Reading: Dummit-Foote 18.1 (up to page 846) \& 12.1 (Definition and Theorem 1) \& Ch 10.3.

Summary of definitions and main results

Definitions we've covered: group ring, (linear) representation, degree of a representation, faithful representation, trivial representation, permutation representation, regular representation, homomorphism and isomorphism of representations, G-equivariant map, intertwiner, generators of an R-module, the R-submodule $R A$ generated by a set A, finite generation, cyclic module, ascending chain condition (ACC), Noetherian R-module, Noetherian ring, minimal set of generators, direct product, direct sum (externel and internal), free module, basis, rank of a free module

Main results: Equivalent definitions of a group representation, examples of non-Noetherian modules, equivalent definitions of Noetherian module, equivalent definitions of (internal) direct sums

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded).

1. Let G be a group and V an \mathbb{F}-vector space. Show that the following are all equivalent ways to define a (linear) representation of G on V.
i. A group homomorphism $G \rightarrow \mathrm{GL}(V)$.
ii. A group action (by linear maps) of G on V.
iii. An $\mathbb{F}[G]$-module structure on V.
2. Let R be a commutative ring. Show that the group ring $R[\mathbb{Z}] \cong R\left[t, t^{-1}\right]$. Show that $R[\mathbb{Z} / n \mathbb{Z}] \cong$ $R[t] /\left\langle t^{n}-1\right\rangle$. What is the group ring $R\left[\mathbb{Z}^{n}\right]$? The group ring $R[\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}]$?
3. Let $\phi: G \rightarrow G L(V)$ be any group representation. What is the image of the identity element in $G L(V)$?
4. Compute the sum and product of $\left(1+3 e_{(12)}+4 e_{(123)}\right)$ and $\left(4+2 e_{(12)}+4 e_{(13)}\right)$ in the group ring $\mathbb{Q}\left[S_{3}\right]$.
5. Let G be a group and R a commutative ring. Show that $R[G]$ is commutative if and only if G is abelian.
6. Given any representation $\phi: G \rightarrow G L(V)$, prove that ϕ defines a faithful representation of $G / \operatorname{ker}(\phi)$.
7. (a) Find an explicit isomorphism T between the following two representations of S_{2}.

$$
\begin{aligned}
S_{2} & \rightarrow G L\left(\mathbb{R}^{2}\right) & S_{2} & \rightarrow G L\left(\mathbb{R}^{2}\right) \\
(12) & \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & (12) & \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Give a geometric description of the action and the bases for \mathbb{R}^{2} associated to each matrix group.
(b) Prove that the following two representations of S_{2} are not isomorphic.

$$
\begin{aligned}
S_{2} & \rightarrow G L\left(\mathbb{R}^{2}\right) & S_{2} & \rightarrow G L\left(\mathbb{R}^{2}\right) \\
\left(\begin{array}{ll}
1 & 2
\end{array}\right) & \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & (12) & \mapsto\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

8. Let A and B be submodules of the R-module M. Show that $A+B$ is equal to $R(A \cup B)$, the submodule generated by $A \cup B$, as R-submodules of M.
9. Let R be a ring and I a two-sided ideal of R. For each of the following R-modules M indicate whether M is finitely generated, cyclically generated, or more information is needed:
$M=R^{n}$ for $n \in \mathbb{N}, \quad$ polynomials $M=R[x], \quad$ series $M=R[[x]], \quad M=I, \quad$ and $M=R / I$.
10. (a) Prove that if M is a finitely generated R-module, and $\phi: M \rightarrow N$ a map of R-modules, then its image $\phi(M)$ is finitely generated by the images of the generators. Conclude in particular that all quotients of finitely generated modules are finitely generated.
(b) Let M be an R-module and N a submodule. Prove that if both N and M / N are finitely generated R-modules, then M is a finitely generated R-module.
11. (a) Let \mathbb{F} be a field. Citing results from linear algebra, explain why every \mathbb{F}-module is Noetherian.
(b) Citing results from group theory, explain why \mathbb{Z}-module is Noetherian.
(c) Explain why all PIDs are Noetherian rings.
12. An R-submodule N of an R-module M has a direct complement P if $M \cong N \oplus P$.
(a) Show that the \mathbb{Z}-submodule $2 \mathbb{Z} \subseteq \mathbb{Z}$ does not have a direct complement.
(b) Let V be the the $\mathbb{Q}[x]$-module where x acts by the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Show that $U=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ is a submodule of V with no direct complement.
(c) Show that every linear subspace of a vector space has a direct complement.
13. (a) Let A be any finite set of n elements. Show that the free R-module on A is isomorphic as an R-module to R^{n}.
(b) For R commutative, are the polynomial rings $R[x]$ and $R[x, y]$ free R-modules? What about Laurent polynomials $R\left[x, x^{-1}\right]$? Rational functions in x ?
(c) Do these arguments work for series $R[[x]]$?
14. Show that $M=\mathbb{Z} / 10 \mathbb{Z} \oplus \mathbb{Z} / 10 \mathbb{Z}$ is a free $\mathbb{Z} / 10 \mathbb{Z}$-module by finding a basis. Show that the element $(2,2)$ cannot be an element of any basis for M. Is the submodule $N=\mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 10 \mathbb{Z}$ also free?
15. Let $\left\{M_{i} \mid i \in I\right\}$ be a (possibly infinite) set of R-modules. Prove that the direct sum $\bigoplus_{i \in I} M_{i}$ is a submodule of the direct product $\prod_{i \in I} M_{i}$, but show by example that these may not be isomorphic in general. Hint: What are their cardinalities?
16. Fix an integer $n>0$. Recall the following example from class: The symmetric group S_{n} acts on \mathbb{C}^{n} by permuting a basis $e_{1}, e_{2}, \ldots, e_{n}$. We saw that this representation has two subrepresentations,

$$
D=\operatorname{span}_{\mathbb{C}}\left(e_{1}+e_{2}+\cdots e_{n}\right) \quad \text { and } \quad U=\left\{a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n} \mid a_{1}+a_{2}+\cdots a_{n}=0\right\}
$$

(a) Show that U and D are simple, that is, they do not contain any nontrivial subrepresentations.
(b) Show that, as a $\mathbb{C} S_{n}$-module, \mathbb{C}^{n} is the direct sum $\mathbb{C}^{n} \cong D \oplus U$.

