$ form a basis for V as a subrepresentation of \mathbb{C}^{3}. Verify that

$$
V \otimes_{\mathbb{C}} V=\langle\alpha \otimes \alpha, \beta \otimes \beta\rangle \oplus\langle\alpha \otimes \beta+\beta \otimes \alpha\rangle \oplus\langle\alpha \otimes \beta-\beta \otimes \alpha\rangle
$$

gives a decomposition of $V \otimes_{\mathbb{C}} V$ into S_{3}-invariant subspaces. Identify each of these representations. (Hint: The elements (12), (123) generate S_{3}, so it is enough to check that they stabilize the subspaces.)
6. Let R be a commutative ring and M an R-module. Verify that our explicit construction of the symmetric power $\operatorname{Sym}^{k}(M)$ and the exterior power $\Lambda^{k} M$ satisfy the stated universal properties.
7. Let G be a finite group and $\phi: G \rightarrow G L(V)$ a G-representation over a field \mathbb{F} with character $\chi_{V}: G \rightarrow \mathbb{F}$. Prove that if V is 1-dimensional, then $\chi_{V}=\phi$. Show by example that if V is at least 2 dimensional, χ_{V} may not be a group homomorphism.
8. Let G be a finite group. Verify that the space of \mathbb{C}-valued class functions on G form a \mathbb{C}-vector space with dimension equal to the number of G conjugacy classes.
9. Let V be a finite dimensional vector space over \mathbb{C}. Recall that a (Hermitian) inner product on V is a function

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}
$$

satisfying the following properties:

- (Conjugate symmetry)

$$
\langle x, y\rangle=\overline{\langle y, x\rangle} \quad \forall x, y \in V
$$

- (Linearity in the first coordinate)

$$
\langle a x, y\rangle=a\langle x, y\rangle \quad \text { and } \quad\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle \quad \forall x, y, z \in V, \alpha \in \mathbb{C}
$$

- (Positive definiteness)

$$
\langle x, x\rangle \geq 0 \quad \text { and } \quad\langle x, x\rangle=0 \Rightarrow x=0 \quad \forall x \in V
$$

(a) Suppose that there is set of vectors $e_{1}, e_{2}, \ldots, e_{n}$ in V that is orthonormal with respect to the inner product $\langle\cdot, \cdot\rangle$. This means

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Prove that these vectors are linearly independent, and therefore form a basis for the space they span.
(b) Let $v=a_{1} e_{1}+\cdots+a_{n} e_{n}$ be an element of V. Show that

$$
\left\langle v, e_{i}\right\rangle=a_{i}
$$

(c) Show that

$$
\langle v, v\rangle=\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots+\left|a_{n}\right|^{2}
$$

(d) Suppose you have a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ which you know satisfies the conjugate-symmetry and linearity properties of an inner product. Show that, if V has an basis that is orthonormal with respect to the function, then it must be positive definite.
(e) Suppose that $v=a_{1} e_{1}+\cdots+a_{n} e_{n}$ for nonnegative integer coefficients a_{i}. Show that

$$
\langle v, v\rangle=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}
$$

and conclude that $\langle v, v\rangle=1$ if and only if $v=e_{i}$ for some i.

Assignment Questions

1. (a) Let V be a finite dimensional vector space over a field k. Given a choice of basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ for V, show that there is a dual basis $B^{*}=\left\{b^{1}, \ldots, b^{n}\right\}$ for V^{*}, where b^{i} is the linear functional defined on the basis B by

$$
b^{i}\left(b_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and extended k-linearly. Conclude that a choice of basis for V defines an isomorphism of vector spaces $V \cong V^{*}, b_{i} \mapsto b^{i}$.
Remark: Although V and V^{*} are isomorphic as abstract vector spaces, they are not naturally isomorphic in the sense that any isomorphism involves a choice of basis.
(b) Let - denote the dot product on vectors in V written with respect to the basis B. Verify that for any $w=\sum_{i} c_{i} b_{i} \in V$

$$
b^{i}(w)=b_{i} \bullet w=c_{i}
$$

Show more generally that the isomorphism from part (a) is in fact the map

$$
\begin{aligned}
V & \longrightarrow V^{*} \\
v & \longmapsto\{w \mapsto v \bullet w\}
\end{aligned}
$$

(c) Show that if $A: V \rightarrow V$ is a linear map (given by a matrix with respect to the basis B). Show that

$$
A v \bullet w=v \bullet A^{T} w \quad \text { and }\left(\text { since }\left(A^{T}\right)^{T}=A\right) \quad v \bullet A w=A^{T} v \bullet w
$$

where A^{T} denotes the transpose of the matrix A.
(d) Suppose G is a group with a linear action on V given by $\rho: G \rightarrow G L(V)$. Let ρ^{*} denote the induced action of G on V^{*} given by

$$
\left(\rho^{*}(g)(\phi)\right)(v)=\phi\left(\rho(g)^{-1}(v)\right) \quad \forall \phi \in V^{*}, g \in G
$$

