Reading: Dummit-Foote Ch 10.2-10.3.
Recall: We assume that all rings have a multiplicative identity 1 , that a subring of R must contain 1_{R}, and that a ring homomorphism $R \rightarrow S$ must map 1_{R} to 1_{S}.

Summary of definitions and main results

Definitions we've covered: Homomorphism of R-modules, isomorphism of R-modules, kernel, image, $\operatorname{Hom}_{R}(M, N), \operatorname{End}_{R}(M)$, quotient of R-modules, sum of R-submodules.

Main results: $\quad R$-linearity criterion for maps, kernels and images are R-submodules, for R commutative $\operatorname{Hom}_{R}(M, N)$ is an $R-$ module, $\operatorname{End}_{R}(M)$ is a ring, factor theorem, four isomorphism theorems.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded), however, you should understand how to solve them!

1. Find an example of an R-module M that is isomorphic as R-modules to one of its proper submodules.
2. We saw that a R-module structure on M can also be defined by a homomorphism of rings $R \rightarrow \operatorname{End}_{\mathbb{Z}}(M)$. From this perspective, give an equivalent definition of the R-linear endomorphisms $\operatorname{End}_{R}(M) \subseteq \operatorname{End}_{\mathbb{Z}}(M)$.
3. (a) Prove the R-linearity criterion: $\phi: M \rightarrow N$ is an R-module map if and only if

$$
\phi(r m+n)=r \phi(m)+\phi(n) \quad \text { for all } m, n \in M \text { and } r \in R
$$

(b) Prove that the composition of R-module homomorphisms is again an R-module homomorphism.
(c) Let $\phi: M \rightarrow N$ be an R-module homomorphism. Show that $\operatorname{ker}(\phi)$ is an R-submodule of M, and that $\operatorname{im}(\phi)$ is an R-submodule of N.
(d) Show that if a map of R-modules $\phi: M \rightarrow N$ is invertible as a map of sets, then its inverse ϕ^{-1} is also R-linear, and an isomorphism of R-modules $N \rightarrow M$.
(e) Show that a homomorphism of R-modules ϕ is injective if and only if $\operatorname{ker}(\phi)=\{0\}$.
4. (a) Let M and N be R-modules. Show that every R-module map $M \rightarrow N$ is also a group homomorphism of the underlying abelian groups M and N.
(b) Show that if R is a field, then R-module maps are precisely linear transformations of vector spaces.
(c) Show that if $R=\mathbb{Z}$, then R-module maps are precisely group homomorphisms.
(d) Show by example that a homomorphism of the underlying abelian groups M and N need not be a homomorphism of R-modules.
(e) Now let $M=N$. Show that the set $\operatorname{End}(M)=\operatorname{End}_{\mathbb{Z}}(M)$ (the group endormophisms of the underlying abelian group M) and the set $\operatorname{End}_{R}(M)$ (the R-linear endomorphisms of the R-module M) may not be equal.
5. Let R be a ring. Its opposite ring R^{op} is a ring with the same elements and addition rule, but multiplication is performed in the opposite order. Specifically, the opposite ring of $(R,+, \cdot)$ is a ring $\left(R^{\mathrm{op}},+, *\right)$ where $a * b:=b \cdot a$.
(a) Show that if R is commutative, $R=R^{\mathrm{op}}$.
(b) Show that a left R-module structure on an abelian group M is equivalent to a right $R^{\text {op }}$-module structure on M.
6. Consider R as a module over itself.
(a) Show by example that not every map of $R-$ modules $R \rightarrow R$ is a ring homomorphism.
(b) Show by example that not every ring homomorphism is an R-module homomorphism.
(c) Suppose that ϕ is both a ring map and a map of R-modules. What must ϕ be?
7. (a) For R-modules M and N, prove that $\operatorname{Hom}_{R}(M, N)$ is an abelian group, and $\operatorname{End}_{R}(M)$ is a ring.
(b) For a commutative ring R, what is the $\operatorname{ring} \operatorname{End}_{R}(R)$?
(c) When R is commutative, show that $\operatorname{Hom}_{R}(M, N)$ is an R-module. What if R is not commutative?
(d) Let M be a right R-module. Prove that $\operatorname{Hom}_{\mathbb{Z}}(M, R)$ is a left R-module. What if M is a left R-module?
8. (a) Let M be an R-module. For which ring elements $r \in R$ will the map $m \mapsto r m$ define an R-module homomorphism on M ?
(b) Show that if R is commutative then there is a natural map of rings $R \rightarrow \operatorname{End}_{R}(M)$.
(c) Show by example that the map $R \rightarrow \operatorname{End}_{R}(M)$ may or may not be injective.
9. Let A and B be R-submodules of an R-module M.
(a) Prove that the sum $A+B$ is an R-submodule of M.
(b) Prove that $A+B$ is the smallest submodule of M containing A and B in the following sense: if any submodule N of M contains both A and B, then N contains $A+B$.
10. State and prove the four isomorphism theorems for modules (Section 10.2 Theorem 4.)
11. Use the first isomorphism theorem to prove that if $x \in R$ then the cyclic module $R x$ is isomorphic to the R-module $R / \operatorname{ann}(x)$. Deduce that if R is an integral domain, then $R x \cong R$ as R-modules.
12. Show that the rank-nullity theorem for linear transformations of vector spaces is a consequence of the first isomorphism theorem for modules.
13. Let R be a ring. A left ideal I in R is maximal if the only left ideals in R containing I are I and R. Use the fourth isomorphism theorem to show that R / I is simple (it has no proper nontrivial submodules).
14. (Group theory review) Compute the following \mathbb{Z}-modules in the sense of the structure theorem for finitely generated abelian groups.
(a) Compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 12 \mathbb{Z}, \mathbb{Z} / 15 \mathbb{Z})$ as a \mathbb{Z}-module.
(b) For integers m, n, compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$ as a \mathbb{Z}-module.
15. (Group theory review) Consider the abelian group \mathbb{Q} / \mathbb{Z}.
(a) Show that every element of \mathbb{Q} / \mathbb{Z} is torsion.
(b) Show that \mathbb{Q} / \mathbb{Z} is divisible: for every $a \in \mathbb{Q} / \mathbb{Z}$ and $n \in \mathbb{Z}$, there is an element $b \in \mathbb{Q} / \mathbb{Z}$ with $n b=a$ (so 'division by integers' $\frac{a}{n}=b$ is well-defined in \mathbb{Q} / \mathbb{Z}).
(c) Show that \mathbb{Q} / \mathbb{Z} is not finitely generated.
16. (Ring theory review) Classify all ideals of the ring \mathbb{Z}.
17. (Linear algebra review) Let V, W be vector spaces over a field \mathbb{F} of dimension n and m, respectively. Show that $T: V \rightarrow W$ is a linear transformation if and only if it can be represented by an $m \times n$ matrix. Show that matrix multiplication corresponds to composition of functions.
18. (Linear algebra review) Let V, W be vector spaces over a field \mathbb{F} and suppose that V has basis $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Show that any maps of sets $\varphi: B \rightarrow W$ can be extended to a linear map $T: V \rightarrow W$, and that the map T is uniquely determined by the map φ.

