Due: Friday 22 April 2016

Reading: Dummit-Foote Ch. 10.3 & pp 911-913.

Summary of definitions and main results

Definitions we've covered: R-linear independence, category, object, morphism, monomorphism, epimorphism, isomorphism, universal property, covariant and contravariant functors, forgetful functor, free functor.

Main results: Universal property for free modules, construction of the free module F(A), verification that F(A) satisfies the universal property, universal properties define objects up to unique isomorphism, in the category R-mod monomorphisms are precisely the injections, free functor $F: \underline{\text{Set}} \to R-\underline{\text{Mod}}$ is functorial.

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded).

- 1. Show that $M = \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$ is a rank-2 free module over $\mathbb{Z}/6\mathbb{Z}$, and find necessary and sufficient conditions on a pair of elements $\{a,b\} \subset M$ to be a basis for M.
- 2. Let R be a ring, M and R-submodule, and $A \subseteq M$ a set. The set A is called R-linearly independent if any finite R-linear combination $\sum_i r_i a_i$ (with $a_i \in A, r_i \in R$) is equal to zero if and only if every coefficient r_i is zero.
 - (a) Show that A is a basis for the R-module RA it generates if and only if A is R-linearly independent.
 - (b) Find a counterexample to the following false statement: If M is a free R-module and $A \subseteq M$ is an R-linearly independent subset of M, then A can be extended to a basis for M.
- 3. Let F be the free R-module on a set A. Show that if R has no zero divisors and $N \subseteq M$ is any nonzero submodule, then ann $(N) = \{0\}$. Is this true when R has zero divisors?
- 4. In class (and in Dummit-Foote 10.3 Theorem 6) we gave a construction of a free module F(A) on a set A. Verify that this construction is in fact a free module with basis A (as given in the definition on p354). Show moreover that $F(A) \cong \bigoplus_A R$.
- 5. (a) Citing results from linear algebra, explain why every vector space over a field \mathbb{F} is a free \mathbb{F} -module.
 - (b) When \mathbb{F} is a field, any minimal finite generating set $B = \{a_1, \ldots, a_n\}$ of an \mathbb{F} -module must be linearly independent and therefore a basis. Prove that in general, if an R-module has a minimal generating set $B = \{a_1, \ldots, a_n\}$, then R need not be free on B.
 - (c) Suppose that M is an R-module containing elements $\{a_1, a_2, \ldots, a_n\}$ such that $M = Ra_1 \oplus Ra_2 \oplus \cdots \oplus Ra_n$. Explain how $A = \{a_1, a_2, \ldots a_n\}$ could fail to be a basis for M. What conditions on the elements a_i could ensure that A is a basis?
- 6. Let R be a ring, M and R-module and N an R-submodule of N.
 - (a) Show that M/N satisfies the following universal property: If $\varphi: M \to Q$ is any map of R-modules satisfying $\phi(n) = 0$ for all $n \in N$, then φ factors uniquely through M/N.
 - (b) Show that this universal property defines the quotient M/N uniquely up to unique isomorphism.
- 7. (a) Prove that in the category of R-modules, a morphism is epic if and only if it is a surjective map.
 - (b) Prove that in the category of rings, the map $\mathbb{Z} \to \mathbb{Q}$ is an epic morphism that is not surjective.
- 8. (a) A zero object **0** in a category is an object with the following property: For any object M, there is a unique morphism from M to **0**, and a unique morphism from **0** to M. Show that if a category has a zero object, then it is unique up to unique isomorphism.

- Due: Friday 22 April 2016
- (b) Let \mathcal{C} be the category of R-modules, and show that the zero module $\{0\}$ is a zero object. This definition allows us to define the zero map 0 between R-modules M and N: it is the composition of the unique map $M \to \mathbf{0}$ with the unique map $\mathbf{0} \to N$.
- (c) Let \mathcal{C} be the category R-modules. Verify that the kernel of an R-module map satisfies the following universal property. If $f: M \to N$ is a morphism in \mathcal{C} , then define the $kernel\ i: K \to M$ of f to be the map i such that $f \circ i$ is the zero morphism 0

and satisfying the following: whenever there is a map of R-modules $g: P \to M$ such that $f \circ g = 0$, there is a unique map $u: P \to K$ such that $i \circ u = g$. In other words, there is a unique map u that makes the following diagram commute.