Later in the course we will prove the following incredible fact: Finite dimensional representations of finite groups over \mathbb{C} always decompose into a direct sum of simple subrepresentations.
17. (Group theory review) For which $m, n \in \mathbb{Z}$ will the group $(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z})$ be cyclically generated?
18. (Linear algebra review) Let V, W be vector spaces over a field \mathbb{F} of dimension n and m, respectively.
(a) Consider a linear map $A: V \rightarrow V$ (equivalently, of an $n \times n$ matrix A). Show that the following are equivalent. If A satisfies any of these conditions, it is called singular.

1. A has a nontrivial kernel
2. The rows of A are linearly dependent
3. $\operatorname{rank}(A)<n$
4. A is not invertible
5. $\operatorname{det}(A)=0$
6. The columns of A are linearly dependent
7. $\lambda=0$ is an eigenvalue of A
(b) Let T be a linear transformation on a finite-dimensional \mathbb{F}-vector space V. Show that the following are equivalent
8. λ is an eigenvalue of T
9. $(\lambda I-T)$ is singular
10. λ is a root of the characteristic polynomial of $T, p_{T}(x)=\operatorname{det}(x I-T)$.

Assignment Questions

1. Let G be a finite group, and \mathbb{F} a field.

The following computations will be significant when we study character theory later in Math 122.
(a) Let $G \rightarrow G L(U)$ be any representation of G. Citing facts from linear algebra (which you don't need to prove), explain why the trace of the matrix representing a given element $g \in G$ is well-defined in the sense that it will be the same in any isomorphic representation of G.
(b) A permutation representation of G on a finite-dimensional \mathbb{F}-vector space V is a linear representation $\rho: G \rightarrow G L(V)$ in which elements act by permuting some basis $B=\left\{b_{1}, \ldots b_{m}\right\}$ for V. Show that, with respect to the basis $\left\{b_{1}, \ldots, b_{m}\right\}$, for each element $g \in G, \rho(g)$ is represented by an $m \times m$ permutation matrix, a square matrix that has exactly one entry 1 in each row and each column, and zero elsewhere. Use this description of matrices $\rho(g)$ to show that the trace of $\rho(g)$ is equal to the number of basis elements b_{i} fixed by $\rho(g)$.
(c) The group ring of $\mathbb{F}[G]$ is a left module over itself. Show that this corresponds to permutation representation of the group G on the underlying vector space $\mathbb{F}[G]$, called the (left) regular representation of G. Find the degree of this representation. In what basis is this a permutation representation, and how many G-orbits does this basis have?
(d) For any $g \in G$, compute the trace of the matrix representing g in the regular representation.
2. Suppose a finitely generated R-module M has a minimal generating set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Prove or find a counterexample: $M \cong R a_{1} \oplus R a_{2} \oplus \cdots \oplus R a_{n}$.
3. (a) (Chinese Remainder Theorem) Let R be any ring, and let $I_{1}, \ldots I_{k}$ be two-sided ideals of R such that $I_{i}+I_{j}=R$ for any $i \neq j$ (such ideals are called comaximal). Prove there is an isomorphism of R-modules

$$
\frac{R}{\left(I_{1} \cap I_{2} \cap \cdots \cap I_{k}\right)} \cong \frac{R}{I_{1}} \times \frac{R}{I_{2}} \times \cdots \times \frac{R}{I_{k}}
$$

(b) Prove that for pairwise coprime integers, $m_{1}, m_{2}, \ldots, m_{k}$, there is an isomorphism of groups

$$
\mathbb{Z} / m_{1} m_{2} \cdots m_{k} \mathbb{Z} \cong \mathbb{Z} / m_{1} \mathbb{Z} \times \mathbb{Z} / m_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{k} \mathbb{Z}
$$

4. Let R be a ring. Show that an arbitrary direct sum of free R-modules is free, but an arbitrary direct product need not be. Hint: Dummit-Foote 10.3 \# 24.
5. (a) Let R be a commutative ring, and let $n, m \in \mathbb{N}$. Prove that that $R^{n} \cong R^{m}$ if and only if $n=m$. You may assume without proof that finite-dimensional vector spaces are isomorphic if and only if their dimensions are equal. You may also assume Zorn's Lemma.
Hint: See Dummit-Foote $10.3 \# 2$.
(b) Show that when R is not commutative, this statement is false - that is, free R-modules need not have a unique rank. Hint: See Dummit-Foote 10.3 \# 27 .
6. (Bonus) Let V be an $\mathbb{C}[x]$-module with V finite dimensional over \mathbb{C}, and x acting by the linear map T. For which linear maps T will V be cyclically generated? Give necessary and sufficient conditions on the eigenvalues and eigenspaces of T. Remember that not all linear maps are diagonalizable!
