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1. Compute the following. No justification needed.

(a) (2 points) Describe the set of C[x]–submodules of complex dimension two of

the C[x]–module V ∼= C3, where x acts by the matrix

2 0 0
0 2 0
0 0 1

 with respect to

the standard basis e1, e2, e3.

C[x]–submodules of V are precisely the vector subspaces U that are stable under
the action of x, that is, vector subspaces U such that xU ⊆ U . Here, x stabilizes
the span of the eigenvector e3, and x stabilizes any vector in the 2–dimensional
eigenspace 〈e1, e2〉. The 2–dimensional stable subspaces of a diagonalizable matrix
must be a sum of 1–dimensional stable subspaces (Exercise: Why?)

Solution. The two dimensional C[x]–submodules are the subspaces

〈 e1, e2 〉 and 〈 ae1 + be2 , e3 〉 for any a, b ∈ C, |a+ b| = 1 .

(b) (2 points) Suppose that V is a 2–dimensional complex vector space, and T : V → V
is a diagonalizable linear transformation with eigenvalues λ1, λ2. Suppose that W
is a 3–dimensional complex vector space, and R : W → W a diagonalizable linear
transformation with eigenvalues µ1, µ2, µ3.
List the eigenvalues of the linear map T ⊗R : V ⊗C W → V ⊗C W .

If we let e1, e2 be an eigenbasis for T , and f1, f2, f3 be an eigenbasis for R, then
{ei⊗fj | i = 1, 2, j = 1, 2, 3} will be an eigenbasis for R, since (using the definition
of T ⊗R and middle-linearity of tensors):

(T ⊗R)(ei ⊗ fj) = T (ei)⊗R(fj) = (λiei)⊗ (µjej) = (λiµj)(ei ⊗ fj).

We see that ei ⊗ fj is an eigenvector with eigenvalue λiµj.

Solution. The six eigenvalues are:

λ1µ1, λ1µ2, λ1µ3, λ2µ1, λ2µ2, λ2µ3.
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(c) (2 points) Simplify to a direct sum of abelian groups, without tensors:

(Z/10Z⊕ Z)⊗Z (Z/15Z⊕Q)⊗Z (Q/Z⊕ Z).

Since the tensor product is associative, this product may be expanded in any order.
Because the tensor product distributes over direct sums, we have:(

(Z/10Z⊕ Z)⊗Z (Z/15Z⊕Q)
)
⊗Z (Q/Z⊕ Z)

=
(
(Z/10Z⊗Z Z/15Z)⊕ (Z/10Z⊗Z Q)⊕ (Z⊗Z Z/15Z)⊕ (Z⊗Z Q)

)
⊗Z (Q/Z⊕ Z)

But we know from class and homework that:

• (Z/nZ⊗Z Z/mZ) ∼= Z/gcd(m,n)Z for all m,n ∈ Z>1

• (Z/nZ⊗Z Q) ∼= 0 for all n ∈ Z>1

• (Z⊗Z M) ∼= M for any abelian group M .

and so our calculation simplifies:(
(Z/10Z⊗Z Z/15Z)⊕ (Z/10Z⊗Z Q)⊕ (Z⊗Z Z/15Z)⊕ (Z⊗Z Q)

)
⊗Z (Q/Z⊕ Z)

=
(
Z/5Z⊕ Z/15Z⊕Q

)
⊗Z (Q/Z⊕ Z)

= (Z/5Z⊗Z Q/Z)⊕ (Z/15Z⊗Z Q/Z)⊕ (Q⊗Z Q/Z)⊕ (Z/5Z⊗Z Z)⊕ (Z/15Z⊗Z Z)⊕ (Q⊗Z Z)

We further know from the homework that:

• (Z/nZ⊗Z Q) ∼= 0 for all n ∈ Z>1

• (Q⊗Z Q/Z) ∼= 0

so we have

(Z/5Z⊗Z Q/Z)⊕ (Z/15Z⊗Z Q/Z)⊕ (Q⊗Z Q/Z)⊕ (Z/5Z⊗Z Z)⊕ (Z/15Z⊗Z Z)⊕ (Q⊗Z Z)
= Z/5Z⊕ Z/15Z⊕Q

Solution. Z/5Z⊕ Z/15Z⊕Q

(d) (2 points) List the elementary divisors and the invariant factors of the Z–module

Z13 ⊕ Z/20Z⊕ Z/50Z.