- (d) Explain why this universal property determines the map $i: K \to M$ up to unique isomorphism. Conclude that this universal property can be taken as the definition of the kernel of f.
- 9. Let \mathscr{C} be a category containing objects A and B, and let F be a functor $F : \mathscr{C} \to \mathscr{D}$. Show that if A and B are isomorphic objects of \mathscr{C} , then F(A) and F(B) will be isomorphic objects of \mathscr{D} .
- 10. Given a group G, define a category \mathscr{G} with a single object \bigstar and morphisms $\operatorname{Hom}_{\mathscr{G}}(\bigstar, \bigstar) = \{g \mid g \in G\}$. The composition law is given by the group operation. Show that a function between groups $G \to H$ is a group homomorphism if and only if the corresponding map between categories $\mathscr{G} \to \mathscr{H}$ is a functor.
- 11. Let \underline{fSet} denote the category of finite sets and all functions between sets. Let $\mathscr{P}: \underline{fSet} \to \underline{fSet}$ be the function that takes a finite set A to its power set $\mathscr{P}(A)$, the set of all subsets of A. If $f: A \to B$ is a function of finite sets, let $\mathscr{P}(f): \mathscr{P}(A) \to \mathscr{P}(B)$ be the function that takes a subset $U \subseteq A$ to the subset $f(U) \subseteq B$.
 - (a) Show that \mathcal{P} is a covariant functor.
 - (b) What if we had instead defined $\mathscr{P}(f):\mathscr{P}(B)\to\mathscr{P}(A)$ to take a subset $U\subseteq B$ to its preimage $f^{-1}(U)\subseteq A$ under f?
- 12. Let 0 denote the trivial abelian group. Give an example of a functor $F : \underline{Ab} \to \underline{Ab}$ such that F(0) = 0, and a functor $F : \underline{Ab} \to \underline{Ab}$ such that $F(0) \neq 0$.
- 13. Let $\underline{\operatorname{Grp}}$ be the category of groups and group homomorphisms. Let Z be the map $Z:\underline{\operatorname{Grp}}\to\underline{\operatorname{Grp}}$ that maps a group G to its centre $Z(G)=\{a\in G\mid ag=ga\ \forall g\in G\}$. Show that Z cannot be made into a functor by defining it to take a map of groups $f:G\to H$ to the restriction $f|_{Z(G)}$ of f to Z(G), since f(Z(G)) may not be contained in Z(H).

Assignment Questions

Due: Friday 22 April 2016

1. Let N and M_i be R-modules for i in an index set I. Prove the following isomorphisms of abelian groups:

(a)
$$\operatorname{Hom}_R\left(N, \prod_{i \in I} M_i\right) \cong \prod_{i \in I} \operatorname{Hom}_R(N, M_i)$$
 (b) $\operatorname{Hom}_R\left(\bigoplus_{i \in I} M_i, N\right) \cong \prod_{i \in I} \operatorname{Hom}_R(M_i, N)$

2. (Coproducts). Let \mathcal{C} be a category with objects X and Y. The coproduct of X and Y (if it exists) is an object $X \coprod Y$ in \mathcal{C} with maps $f_x : X \to X \coprod Y$ and $f_y : Y \to X \coprod Y$ satisfying the following universal property: whenever there is an object Z with maps $g_x: X \to Z$ and $g_y: Y \to Z$, there exists a unique map $u: X \mid \mid Y \rightarrow Z$ that makes the following diagram commute:

