Reading: Dummit-Foote Ch 10.1.
Please review the Math 122 Course Information posted on our webpage:
http://web.stanford.edu/~jchw/2016Math122.

Summary of definitions and main results

Definitions we've covered: left R-module, right R-module, R-submodule, endomorphism, free R-module of rank n, annihilator of a submodule, annihilator of a (right) ideal.

Main results: Two equivalent definitions of an R-module; the submodule criterion, equivalence of vector spaces over a field \mathbb{F} and \mathbb{F}-modules; equivalence of abelian groups and \mathbb{Z}-modules; if I annihilates an R-module M then M inherits a (R / I)-module structure; structure of an $\mathbb{F}[x]$-module for a field \mathbb{F}.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded), however, you're encouraged to work out their solutions!

1. State the definition / axioms for a ring R (which we assume has unit 1).
2. In class we gave the definition of a left R-module. Formulate the definition of a right R-module M.
3. Let R be a ring with 1 and M a left R-module. Prove the following:
(a) $0 m=0$ for all m in M.
(b) $(-1) m=-m$ for all m in M.
(c) If $r \in R$ has a left inverse, and $m \in M$, then $r m=0$ only if $m=0$.
4. Show that if R is a commutative ring, then a left R-module structure on an abelian group M also defines a right R-module on M and vice versa. Is this true for noncommutative rings R ?
5. (Restriction of scalars). Let M be an R-module, and let S be any subring of R. Explain how the R-module structure on M also gives M the structure of an S-module. This operation is called restriction of scalars from R to the subring S.
6. Verify that the axioms for a vector space over a field \mathbb{F} are equivalent to the axioms for an \mathbb{F}-module.
7. Verify that the axioms for an abelian group M are equivalent to the axioms for a \mathbb{Z}-module structure on M. How does an integer n act on $m \in M$?
8. Let \mathbb{F} be a field, and x a formal variable. Prove that modules V over the polynomial ring $\mathbb{F}[x]$ are precisely \mathbb{F}-vector spaces V with a choice of linear map $T: V \rightarrow V$. In Assignment Problem 5 we will see that different maps T give different $\mathbb{F}[x]$-module structures on V.
9. Prove the submodule criterion: If M is a left R-module and N a subset of M, then N is a left $R-$ submodule if and only if:

- $N \neq \varnothing$.
- $x+r y \in N$ for all $x, y \in N$ and all $r \in R$.

10. Consider R as a module over itself. Prove that the R-submodules of the module R are precisely the left ideals I of R.
11. Let R^{n} be the free module of rank n over R. Prove that the following are submodules:
(a) $I_{1} \times I_{2} \times \cdots \times I_{n}$, with I_{i} a left ideal of R.
(b) The $i^{\text {th }}$ direct summand R of R^{n}.
(c) $\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{n} \mid a_{1}+a_{2}+\cdots+a_{n}=0\right\}$.
12. Let M be a left R-module. Show that the intersection of a (nonempty) collection of submodules is a submodule.
13. (a) Let M be an R-module and N an R-submodule. Prove that the annihilator $\operatorname{ann}(N)$ is a 2 -sided ideal of R.
(b) Let M be an R-module and I a right ideal of R. Show that ann (I) is an R-submodule of M.
(c) Compute the annihilator of the ideal $3 \mathbb{Z} \subseteq \mathbb{Z}$ in the \mathbb{Z}-module $\mathbb{Z} / 9 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 15 \mathbb{Z}$.
14. For p prime, an elementary abelian p-group is an abelian group G where $p g=0$ for all $g \in G$. Prove that an elementary abelian p-group is a $\mathbb{Z} / p \mathbb{Z}$-module, equivalently, an \mathbb{F}_{p}-vector space.
15. Let M be an R-module, and consider $\operatorname{Tor}(M)$ as defined in Assignment Question 4.
(a) Find $\operatorname{Tor}(\mathbb{Z} / 7 \mathbb{Z})$ if $\mathbb{Z} / 7 \mathbb{Z}$ is consider a module over (i) \mathbb{Z}, (ii) $\mathbb{Z} / 7 \mathbb{Z}$, or (iii) $\mathbb{Z} / 21 \mathbb{Z}$.
(b) Show that if R has zero divisors, then ever nonzero R-module has nonzero torsion elements.
16. (Group theory review) Suppose $m, n \geq 2$ are integers.
(a) Prove that there is an injective map of abelian groups $\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ if and only if $m \mid n$.
(b) Prove that if this map exists, it is unique up to pre-composing with an automorphism of $\mathbb{Z} / m \mathbb{Z}$. (In particular its image is a uniquely determined subset of $\mathbb{Z} / n \mathbb{Z}$.)

