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1. (a) (2 points) Classify (up to conjugacy) all linear maps T : C4 → C4 with character-
istic polynomial c(x) = (x− 1)3(x− 2). No justification necessary.

Each conjugacy class has a unique representative in Jordan canonical form. From
the characteristic polynomial we see that T has eigenvalue 1 with algebraic mul-
tiplicity 3 (JCF has three 1’s on its diagonal), and eigenvalue 2 with algebraic
multiplicity 1 (JCF has one 2 on its diagonal).

Without additional information, we do not know whether there are 1, 2 or 3 Jordan
blocks associated to the eigenvalue 1. This gives the three possible Jordan form
representatives: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 2




1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 2


Every linear transformation T : C4 → C4 is conjugate to one and only one of these
three matrices.

(b) (1 point) Write down the companion matrix (in the sense of rational canonical
form) to the polynomial x4 + 3x3 + x− 1. No justification necessary.

In general, the companion matrix to a polynomial p(x) = xk+bk−1x
k−1+· · ·+b1x+b0

is the (k × k) matrix 

0 0 0 · · · 0 −b0
1 0 0 · · · 0 −b1
0 1 0 · · · 0 −b2
0 0 1 · · · 0 −b3
...

...
...

...
...

0 0 0 · · · 1 −bk−1


(This is the matrix that represents the linear map “multiplication by x” on the

F[x]–module
F[x]

〈p(x)〉
with respect to the basis {1, x, x2, . . . , xk−1}. It has the prop-

erty that its characteristic polynomial is p(x).)

For the polynomial x4 + 3x3 + x− 1, the companion matrix is
0 0 0 1
1 0 0 −1
0 1 0 0
0 0 1 −3

 .
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(c) (4 points) Under each of the matrices A (in rational canonical form) and B (in
Jordan canonical form), fill in requested data. No justification necessary. You
do not need to expand / factor / simplify your polynomials.

A =


−1 0 0 0

0 0 0 0

0 1 0 1

0 0 1 0

 B =



1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 2 1 0 0
0 0 0 0 2 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 3


characteristic polynomial: (x+ 1)(x3 − x) (x− 1)3(x− 2)2(x− 3)2

minimal polynomial: (x3 − x) (x− 1)2(x− 2)2(x− 3)

elementary divisors: (x+ 1), (x+ 1), (x− 1)2, (x− 1), (x− 2)2,
(x− 1), x (x− 2)2, (x− 3), (x− 3)

invariant factors: (x+ 1), (x3 − x) (x− 1)2(x− 2)2(x− 3),
(x− 1)(x− 3)

dimension of the eigenspace Eλ dim(E−1) = 2, dim(E1) = 1 dim(E1) = 2, dim(E2) = 1
for each eigenvalue λ: dim(E0) = 1 dim(E3) = 2

dimension of the generalized eigenspace dim(G−1) = 2, dim(G1) = 3,
Gλ for each eigenvalue λ: dim(G1) = 1, dim(G0) = 1 dim(G2) = 2, dim(G3) = 2
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2. (4 points) Prove or disprove: There is an isomorphism of Q vector spaces Q⊗Z Q ∼= Q.

(A solution to this question appeared in a homework assignment – but give a complete
proof here; do not just cite this assignment).

This statement is true, and we will construct an isomorphism of rational vector spaces.

First, consider the map

ϕ : Q×Q −→ Q
(a, b) 7−→ ab

We can check that this map is Z–balanced: for all a, b, c ∈ Q and n ∈ Z,

ϕ(a+ c, b) = (a+ c)(b) = ab+ cb = ϕ(a, b) + ϕ(c, b)

ϕ(a, b+ c) = (a)(b+ c) = ab+ ac = ϕ(a, b) + ϕ(a, c)

ϕ(an, b) = (an)(b) = a(nb) = ϕ(a, nb)

It follows that ϕ factors through the tensor product, giving a map

Φ : Q⊗Z Q −→ Q
a⊗ b 7−→ ab

Moreover, this map is a map of rational vector spaces, since for any q ∈ Q we have
Φ(qa⊗ b) = qab = qΦ(a⊗ b).
To show Φ is an isomorphism, we will construct an inverse. Define

Ψ : Q −→ Q⊗Z Q
q 7−→ q ⊗ 1

Then
Φ ◦Ψ(q) = Φ(q ⊗ 1) = (q)(1) = q,

so Φ ◦Ψ is the identity map on Q. In the other direction,

Ψ ◦ Φ(a⊗ b) = Ψ(ab) = (ab)⊗ 1

To complete the proof that Ψ ◦ Φ is the identity map on Q⊗Z Q, we need to show that
(ab) ⊗ 1 = a ⊗ b. Write a and b as reduced integer fractions a = m

n
, b = k

`
. Using the

property that qn⊗ p = q ⊗ np for any integer n, we have:

(ab)⊗ 1 =

(
m

n

)(
k

`

)
⊗ 1 =

(
m

n

)(
k

`

)
⊗ `

`
=

(
m

n

)(
1

`

)
k ⊗ `

(
1

`

)
=

(
m

n

)(
1

`

)
`⊗ k

(
1

`

)
=

(
m

n

)(
`

`

)
⊗ k

`
= a⊗ b.