- (a) Let X and Y be objects in C. Show that, if the coproduct $(X \mid Y, f_x, f_y)$ exists in C, then the universal property determines it uniquely up to unique isomorphism.
- (b) Prove that in the category of R-modules, the coproduct of R-modules $X \coprod Y$ is $X \oplus Y$ with the canonical inclusions of X and Y. In other words, this universal property defines the direct sum operation on R-modules.
- (c) Prove that in the category of groups, the universal property for the coproduct $X \coprod Y$ of groups X and Y does not define the direct product of those groups. (It is a construction called the free product of groups).
- (d) Prove that in the category of sets, the coproduct $X \coprod Y$ of sets X and Y is their disjoint union.
- 3. (Abelianization). Let Grp denote the category of groups and group homomorphisms, and let Ab denote the category of abelian groups and group homomorphisms. Define the abelianization G^{ab} of a group G to be the quotient of G by its commutator subgroup [G,G], the subgroup normally generated by commutators, elements of the form $qhq^{-1}h^{-1}$ for all $q,h\in G$.
 - (a) Define a map of categories $[-,-]: \mathrm{Grp} \to \mathrm{Grp}$ that takes a group G to its commutator subgroup [G,G], and a group morphism $f:\overline{G\to H}$ to its restriction to [G,G]. Check that this map is well defined (ie, check that $f([G,G]) \subseteq [H,H]$) and verify that [-,-] is a functor.
 - (b) Show that G^{ab} is an abelian group. Show moreover that if G is abelian, then $G = G^{ab}$.
 - (c) Show that the quotient map $G \to G^{ab}$ satisfies the following universal property: Given any abelian group H and group homomorphism $f: G \to H$, there is a unique group homomorphism $\overline{f}: G^{ab} \to H$ that makes the following diagram commute:

$$G \xrightarrow{f} H$$

$$\downarrow \qquad \qquad \exists ! \overline{f}$$

$$G^{ab}$$

This universal property shows that G^{ab} is in a sense the "largest" abelian quotient of G.

(d) Show that the map ab that takes a group G to its abelianization G^{ab} can be made into a functor $ab: \operatorname{Grp} \to \operatorname{\underline{Ab}}$ by explaining where it maps morphisms of groups $f: G \to H$, and verifying that it is functorial.

(e) The category \underline{Ab} is a subcategory of \underline{Grp} . Define the functor $\mathcal{A}: \underline{Ab} \to \underline{Grp}$ to be the inclusion of this subcategory; \mathcal{A} takes abelian groups and group homomorphisms in \underline{Ab} to the same abelian groups and the same group homomorphisms in \underline{Grp} . Briefly explain why the universal property in Part (c) can be rephrased as follows: Given groups $G \in \underline{Grp}$ and $H \in \underline{Ab}$, there is a natural bijection between the sets of morphisms:

Due: Friday 22 April 2016

$$\operatorname{Hom}_{\operatorname{Grp}}(G, \mathcal{A}(H)) \cong \operatorname{Hom}_{\operatorname{\underline{Ab}}}(G^{ab}, H)$$

(This means that $\mathcal{A}: \underline{\mathbf{Ab}} \to \mathbf{Grp}$ and $ab: \mathbf{Grp} \to \underline{\mathbf{Ab}}$ are what we call a pair of adjoint functors.)

- 4. Define a ring R to be (left) Noetherian if R is Noetherian as a left module over itself. In this question we will show this definition is equivalent to the following alternate definition of a Noetherian ring: R is (left) Noetherian if every finitely generated left R—module is Noetherian.
 - (a) Let $0 \to A \to B \to C \to 0$ be a short exact sequence of R-modules. Show that if A and C are finitely generated R-modules, then B is finitely generated.
 - (b) Suppose R is Noetherian as a left R-module. Let M be a submodule of R^n . Consider the short exact sequence of R-modules

$$0 \longrightarrow \{0\} \times R^{n-1} \longrightarrow R^n \xrightarrow{\pi_1} R \longrightarrow 0,$$

(Here, π_1 is the projection onto the first factor of \mathbb{R}^n .) Show that we obtain a short exact sequence

$$0 \longrightarrow M \cap (\{0\} \times R^{n-1}) \longrightarrow M \longrightarrow \pi_1(M) \longrightarrow 0.$$

- (c) Using parts (a) and (b) and induction on n, prove that R^n is a Noetherian R-module.
- (d) Prove that an R-module N is finitely generated if and only if it is quotient of a finite rank free R-module R^n .
- (e) Prove that a quotient of a Noetherian R-module is Noetherian.
- (f) Conclude that any finitely generated R-module is Noetherian.