Reading: Dummit–Foote 18.1 (up to page 846) & 12.1 (Definition and Theorem 1) & Ch 10.3.

Summary of definitions and main results

Definitions we've covered: group ring, (linear) representation, degree of a representation, faithful representation, trivial representation, permutation representation, regular representation, homomorphism and isomorphism of representations, G-equivariant map, intertwiner, generators of an R-module, the R-submodule RA generated by a set A, finite generation, cyclic module, ascending chain condition (ACC), Noetherian R-module, Noetherian ring, minimal set of generators, direct product, direct sum (externel and internal), free module, basis, rank of a free module

Main results: Equivalent definitions of a group representation, examples of non-Noetherian modules, equivalent definitions of Noetherian module, equivalent definitions of (internal) direct sums

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded).

- 1. Let G be a group and V an \mathbb{F} -vector space. Show that the following are all equivalent ways to define a (linear) representation of G on V.
 - i. A group homomorphism $G \to \operatorname{GL}(V)$.
 - ii. A group action (by linear maps) of G on V.
 - iii. An $\mathbb{F}[G]$ -module structure on V.
- 2. Let R be a commutative ring. Show that the group ring $R[\mathbb{Z}] \cong R[t, t^{-1}]$. Show that $R[\mathbb{Z}/n\mathbb{Z}] \cong R[t]/\langle t^n 1 \rangle$. What is the group ring $R[\mathbb{Z}^n]$? The group ring $R[\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}]$?
- 3. Let $\phi: G \to GL(V)$ be any group representation. What is the image of the identity element in GL(V)?
- 4. Compute the sum and product of $(1+3e_{(12)}+4e_{(123)})$ and $(4+2e_{(12)}+4e_{(13)})$ in the group ring $\mathbb{Q}[S_3]$.
- 5. Let G be a group and R a commutative ring. Show that R[G] is commutative if and only if G is abelian.
- 6. Given any representation $\phi: G \to GL(V)$, prove that ϕ defines a faithful representation of $G/\ker(\phi)$.
- 7. (a) Find an explicit isomorphism T between the following two representations of S_2 .

$S_2 \to GL(\mathbb{R}^2)$	$S_2 \to GL(\mathbb{R}^2)$
$(1\ 2)\mapsto \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$	$(1\ 2)\mapsto \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$

Give a geometric description of the action and the bases for \mathbb{R}^2 associated to each matrix group. (b) Prove that the following two representations of S_2 are not isomorphic.

$$S_2 \to GL(\mathbb{R}^2) \qquad \qquad S_2 \to GL(\mathbb{R}^2)$$
$$(1\ 2) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (1\ 2) \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

- 8. Let A and B be submodules of the R-module M. Show that A + B is equal to $R(A \cup B)$, the submodule generated by $A \cup B$, as R-submodules of M.
- 9. Let R be a ring and I a two-sided ideal of R. For each of the following R-modules M indicate whether M is finitely generated, cyclically generated, or more information is needed: $M = R^n$ for $n \in \mathbb{N}$, polynomials M = R[x], series M = R[[x]], M = I, and M = R/I.

- 10. (a) Prove that if M is a finitely generated R-module, and $\phi: M \to N$ a map of R-modules, then its image $\phi(M)$ is finitely generated by the images of the generators. Conclude in particular that all quotients of finitely generated modules are finitely generated.
 - (b) Let M be an R-module and N a submodule. Prove that if both N and M/N are finitely generated R-modules, then M is a finitely generated R-module.
- 11. (a) Let \mathbb{F} be a field. Citing results from linear algebra, explain why every \mathbb{F} -module is Noetherian.
 - (b) Citing results from group theory, explain why Z-module is Noetherian.
 - (c) Explain why all PIDs are Noetherian rings.
- 12. An *R*-submodule *N* of an *R*-module *M* has a direct complement *P* if $M \cong N \oplus P$.
 - (a) Show that the \mathbb{Z} -submodule $2\mathbb{Z} \subseteq \mathbb{Z}$ does not have a direct complement.
 - (b) Let V be the the $\mathbb{Q}[x]$ -module where x acts by the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Show that $U = \operatorname{span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ is a submodule of V with no direct complement.
 - (c) Show that every linear subspace of a vector space has a direct complement.
- 13. (a) Let A be any finite set of n elements. Show that the free R-module on A is isomorphic as an R-module to R^n .
 - (b) For R commutative, are the polynomial rings R[x] and R[x, y] free R-modules? What about Laurent polynomials $R[x, x^{-1}]$? Rational functions in x?
 - (c) Do these arguments work for series R[[x]]?
- 14. Show that $M = \mathbb{Z}/10\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}$ is a free $\mathbb{Z}/10\mathbb{Z}$ -module by finding a basis. Show that the element (2, 2) cannot be an element of any basis for M. Is the submodule $N = \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}$ also free?
- 15. Let $\{M_i \mid i \in I\}$ be a (possibly infinite) set of *R*-modules. Prove that the direct sum $\bigoplus_{i \in I} M_i$ is a submodule of the direct product $\prod_{i \in I} M_i$, but show by example that these may not be isomorphic in general. *Hint*: What are their cardinalities?
- 16. Fix an integer n > 0. Recall the following example from class: The symmetric group S_n acts on \mathbb{C}^n by permuting a basis e_1, e_2, \ldots, e_n . We saw that this representation has two subrepresentations,

 $D = \operatorname{span}_{\mathbb{C}}(e_1 + e_2 + \dots + e_n) \quad \text{and} \quad U = \{a_1e_1 + a_2e_2 + \dots + a_ne_n \mid a_1 + a_2 + \dots + a_n = 0\}.$

- (a) Show that U and D are *simple*, that is, they do not contain any nontrivial subrepresentations.
- (b) Show that, as a $\mathbb{C}S_n$ -module, \mathbb{C}^n is the direct sum $\mathbb{C}^n \cong D \oplus U$.