So we have Ψ = Φ−1, and we conclude that Φ is an isomorphism of Q vector spaces
Φ : Q⊗Z Q ∼= Q.
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3. (4 points) Find an example of a ring R and a right R–module M such that the func-
tor from R–modules to abelian groups M⊗R− is not exact. Fully explain your solution.

To show that M ⊗R− is not exact, we need to find a short exact sequence of R–modules
that, after applying the functor M ⊗R−, yields a short exact sequence of abelian groups
that is not exact.

One solution: Let R = Z, and let M = Z/2Z. Consider the short exact sequence of
Z–modules

0 −→ Z/2Z 2−−−−→ Z/4Z (mod 2)−−−−−→ Z/2Z −→ 0

Here, the first map is multiplication by 2, and the second map is reduction mod 2.

Applying the functor, we get:

0 // Z/2Z⊗Z Z/2Z 2 // Z/4Z⊗Z Z/2Z // Z/2Z⊗Z Z/2Z // 0

a⊗ b � // 2a⊗ b, c⊗ d � // (c mod 2)⊗ d

We know from the homework that we have an isomorphism of Z–modules

Z/mZ⊗Z Z/nZ
∼=−−→ Z/gcd(m,n)Z

a⊗ b 7−→ ab (mod gcd(m,n))

d⊗ 1 7−→ d (mod gcd(m,n))

Under this isomorphism, our two maps become

d
∼=−−→ d⊗1

2−−→ 2d⊗1
∼=−−→ 2d and d

∼=−−→ d⊗1
(mod 2)−−−−−→ (d mod 2)⊗1

∼=−−→ (d mod 2)

The resultant short exact sequence is:

0 // Z/2Z 2 // Z/2Z (mod 2) // Z/2Z // 0

d � // 2d, c � // (c mod 2)

But multiplication by 2 is the zero map on Z/2Z, and reduction modulo 2 is the identity
map. The sequence is:

0 // Z/2Z 0 // Z/2Z id // Z/2Z // 0

In particular the zero map Z/2Z → Z/2Z is not injective, so this sequence fails to be
exact.
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4. (a) (1 point) Let R be a ring, and let X and Y be R–modules. Define the direct product
X × Y .

The direct product X × Y is defined as the set {(x, y) | x ∈ X, y ∈ Y } with
R–module structure

r(x1, y1)+(x2, y2) := (rx1+x2, ry1+y2) for all x1, x2 ∈ X, y1, y2 ∈ Y and r ∈ R.

(Since it is a finite direct product, it is isomorphic to the (external) direct sum
X ⊕ Y .)

(b) (4 points) Prove that the product (along with the natural projections πX : X×Y →
X and πY : X × Y → Y ) satisfies the following universal property:

For any R–module Z and R–module maps fX : Z → X and fY : Z → Y , there is a
unique R–module map g : Z → X × Y making the following diagram commute.

Z
fX

vv

g

��

fY

''
X X × YπX
oo

πY
// Y

Suppose that Z is an R–module with maps

fX : Z → X and fY : Z → Y.

Then define a map

g : Z −→ X × Y
z 7−→ (fX(z), fY (z))

We can verify that g is a map of R–modules. Given any r ∈ R and z1, z2 ∈ Z,

g(rz1 + z2) =
(
fX(rz1 + z2), fY (rz1 + z2)

)
=
(
rfX(z1) + fX(z2), rfY (z1) + rfY (z2)

)
= r
(
fX(z1), fY (z1)

)
+
(
fX(z2), fY (z2)

)
= rg(z1) + g(z2)

Moreover, we can verify that g makes the diagram commute:

πX ◦ g(z) = πX

(
fX(z), fY (z)

)
= fX(z)

and similarly πY ◦ g(z) = fY (z). This establishes the existence of the map g.
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To prove uniqueness, let g′ be any map the completes the diagram. For z ∈ Z,
and suppose g′(z) = (x, y) for some x ∈ X and y ∈ Y . The commutativity of the
diagram means we must have

fX(z) = φX ◦ g′(z) = πX(x, y) = x and fY (z) = φY ◦ g′(z) = πY (x, y) = y

so (x, y) =
(
fX(z), fY (z)

)
. This shows that g′ = g, and we conclude that g is the

unique map of R–modules making the diagram commute.