Assignment Questions

The following questions should be handed in.

1. Let R be a commutative ring and N an R-module.
(a) Prove that there is an isomorphism of left $R-\operatorname{modules} N \cong \operatorname{Hom}_{R}(R, N)$.
(b) Let n be a positive integer. Compute $\operatorname{Hom}_{R}\left(R^{n}, N\right)$.
(c) Do these same arguments work for $\operatorname{Hom}_{R}(N, R)$?
2. If R is a commutative ring, then for any positive integer $n, \operatorname{End}_{R}\left(R^{n}\right)$ is isomorphic (as a ring) to the ring $M_{n \times n}(R)$ of $n \times n$ matrices with entries in R. Find and prove the appropriate generalized statement if R is any (not necessarily commutative) ring. (Your proof should specialize to proving an isomorphism of rings $\operatorname{End}_{R}\left(R^{n}\right) \cong M_{n \times n}(R)$ in the case that R is commutative.) Hint: Warm-Up Problem \#5
3. Suppose that M, N are modules over a ring R, and that $S \subset R$ is a subring. Recall that M and N inherit S-module structures.
(a) Show that $\operatorname{Hom}_{R}(M, N) \subseteq \operatorname{Hom}_{S}(M, N)$.
(b) Find an example of a ring R, a proper subring $S \subset R$, and nonzero R-modules M and N so that $\operatorname{Hom}_{R}(M, N)=\operatorname{Hom}_{S}(M, N)$.
(c) Find an example of a rings $S \subseteq R$, and R-modules M and N so that $\operatorname{Hom}_{R}(M, N) \neq \operatorname{Hom}_{S}(M, N)$. (Choose an example different from our example of Gaussian integers $\mathbb{Z} \subseteq \mathbb{Z}[i]$ in class.)
4. For R-modules M, N, P, there is a composition map $\operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(N, P) \longrightarrow \operatorname{Hom}_{R}(M, P)$ given by $(f, g) \longmapsto g \circ f$.
(a) When R is commutative, is this map a homomorphism of R-modules?
(b) Give an example of a ring R and distinct $R-\operatorname{modules} M, N, P$ such that this map is surjective, and an example where this map is not surjective.
5. Let $R[x, y]$ denote polynomials in (commuting) indeterminates x and y over a commutative ring R. Use the isomorphism theorems to prove the following isomorphisms of R-modules.
(a) $R[x, y] /(x) \cong R[y]$.
(b) Let $p(x, y)$ be a polynomial in x and y. Then $R[x, y] /(x, p(x, y)) \cong R[y] /(p(0, y))$.
(c) Let $q(x)$ be a polynomial in x. Then $R[x, y] /(y-q(x)) \cong R[x]$.
6. Let U, V, W be vector spaces over a field \mathbb{F}. Let $\phi: U \rightarrow V$ be an injective linear map, and let $\psi: V \rightarrow W$ be a surjective linear map. Prove that both ϕ and ψ have one-sided inverses. Show by example that when R is not a field, not all surjective maps of R-modules have (one-sided) inverses, and show that not all injective maps of R-modules have (one-sided) inverses. (Later in the course, we will describe this phenomenon by the phrase "Every short exact sequence of vector spaces splits")
