
Math 122 Homework #4 Due: Friday 22 April 2016

Reading: Dummit–Foote Ch. 10.3 & pp 911-913.

Summary of definitions and main results

Definitions we’ve covered: R–linear independence, category, object, morphism, monomorphism, epimor-
phism, isomorphism, universal property, covariant and contravariant functors, forgetful functor, free functor.

Main results: Universal property for free modules, construction of the free module F (A), verification that
F (A) satisfies the universal property, universal properties define objects up to unique isomorphism, in the
category R-mod monomorphisms are precisely the injections, free functor F : Set→ R–Mod is functorial.

Warm-Up Questions

The “warm-up” questions do not need to be submitted (and won’t be graded).

1. Show that M = Z/6Z ⊕ Z/6Z is a rank-2 free module over Z/6Z, and find necessary and sufficient
conditions on a pair of elements {a, b} ⊂M to be a basis for M .

2. Let R be a ring, M and R–submodule, and A ⊆ M a set. The set A is called R–linearly independent
if any finite R–linear combination

∑
i riai (with ai ∈ A, ri ∈ R) is equal to zero if and only if every

coefficient ri is zero.

(a) Show that A is a basis for the R–module RA it generates if and only if A is R–linearly independent.

(b) Find a counterexample to the following false statement: If M is a free R–module and A ⊆M is an
R–linearly independent subset of M , then A can be extended to a basis for M .

3. Let F be the free R–module on a set A. Show that if R has no zero divisors and N ⊆M is any nonzero
submodule, then ann(N) = {0}. Is this true when R has zero divisors?

4. In class (and in Dummit-Foote 10.3 Theorem 6) we gave a construction of a free module F (A) on a set
A. Verify that this construction is in fact a free module with basis A (as given in the definition on p354).
Show moreover that F (A) ∼=

⊕
AR.

5. (a) Citing results from linear algebra, explain why every vector space over a field F is a free F–module.

(b) When F is a field, any minimal finite generating set B = {a1, . . . , an} of an F–module must be
linearly independent and therefore a basis. Prove that in general, if an R–module has a minimal
generating set B = {a1, . . . , an}, then R need not be free on B.

(c) Suppose that M is an R–module containing elements {a1, a2, . . . , an} such that M = Ra1 ⊕Ra2 ⊕
· · · ⊕Ran. Explain how A = {a1, a2, . . . an} could fail to be a basis for M . What conditions on the
elements ai could ensure that A is a basis?

6. Let R be a ring, M and R–module and N an R–submodule of N .

(a) Show that M/N satisfies the following universal property: If ϕ : M → Q is any map of R–modules
satisfying φ(n) = 0 for all n ∈ N , then ϕ factors uniquely through M/N .

(b) Show that this universal property defines the quotient M/N uniquely up to unique isomorphism.

7. (a) Prove that in the category of R–modules, a morphism is epic if and only if it is a surjective map.

(b) Prove that in the category of rings, the map Z→ Q is an epic morphism that is not surjective.

8. (a) A zero object 0 in a category is an object with the following property: For any object M , there is a
unique morphism from M to 0, and a unique morphism from 0 to M . Show that if a category has
a zero object, then it is unique up to unique isomorphism.
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(b) Let C be the category of R–modules, and show that the zero module {0} is a zero object. This
definition allows us to define the zero map 0 between R–modules M and N : it is the composition
of the unique map M → 0 with the unique map 0→ N .

(c) Let C be the category R–modules. Verify that the kernel of an R–module map satisfies the following
universal property. If f : M → N is a morphism in C, then define the kernel i : K →M of f to be
the map i such that f ◦ i is the zero morphism 0

K

i

��

0 // 0

0

��
M

f
// N

and satisfying the following: whenever there is a map of R–modules g : P →M such that f ◦ g = 0,
there is a unique map u : P → K such that i ◦ u = g. In other words, there is a unique map u that
makes the following diagram commute.

P

g

��

0

!!

u

  
K

i

��

0 // 0

0

��
M

f
// N

(d) Explain why this univeral property determines the map i : K → M up to unique isomorphism.
Conclude that this universal property can be taken as the definition of the kernel of f .

9. Let C be a category containing objects A and B, and let F be a functor F : C → D . Show that if A
and B are isomorphic objects of C , then F (A) and F (B) will be isomorphic objects of D .

10. Given a group G, define a category G with a single object F and morphisms HomG (F,F) = {g | g ∈ G}.
The composition law is given by the group operation. Show that a function between groups G → H is
a group homomorphism if and only if the corresponding map between categories G →H is a functor.

11. Let f Set denote the category of finite sets and all functions between sets. Let P : f Set → f Set be the
function that takes a finite set A to its power set P(A), the set of all subsets of A. If f : A → B is
a function of finite sets, let P(f) : P(A) → P(B) be the function that takes a subset U ⊆ A to the
subset f(U) ⊆ B.

(a) Show that P is a covariant functor.

(b) What if we had instead defined P(f) : P(B) → P(A) to take a subset U ⊆ B to its preimage
f−1(U) ⊆ A under f?