(c) (4 points) Show that this universal property defines the product X × Y (with its
projection maps) uniquely up to unique isomorphism.

Suppose there were two R–modules satisfying this universal property: The R–
module A, along with projection maps πX and πY , and the R–module B, along
with projection maps pX and pY .

Then by the universal property for A, there is a unique map of R–modules φ making
the following diagram commute:

B
pX

xx
φ
��

pY

&&
X AπX
oo

πY
// Y

Similarly, by the universal property for B¡ there is a unique map of R–modules ψ
making the following diagram commute:

A
πX

xx
ψ
��

πY

&&
X BpX
oo

pY
// Y

We can combine these two diagrams into two larger commutative diagrams:
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A

πX

��

ψ
��

πY

��

B

pX
xx

φ
�� pY

&&
X AπX
oo

πY
// Y

B

pX

��

φ
��

pY

��

A

πX
xx

ψ
�� πY

&&
X BpX
oo

pY
// Y

Consider the left-hand diagram (call it L). It is clear that the identity map makes
the following diagram commute:

A

πX

��

id

��

πY

��
X AπX
oo

πY
// Y

so again citing the universal property, by uniqueness of the maps completing the
digram L, we must have φ ◦ ψ = id:

A

ψ
��

id

{{

B

φ
��
A

and by the same argument, from the right-hand diagram B

φ
��

id

{{

A

ψ
��
B

Then φ ◦ ψ = id and ψ ◦ φ = id. The maps φ and ψ are isomorphisms between
A and B, and they are the unique isomorphisms compatible with the projection
maps, in the sense that they are the unique maps making the diagrams commute:

B
pX

xx
φ
��

pY

&&
X AπX
oo

πY
// Y

A
πX

xx
ψ
��

πY

&&
X BpX
oo

pY
// Y

We conclude that the data of the direct product X × Y along with its projection
maps πX and πY are uniquely determined up to unique isomorphism.
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5. (a) (2 points) An matrix N is called nilpotent if Nk = 0 for some positive integer k.
Prove that if N is an n× n nilpotent matrix, then Nn = 0.

Suppose an n×n matrix N satisfies Nk = 0 for some positive integer k. The minimal
polynomial mN(x) of N is the principal generator of the ideal of polynomials that
annihilate N , so mN(x) must divide xk, which means that mN(x) must be a power
of x.

We proved that the degrees of the invariant factors of N must sum to n, so in
particular mN(x) has degree at most n, and it must divide xn. Since N satisfies its
minimal polynomial, it must satisfy the polynomial xn.

(b) (3 points) Prove that any n × n matrix over C can be written as the sum of a
nilpotent matrix and a diagonalizable matrix.

Let Jλ,k denote the (k × k) Jordan block matrix with diagonal entry λ:

Jλ,k =


λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · λ


Then an n × n matrix A is conjugate (via some matrix B) to a matrix in Jordan
canonical form. But we can decompose each block Jλ,k into the sum λIk + J0,k,
where Ik is the k × k identity matrix. Thus BAB−1 is equal to
Jλ1,k1 0 · · · 0

0 Jλ2,k2 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · JλN ,kN

 =


λ1Ik1 0 · · · 0

0 λ2Ik2 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · λNIkN

+


J0,k1 0 · · · 0

0 J0,k2 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · J0,kN


Call the first matrix in this sum D, and the second matrix N , so we have

BAB−1 = D +N

A = B−1(D +N)B = B−1DB +B−1NB

Since D is a diagonal matrix, its conjugate B−1DB is by definition diagonalizable.
Moreover, it was a result on the Homework that J0,k has minimal polynomial xk =
0. This means Nk = 0, where k is the size of the largest Jordan block. Since
conjugation is a ring automorphism, it follows that (B−1NB)k = B−1NkB = 0, so
we see that the matrix B−1NB is nilpotent.
The desired decomposition is: A = B−1DB +B−1NB.
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6. (5 points) Let R be a PID that is not a field. Suppose that a nonzero R–module M is
divisible, that is, for each m ∈ M and nonzero r ∈ R, there is some m′ ∈ M such that
rm′ = m. Show that M is not finitely generated.

We proceed by contradiction: Assume M is a finitely generated module over a PID R
that is not a field, and that M is divisible.