If A is the matrix representing the action of a group element $g \in G$ on V with respect to the basis B, show that the matrix for g on V^{*} with respect to B^{*} is given by $\left(A^{-1}\right)^{T}$, the inverse transpose of A.
(e) Conclude that if G is a finite group and $k=\mathbb{C}$, and if $\left\{\lambda_{i}\right\}$ are the eigenvalues for the action of an element g on V, then the eigenvalues for the action of g on V^{*} are $\left\{\lambda_{i}^{-1}\right\}$, and moreover for each i, $\lambda_{i}^{-1}=\overline{\lambda_{i}}$. (For this question, you can quote properties of the transpose without proof).
(f) Conclude the formula for the characters: $\chi_{V^{*}}(g)=\overline{\chi_{V}(g)}$.
2. Let V and W be finite-dimensional representations of a finite group G over a field \mathbb{F}.
(a) Suppose that \mathbb{F} is algebraically closed, and that A and B are finite order (therefore diagonalizable) maps on vector spaces U and U^{\prime}. Show that the trace of $A \otimes B$ on $V \otimes_{\mathbb{F}} W$ is the product Trace $(A) \operatorname{Trace}(B)$. Conclude that the character $\chi_{V \otimes_{\mathbb{F}} W}(g)=\chi_{V}(g) \chi_{W}(g)$.
Remark: This result also holds when A and B are not diagonalizable, and can be proven (with a little more effort) by considering the bases for U and U^{\prime} putting A and B into Jordan canonical form. It can also be proven even when the field is not algebraically closed, by extension of scalars to the algebraic closure.
(b) Let \mathbb{F} be any field. Construct an isomorphism of G-representations $\operatorname{Hom}_{\mathbb{F}}(V, W) \cong V^{*} \otimes_{\mathbb{F}} W$. This isomorphism should be natural, that is, it should not require a choice of basis for V or W.
(c) Suppose $\mathbb{F}=\mathbb{C}$. Show that the character of $\operatorname{Hom}_{\mathbb{C}}(V, W)$ is

$$
\chi_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g)=\overline{\chi_{V}(g)} \chi_{W}(g)
$$

This will be a key result in our proof of orthogonality of characters!
3. Let \mathbb{F} be a field, and V a vector space over \mathbb{F} with basis $\left\{x_{1}, \ldots, x_{n}\right\}$.
(a) Verify that $\operatorname{Sym}^{k}(V)$ is a vector space over \mathbb{F} with basis given by the set of monomials in the variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of total degree k. (Remark: There are $\binom{n+k+1}{n-1}$ such monomials).
(b) Verify that $\wedge^{k} V$ is isomorphic to the \mathbb{F}-vector space with a basis given by elements of the form $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$ with $i_{1}<i_{2}<\cdots<i_{k}$.
Hint for (a) and (b): To show these elements are linearly independent, is enough to use the universal property to define a symmetric or alternating multilinear map $V^{k} \rightarrow \mathbb{C}$ that factors through $\operatorname{Sym}^{k} V$ or $\wedge^{k} V$ in such a way that it takes on the value 1 on one basis element and 0 on all others.
(c) Let R be a commutative ring and M and R-module. Show that the additive groups

$$
T^{*} M:=\bigoplus_{i=0}^{\infty} M^{\otimes i} \quad \operatorname{Sym}^{*} M:=\bigoplus_{i=0}^{\infty} \operatorname{Sym}^{i}(M) \quad \wedge^{*} M:=\bigoplus_{i=0}^{\infty} \wedge^{i} M
$$

each have a natural ring structure. You do not need to check the axioms for a ring, but define and briefly describe the multiplication in each case. The multiplication on $T^{*} M$ is called noncommutative, the multiplication on $\operatorname{Sym}^{*} M$ is commutative, and the multiplication on $\wedge^{*} M$ is called anti-commutative.
4. (a) Show that every permutation $\sigma \in S_{n}$ is conjugate to its inverse σ^{-1}.
(b) Prove that every finite dimensional complex representation V of the symmetric group S_{n} is self-dual, that is, there is an isomorphism of S_{n}-representations $V \cong V^{*}$.
Hint: We will prove on Wednesday that a finite-dimensional complex representation of a finite group is determined by its character.
5. (Bonus Question: The following question will require material from Wed 27 May's class.)
(a) Compute the character table for the symmetric group S_{5} over \mathbb{C}.
 of $\underline{S t d} \otimes_{\mathbb{C}} \underline{S t d}$ and $\wedge^{3} \underline{S t d}$ into irreducible $S_{5}-$ representations.