Later in the course we will prove the following incredible fact: Finite dimensional representations of finite groups over \mathbb{C} always decompose into a direct sum of simple subrepresentations.

17. (Group theory review) For which $m, n \in \mathbb{Z}$ will the group $(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z})$ be cyclically generated?

18. (Linear algebra review) Let V, W be vector spaces over a field \mathbb{F} of dimension n and m, respectively.

- (a) Consider a linear map $A: V \to V$ (equivalently, of an $n \times n$ matrix A). Show that the following are equivalent. If A satisfies any of these conditions, it is called *singular*.
 - 1. A has a nontrivial kernel5. The rows of A are linearly dependent2. $\operatorname{rank}(A) < n$ 6. $\det(A) = 0$ 3. A is not invertible5. The rows of A are linearly dependent
 - 4. The columns of A are linearly dependent 7. $\lambda = 0$ is an eigenvalue of A
- (b) Let T be a linear transformation on a finite-dimensional \mathbb{F} -vector space V. Show that the following are equivalent
 - 1. λ is an eigenvalue of T
 - 2. $(\lambda I T)$ is singular
 - 3. λ is a root of the *characteristic polynomial* of T, $p_T(x) = \det(xI T)$.

Assignment Questions

1. Let G be a finite group, and \mathbb{F} a field.

- The following computations will be significant when we study *character theory* later in Math 122.
 - (a) Let $G \to GL(U)$ be any representation of G. Citing facts from linear algebra (which you don't need to prove), explain why the trace of the matrix representing a given element $g \in G$ is well-defined in the sense that it will be the same in any isomorphic representation of G.
 - (b) A permutation representation of G on a finite-dimensional \mathbb{F} -vector space V is a linear representation $\rho: G \to GL(V)$ in which elements act by permuting some basis $B = \{b_1, \ldots, b_m\}$ for V. Show that, with respect to the basis $\{b_1, \ldots, b_m\}$, for each element $g \in G$, $\rho(g)$ is represented by an $m \times m$ permutation matrix, a square matrix that has exactly one entry 1 in each row and each column, and zero elsewhere. Use this description of matrices $\rho(g)$ to show that the trace of $\rho(g)$ is equal to the number of basis elements b_i fixed by $\rho(g)$.
 - (c) The group ring of $\mathbb{F}[G]$ is a left module over itself. Show that this corresponds to permutation representation of the group G on the underlying vector space $\mathbb{F}[G]$, called the *(left) regular representation* of G. Find the degree of this representation. In what basis is this a permutation representation, and how many G-orbits does this basis have?
 - (d) For any $g \in G$, compute the trace of the matrix representing g in the regular representation.
- 2. Suppose a finitely generated *R*-module *M* has a minimal generating set $A = \{a_1, a_2, \ldots, a_n\}$. Prove or find a counterexample: $M \cong Ra_1 \oplus Ra_2 \oplus \cdots \oplus Ra_n$.
- 3. (a) (Chinese Remainder Theorem) Let R be any ring, and let $I_1, \ldots I_k$ be two-sided ideals of R such that $I_i + I_j = R$ for any $i \neq j$ (such ideals are called *comaximal*). Prove there is an isomorphism of R-modules

$$\frac{R}{(I_1 \cap I_2 \cap \dots \cap I_k)} \cong \frac{R}{I_1} \times \frac{R}{I_2} \times \dots \times \frac{R}{I_k}.$$

(b) Prove that for pairwise coprime integers, m_1, m_2, \ldots, m_k , there is an isomorphism of groups

 $\mathbb{Z}/m_1m_2\cdots m_k\mathbb{Z} \cong \mathbb{Z}/m_1\mathbb{Z}\times\mathbb{Z}/m_2\mathbb{Z}\times\cdots\times\mathbb{Z}/m_k\mathbb{Z}.$

- 4. Let R be a ring. Show that an arbitrary direct sum of free R-modules is free, but an arbitrary direct product need not be. *Hint:* Dummit–Foote 10.3 # 24.
- 5. (a) Let R be a commutative ring, and let $n, m \in \mathbb{N}$. Prove that that $R^n \cong R^m$ if and only if n = m. You may assume without proof that finite-dimensional vector spaces are isomorphic if and only if their dimensions are equal. You may also assume Zorn's Lemma. *Hint:* See Dummit–Foote 10.3 # 2.
 - (b) Show that when R is not commutative, this statement is false that is, free R-modules need not have a unique rank. *Hint:* See Dummit-Foote 10.3 # 27.
- 6. (Bonus) Let V be an $\mathbb{C}[x]$ -module with V finite dimensional over \mathbb{C} , and x acting by the linear map T. For which linear maps T will V be cyclically generated? Give necessary and sufficient conditions on the eigenvalues and eigenspaces of T. Remember that not all linear maps are diagonalizable!