17. (Linear algebra review)

(a) Define the following terms (as they apply to finite dimensional vector spaces)

- vector space over \mathbb{F}; vector subspace
- linear dependence and linear independence of a set of vectors
- spanning set of vectors for a vector subspace
- basis and dimension of a vector subspace
- the direct sum of vector subspaces
(b) If you have not already seen proofs that
- linearly independent sets of vectors in a finite dimensional vector space V can be extended to a basis, and
- all bases for V have the same cardinality so $\operatorname{dim}(V)$ is well-defined
then take a look at Dummit-Foote Chapter 11.1.
(c) Let T be a linear transformation on a finite-dimensional \mathbb{F}-vector space V. Define an eigenvector of T and its associated eigenvalue. Find all eigenvectors and eigenvalues of the following matrices, over \mathbb{R} and over \mathbb{C}.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
3 & 4 \\
4 & 3
\end{array}\right] \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

(d) If T has a basis of eigenvectors, then such as basis is called an eigenbasis. What can you say about the structure of a matrix with an eigenbasis, and why is this important? Which of the above four matrices have eigenbases over \mathbb{R}, or over \mathbb{C} ?

Assignment Questions

The following questions should be handed in.

1. Let M be an abelian group (with addition), and R a ring.
(a) Define an endomorphism of M, and show that the set of endomorphisms $\operatorname{End}(M)$ of M form a ring under composition and pointwise addition.
(b) Prove that a left R-module structure on M is equivalent to the data of a homomorphisms of rings $R \rightarrow \operatorname{End}(M)$. Use this result to formulate an alternative definition of a left R-module.
(c) What should the analogous definition be for right R-modules?
(d) We have another name for the kernel of the map $R \rightarrow \operatorname{End}(M)$. What is it?
2. Let M be an R-module, and $\phi: S \rightarrow R$ a homomorphism of rings. Show how the map ϕ can be used to define an S-module structure on M. Explain why restriction of scalars is a special case of this construction. (Warm up Problem 5.)
3. Let M be a \mathbb{Z}-module.
(a) Fix an integer $n>1$. Under what conditions on M does the action of \mathbb{Z} on M induce an action of $\mathbb{Z} / n \mathbb{Z}$ on M ?
(b) Under what conditions on M can the action of \mathbb{Z} on M be extended to an action of \mathbb{Q} on M ?
4. An element m in an R-module M is called a torsion element if $r m=0$ for some nonzero $r \in R$. The set of torsion elements is denoted

$$
\operatorname{Tor}(M):=\{m \in M \mid r m=0 \text { for some nonzero } r \in R\}
$$

(a) Prove that if R is an integral domain, then $\operatorname{Tor}(M)$ is submodule of M.
(Remark: For commutative rings R, some sources only define $\operatorname{Tor}(M)$ with respect to elements $r \in R$ that are not zero divisors.)
(b) Show by example that if R is not commutative, then $\operatorname{Tor}(M)$ may not be a submodule of M.
5. Let V be a module over the polynomial ring $\mathbb{F}[x]$. Classify all submodules of V, given that
(a) $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{2}$, and x acts by rotation by $\frac{\pi}{2}$.
(b) $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{2}$, and x acts by orthogonal projection onto the horizontal axis in \mathbb{R}^{2}.
(c) \mathbb{F} any field, $V=\mathbb{F}^{2}$, and x acts by the scalar matrix $c I_{2}$ for some $c \in \mathbb{F}$. (Here I_{2} denotes the 2×2 identity matrix).
(d) $\mathbb{F}=\mathbb{C}, V=\mathbb{C}^{3}$, and x acts by a diagonalizable matrix with three distinct eigenvalues λ_{1}, λ_{2}, and λ_{3}. (Recall: A matrix is diagonalizable iff it has a basis of eigenvectors, equivalently, iff it is conjugate to a diagonal matrix.)