According to the invariant factor form of the structure theorem for finitely generated
modules over a PID, the module M decomposes as

M ∼= Rs ⊕ R

〈a1〉
⊕ R

〈a2〉
⊕ · · · ⊕ R

〈ak〉

for some invariant factors a1|a2| · · · |ak ∈ R. We have seen in class that ak generates the
annihilator of the torsion submodule Tor(M).

Let {b1, b2, . . . , bs} be a basis for the free factor Rs (if s = 0 this is the empty set), and

let bi+s be the image of 1 in
R

〈ai〉
. The elements b1, . . . , bi+k are a generating set for M .

First suppose that M has positive rank. Let m = b1, and let r be any nonzero element
of R. Since M is divisible, there is some m′ =

∑s+k
i=1 ribi ∈ M with rm′ = m = b1.

Multiplying both sides by ak annihilates the torsion elements bs+1, . . . , bs+k in the sum
m′, so

akrm
′ = ak(r)(r1b1 + . . . rsbs) = akb1

Substacting akb1 from both sides:

(akrr1 − ak)b1 + akrr2b2 + · · · akrrsbs = 0

But by definition of basis, this linear combination can be zero only if each coefficient is
zero, in particular, (akrr1 − ak) = 0. Then ak(rr1 − 1) = 0, and since R is a domain,
rr1 = 1. We have constructed an inverse to an arbitrary nonzero element r ∈ R, so we
conclude that R is a field, a contradiction.

Alternatively, suppose that s = 0, so M is torsion. Then let m = bi+k and let r = ak.
Since M is divisible, there is some m′ in M with akm

′ = m = bi+k. But ak annihilates
M , so this is a contradiction.

In all cases, we have reached a contradiction. We conclude that if M is a nonzero divisible
R–module over a PID, either R is a field or M is not finitely generated.
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7. (a) (1 point) Let R be a ring, and M an R–module. State what it means for M to be
a Noetherian R–module.

An R–module M is Noetherian if it satisfies the ascending chain condition: any
increasing chain of submodules

M1 ⊆M2 ⊆M3 ⊆ · · · ⊆M,

stabilizes. This means there is some index m such that Mk = Mm for all k ≥ m.

We proved in class that this definition is equivalent to the following: an R–modules
M is Noetherian if every R–submodule of M is finitely generated.

(b) (5 points) Let R be a ring, and let

0 −→ K −→M
ϕ−→ Q −→ 0

be a short exact sequence of R–modules. Show that if K and Q are Noetherian
R–modules, then M is Noetherian.

This problem is very closely related to Homework #8 Question 1.

Given the short exact sequence

0 −→ K −→M
ϕ−→ Q −→ 0

suppose that K and Q are both Noetherian modules. Let N be any R–submodule
of M ; to show that N is Noetherian is suffices to show that N is finitely generated.

Consider the restriction of ϕ to N . An element is in the kernel of this map precisely
when it is in both N and K. This gives a short exact sequence

0 −→ K ∩N −→ N
ϕ|N−→ ϕ(N) −→ 0

The R–module K ∩N is a submodule of K, and ϕ(N) is a submodule of Q, so our
assumption that K and Q are Noetherian implies that K ∩N and ϕ(N) are finitely
generated.

Let x1, x2, . . . , xk be a finite generating set for K ∩ N , and let z1, z2, . . . , zm be a
finite generating set for the quotient φ(N). Since φ surjects we can choose a finite
set y1, . . . , ym ∈ N , with yi a preimage of zi. We claim that x1, . . . , xk, y1, . . . , ym is
a generating set fo N .
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To see this let n ∈ N be any element. Then φ(n) ∈ φ(N) is of the form

φ(n) = r1z1 + r2z2 + · · ·+ rmzm

for some coefficients ri ∈ R. Take the preimage r1y1 + · · · + rmym. It may not be
the case that this preimage is equal to n, but we have

φ
(
n− (r1y1 + r2y2 + · · ·+ rmym)

)
= φ(n)− φ(r1y1 + r2y2 + · · ·+ rmym)

= φ(n)− (r1z1 + r2z2 + · · ·+ rmzm)

= 0

So n − (r1y1 + r2y2 + · · · + rmym) ∈ ker(φ) = K ∩ N . But this means that this
element is in the span of the elements xi, say, it is equal to (s1x1 +s2x2 + · · ·+skxk)
for some si ∈ R. Putting this together, we get

n = (r1y1 + r2y2 + · · ·+ rmym) + (s1x1 + s2x2 + · · ·+ skxk)

and n is in the span of the generating set B = {y1, . . . , ym, x1, . . . , xk} as desired. We
conclude that B generates N , and so N is finitely generated, and M is Noetherian.
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8. (4 points) Give an example of any group G and a complex representation of G that is
reducible but not decomposable. Justify your answer.