12. Let 0 denote the trivial abelian group. Give an example of a functor F : Ab→ Ab such that F (0) = 0,
and a functor F : Ab→ Ab such that F (0) 6= 0.

13. Let Grp be the category of groups and group homomorphisms. Let Z be the map Z : Grp→ Grp that
maps a group G to its centre Z(G) = {a ∈ G | ag = ga ∀g ∈ G}. Show that Z cannot be made into a
functor by defining it to take a map of groups f : G → H to the restriction f |Z(G) of f to Z(G), since
f(Z(G)) may not be contained in Z(H).
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Assignment Questions

1. Let N and Mi be R–modules for i in an index set I. Prove the following isomorphisms of abelian groups:

(a) HomR

(
N,
∏
i∈I

Mi

)
∼=
∏
i∈I

HomR(N,Mi) (b) HomR

(⊕
i∈I

Mi, N

)
∼=
∏
i∈I

HomR(Mi, N)

2. (Coproducts). Let C be a category with objects X and Y . The coproduct of X and Y (if it exists) is an
object X

∐
Y in C with maps fx : X → X

∐
Y and fy : Y → X

∐
Y satisfying the following universal

property: whenever there is an object Z with maps gx : X → Z and gy : Y → Z, there exists a unique
map u : X

∐
Y → Z that makes the following diagram commute:

Z

X

gx

;;

fx

// X
∐
Y

u

OO

Y

gy

bb

fy

oo

(a) Let X and Y be objects in C. Show that, if the coproduct (X
∐
Y, fx, fy) exists in C, then the

universal property determines it uniquely up to unique isomorphism.

(b) Prove that in the category of R–modules, the coproduct of R–modules X
∐
Y is X ⊕ Y with the

canonical inclusions of X and Y . In other words, this universal property defines the direct sum
operation on R–modules.

(c) Prove that in the category of groups, the univeral property for the coproduct X
∐
Y of groups

X and Y does not define the direct product of those groups. (It is a construction called the free
product of groups).

(d) Prove that in the category of sets, the coproduct X
∐
Y of sets X and Y is their disjoint union.

3. (Abelianization). Let Grp denote the category of groups and group homomorphisms, and let Ab

denote the category of abelian groups and group homomorphisms. Define the abelianization Gab of a
group G to be the quotient of G by its commutator subgroup [G,G], the subgroup normally generated
by commutators, elements of the form ghg−1h−1 for all g, h ∈ G.

(a) Define a map of categories [−,−] : Grp → Grp that takes a group G to its commutator subgroup
[G,G], and a group morphism f : G → H to its restriction to [G,G]. Check that this map is well
defined (ie, check that f([G,G]) ⊆ [H,H]) and verify that [−,−] is a functor.

(b) Show that Gab is an abelian group. Show moreover that if G is abelian, then G = Gab.

(c) Show that the quotient map G→ Gab satisfies the following universal property: Given any abelian
groupH and group homomorphism f : G→ H, there is a unique group homomorphism f : Gab → H
that makes the following diagram commute:

G

��

f // H

Gab
∃! f

==

This universal property shows that Gab is in a sense the “largest” abelian quotient of G.

(d) Show that the map ab that takes a group G to its abelianization Gab can be made into a functor
ab : Grp→ Ab by explaining where it maps morphisms of groups f : G→ H, and verifying that it
is functorial.
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(e) The category Ab is a subcategory of Grp. Define the functor A : Ab → Grp to be the inclusion
of this subcategory; A takes abelian groups and group homomorphisms in Ab to the same abelian
groups and the same group homomorphisms in Grp. Briefly explain why the universal property
in Part (c) can be rephrased as follows: Given groups G ∈ Grp and H ∈ Ab, there is a natural
bijection between the sets of morphisms:

HomGrp(G,A(H)) ∼= HomAb(Gab, H)

(This means that A : Ab→ Grp and ab : Grp→ Ab are what we call a pair of adjoint functors.)

4. Define a ring R to be (left) Noetherian if R is Noetherian as a left module over itself. In this question
we will show this definition is equivalent to the following alternate definition of a Noetherian ring: R is
(left) Noetherian if every finitely generated left R–module is Noetherian.

(a) Let 0 → A → B → C → 0 be a short exact sequence of R–modules. Show that if A and C are
finitely generated R–modules, then B is finitely generated.

(b) Suppose R is Noetherian as a left R–module. Let M be a submodule of Rn. Consider the short
exact sequence of R–modules

0 −→ {0} ×Rn−1 −→ Rn
π1−→ R −→ 0,

(Here, π1 is the projection onto the first factor of Rn.) Show that we obtain a short exact sequence

0 −→M ∩
(
{0} ×Rn−1

)
−→M −→ π1(M) −→ 0.

(c) Using parts (a) and (b) and induction on n, prove that Rn is a Noetherian R–module.

(d) Prove that an R–module N is finitely generated if and only if it is quotient of a finite rank free
R–module Rn.

(e) Prove that a quotient of a Noetherian R–module is Noetherian.

(f) Conclude that any finitely generated R–module is Noetherian.
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