By two applications of the Chinese Remainder Theorem:

Z/20Z⊕ Z/50Z ∼= Z/4Z⊕ Z/5Z⊕ Z/2Z⊕ Z/25Z ∼= Z/100Z⊕ Z/10Z

Solution.

Elementary divisors: 2, 4, 5, 25.

Invariant factors: 10, 100.
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2. (a) (2 points) State the universal property of a free R–module F with basis B.

Solution. Let i : B ↪→ F denote the inclusion of the basis B. Then the free module
F satisfies the following universal property: Given any R–module L and map of
sets φ : B → L, there is a unique R–module homomorphism Φ : F → L such that
Φ◦ i = ψ, that is, a unique R–module map making the following diagram commute:

B

φ

��

i // F

∃! Φ

��
L

(b) (4 points) Consider a short exact sequence of R–modules

0 −→M
ψ−→ N

φ−→ Q −→ 0

Prove that, if Q is a free R–module, the sequence splits.

Solution. The Splitting Lemma states that the sequence splits if and only if we
can find an R–module map φ′ : Q → L such that φ ◦ φ′ is the identity map on Q.
We will use the universal property of a free module to construct this map.

Let B be a basis for Q. Since φ surjects, for every b ∈ B we can choose a preimage
b ∈ N . Then the universal property of the free module implies that the map of sets

N
φ //

Qoo B? _
i

oo

b b�oo

extends uniquely to a map of R-modules φ′ : Q→ N .

The composite φ ◦ φ′ is (by design) the identity map on B: for all b ∈ B,

φ(φ′(b)) = φ(b) = b.

Then, since the identity map idQ completes the diagram below, the universal prop-
erty’s uniqueness provision implies that φ ◦ φ′ must be the identity map on Q.

B

φ◦φ′|B

��

i // Q

idQ=φ◦φ′

��
Q

We have constructed a splitting homomorphism φ′ : Q→ N , and we conclude that
the short exact sequence splits.
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3. (a) (1 point) Let M,N,P be R–modules, and φ : M → N an R–module homomor-
phism. Define the induced map:

φ∗ : HomR(N,P )→ HomR(M,P )

Solution. For any R–module map f ∈ HomR(N,P ), we define

φ∗(f) = f ◦ φ ∈ HomR(M,P ).

M

φ∗(f)=f◦φ

  

φ // N

f

��
P

(b) (2 points) Describe what it would mean, in terms of the maps HomR(M,P ), for φ∗

to surject.

Solution. The map φ∗ : HomR(N,P )→ HomR(M,P ) will surject precisely if every
R–module map g : M → P factors through the map φ : M → N , that is, if there
exists some map f : N → P completing the following commutative diagram.

M

g

  

φ // N

∃f

��
P

Then g = f ◦ φ = φ∗(f).

Remark: Sometimes (especially when φ is an inclusion), the map f is called an
extension of g to N .
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(c) (3 points) Give an example of Z–modules M,N,P and an injective map of groups

φ : M → N

so that the induced map

φ∗ : HomZ(N,P )→ HomZ(M,P )

does not surject.

(This proves that the functor HomZ(−, P ) is not exact.)

By part (b) it suffices to find an injective map φ : M → N and a map M → P that
does not factor through φ.

Solution 1. Let M = N = P = Z, and let n ∈ Z>1. Then the identity map
idZ : Z→ Z cannot factor through the injective map φ, “multiplication by n”:

Z

idZ

��

n

φ
// Z

6∃f

��
Z

Any group map f : Z → Z completing the diagram would have to map n ∈ Z to
1 ∈ Z, and so f(1) would have to satisfy 1 = f(n) = nf(1), an equation with no
solutions in Z.

Solution 2. Let n > 1 be an integer. Let M = P = Z/nZ and N = Z/n2Z. Then
the identity map Z/nZ → Z/nZ does not factor through the inclusion Z/nZ →
Z/n2Z that maps 1 (mod n) to n (mod n2):

Z/nZ

idZ/nZ

##

n

φ
// Z/n2Z

6∃f

��
Z/nZ

Any map f : Z/n2Z→ Z/nZ must take n (mod n2) to f(n) = nf(1) ≡ 0 (mod n),
and so the image of Z/nZ is in the kernel of f . The map f ◦ n is the zero map, not
the identity.

Other Solution Outlines. The identity map Z→ Z does not factor through the
inclusion Z ↪→ Q, as HomZ(Q,Z) = 0. The identity map Z/nZ → Z/nZ does not
factor through the inclusion Z/nZ ↪→ Q/Z, as HomZ(Q/Z,Z/nZ) = 0.
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