By Maschke’s theorem, any such group must be infinite. We can use an example from
class, when G = Z.

Consider the representation defined by the group homomorphism

φ : Z −→ GL(C2) C2 = 〈e1, e2〉

1 7−→
[
1 1
0 1

]
Since 1 generates Z, this extends uniquely to a map of abelian groups, the map

n 7−→
[
1 n
0 1

]
.

Each of these matrices has an eigenvector e1, which implies that the eigenspace E1 = 〈e1〉
is stable under the action of the group; it is a Z-subrepresentation.

However, E1 has no direct complement in C2 that is stable under the action of Z. To

see this, consider the matrix φ(1) =

[
1 1
0 1

]
. A direct complement to E1 would have to

be a 1-dimensional subspace stable under the action of this matrix – that is, a second
eigenspace. But this matrix is not diagonalizable: it is already in Jordan canonical form,
and we know the Jordan canonical form of a matrix is unique, so it cannot be conjugate
to a diagonal matrix.

Thus this representation C2 is not irreducible – it has a nontrivial subrepresentation –
but it cannot be decomposed into a direct sum of subrepresentations.
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9. Let G and H be finite groups with complex representations V and U , respectively. We
can construct a representation V ⊗C U of G×H with action

(g, h)(v ⊗ u) = gv ⊗ hu

(a) (3 points) Compute the character of the (G×H)–representation V ⊗C U in terms
of the characters χV and χU of V and U .

Let (g, h) be an element of G × H. Since G and H are finite groups, by a result
on the homework g and h must act on V and W , respectively, by diagonalizable
linear maps. Let x1, x2, . . . , xn be a set of eigenvevtors for the action of g on V with
eigenvalues λ1, λ2, . . . , λN , and let y1, y2, . . . ym be eigenvectors for the action of h
on U with eigenvalues µ1, µ2, . . . , µm. Then

(g, h)xi ⊗ yj = g(xi)⊗ h(yj) = λixi ⊗ µjyj = (λiµj)xi ⊗ yj

so we see that xi ⊗ yj is an eigenbasis for V ⊗C U under the action of (g, h) with
associated eigenvalues λiµj.

The trace of the action of (g, h) is the sum of the eigenvalues:

χV⊗CU(g, h) =

n,m∑
i=1,j=1

λiµj =

( n∑
i=1

λi

)( m∑
j=1

µj

)
= χV (g)χU(h)

We conclude that χV⊗CU(g, h) = χV (g)χU(h) for all g ∈ G and h ∈ H.
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(b) (3 points) Prove that if V and U are irreducible G and H representations (respec-
tively), then V ⊗C U is an irreducible (G×H)–representation.

We proved in class that a representation of a group W is irreducible if and only if its
character satisfies (χW , χW ) = 1. This implies that (χV , χV )G = 1 and (χU , χU)H =
1.

It suffices to compute (χV⊗CU , χV⊗CU)G×H :

(χV⊗CU , χV⊗CU)G×H =
1

|G×H|
∑

(g,h)∈G×H

χV⊗CU(g, h)χV⊗CU(g, h)

We know |G × H| = |G||H|. Moreover, by part (a), the character χV⊗CU(g, h) =
χV (g)χU(h). This gives:

=
1

|G||H|
∑

(g,h)∈G×H

χV (g)χU(h)χV (g)χU(h)

=
1

|G||H|
∑
g∈G

∑
h∈H

χV (g)χU(h)χV (g)χU(h)

=
1

|G||H|
∑
g∈G

∑
h∈H

χV (g)χV (g)χU(h)χU(h)

=

(
1

|G|
∑
g∈G

χV (g)χV (g)

)(
1

|H|
∑
h∈H

χU(h)χU(h)

)
= (χV , χV )G(χU , χU)H

= (1)(1)

= 1

This implies that the (G×H)–representation V ⊗C U is irreducible, as desired.

Remark: As an exercise, verify that the number of conjugacy classes in G×H is
equal to the product nm of the number n of the conjugacy classes in G and the
number m in H. Then, by doing a character computation like the one above, you
can check that the (G×H)–representation V ′⊗C U

′ is nonisomorphic to V ⊗C U if
U is not isomorphic to U ′ and/or V is not isomorphic to V ′. Hence the set

{V⊗CU | V an irreducible G–representation, U an irreducible H–representation }

is a set of nm non-isomorphic (G×H)–representations. By a cardinality argument,
this must be a complete list of all the irreducible (G×H)–representations.
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