Reading: Dummit-Foote Ch 10.4, 10.5, 11.3.

Summary of definitions and main results

Definitions we've covered: Tensor products, R-balanced map, (S, R)-bimodule and R-bimodule, universal property of the tensor product, extension of scalars, tensor product of R-linear maps.

Main results: $\operatorname{Hom}_{R}(-, D)$ is left exact, explicit construction of $M \otimes_{R} N$, verification that it satisfies the universal property, $R / I \otimes_{R} N \cong N / I N$, tensor product distributes over direct sums, $R^{n} \otimes_{R} N \cong N^{n}$, tensor product is associative, hom-tensor adjunction.

Warm-Up Questions

1. Let R be a ring, let A be a right R-module and B a left R-module. Prove that the universal property of the tensor product defines $A \otimes_{R} B$ uniquely up to unique isomorphism.
2. Explain why, when R is commutative, a left R-module M will also be a right R-module under the action $m r=r m$, and conversely any right R-module N will also have an induced left R-module structure. Will these actions automatically give an R-bimodule structure? Why will these constructions generally not work when R is non-commutative?
3. Let R be a ring with right R-module M and left $R-$ module N. Show that the natural map

$$
M \times N \longrightarrow M \otimes_{R} N
$$

is not a group homomorphism. What are the constraints on this map, as imposed by the defining relations of $M \otimes_{R} N$?
4. Let R and S be rings (possibly the same ring). Let M be a right $R-$ module and N a left R-module. When will the tensor product $M \otimes_{R} N$ have the structure of an abelian group, and under what conditions will it additionally have the structure of an S-module?

5 . Let R be a commutative ring. Let e_{1}, e_{2}, e_{3} be a basis for the R^{3} and let $f_{1}, f_{2}, f_{3}, f_{4}$ be a basis for R^{4}. Expand the tensor

$$
\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right) \otimes\left(b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}+b_{4} f_{4}\right) \quad \in R^{3} \otimes_{R} R^{4}
$$

6. Let R be a ring with right R-module M and left R-module N. Which of the following maps are $R-$ balanced? Which are homomorphisms of abelian groups? For the maps that are R-balanced, describe how they factor through the tensor product.
(a) The identity map $M \times N \longrightarrow M \times N$.
(b) The natural projections of $M \times N$ onto M and N.
(c) The natural map $M \times N \longrightarrow M \otimes_{R} N$.
(d) Suppose M and N are ideals of R. The multiplication map

$$
\begin{aligned}
M \times N & \longrightarrow R \\
(m, n) & \longmapsto m n
\end{aligned}
$$

(e) Suppose R is commutative. The matrix multiplication map

$$
\begin{aligned}
M_{n \times k}(R) \times M_{k \times m}(R) & \longrightarrow M_{n \times m}(R) \\
(A, B) & \longmapsto A B
\end{aligned}
$$

(f) Suppose R is commutative and M, N, P are R-modules. The composition map:

$$
\begin{aligned}
\operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(N, P) & \longrightarrow \operatorname{Hom}_{R}(M, P) \\
(f, g) & \longmapsto g \circ f
\end{aligned}
$$

(g) Suppose R is commutative. The dot product map:

$$
\begin{aligned}
R^{n} \times R^{n} & \longrightarrow R \\
\quad(v, w) & \longmapsto v \cdot w
\end{aligned}
$$

(h) Suppose R is commutative. The cross product map:

$$
\begin{aligned}
R^{3} \times R^{3} & \longrightarrow R^{3} \\
(v, w) & \longmapsto v \times w
\end{aligned}
$$

(i) Suppose R is commutative. The determinant map:

$$
\begin{aligned}
& R^{2} \times R^{2} \longrightarrow R \\
& \quad(v, w) \longmapsto \operatorname{det}\left[\begin{array}{cc}
\mid & \mid \\
v & w \\
\mid & \mid
\end{array}\right]
\end{aligned}
$$

7. Let R be a ring with right R-module M and left R-module N.
(a) What is the additive identity in $M \otimes_{R} N$? Show that the simple tensors $0 \otimes n$ and $m \otimes 0$ will be zero in any tensor product $M \otimes_{R} N$.
(b) Show there are always maps of abelian groups $N \rightarrow M \otimes_{R} N$, but that these maps may not be injective.
8. Let $V \cong \mathbb{C}^{2}$ be a complex vector space, and let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix with respect to the standard basis e_{1}, e_{2}. Write down the matrix for the linear map induced by A on the four-dimensional vector space $V \otimes V$ with respect to the basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$.
9. Let V be a complex vector space. Let $T: V \rightarrow V$ be a diagonalizable linear map with eigenbasis $v_{1}, v_{2}, \ldots v_{n}$, and associated eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. What are the eigenvalues of the map induced by T on $V \otimes V$, and what are the associated eigenvectors?
10. Let R be a ring and S a subring.
(a) Give an example of R, S and an S-module that embeds into a R-module.
(b) Give an example of R, S, and an S-module that cannot embed into any R-module.
11. (a) Suppose that A is a finite abelian group. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} A=0$.
(b) Suppose that B is a finitely-generated abelian group. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} B$ is a \mathbb{Q}-vector space. What determines its dimension?
12. Let M be a right R-module and N_{1}, \ldots, N_{n} a set of left R-modules. Verify that the tensor product distributes over direct sums (Dummit-Foote 10.4 Theorem 17). There is a unique group isomorphism

$$
M \otimes_{R}\left(N_{1} \oplus \cdots \oplus N_{n}\right) \cong\left(M \otimes_{R} N_{1}\right) \oplus \cdots \oplus\left(M \otimes_{R} N_{n}\right)
$$

Conclude that if N is a left $R-\operatorname{module}, R^{n} \otimes_{R} N \cong N^{n}$.
13. (a) Let R be a ring, I a left ideal of R, and N a left R-module. Prove that $R / I \otimes_{R} N \cong N / I N$.
(b) Let R be a commutative ring with ideals I and J. Prove the isomorphism of R-modules:

$$
\begin{aligned}
R / I \otimes_{R} R / J & \longrightarrow R /(I+J) \\
(r+I) \otimes(s+J) & \longmapsto r s+(I+J)
\end{aligned}
$$

14. Verify the associativity of the tensor product (Dummit-Foote 10.4 Theorem 14).
15. (Linear Algebra Review). Let V be a finite dimensional vector space over \mathbb{C}. Recall that a Hermitian inner product on V is a function

$$
\langle-,-\rangle: V \times V \rightarrow \mathbb{C}
$$

satisfying the following properties:
(1) (Conjugate symmetry)

$$
\langle x, y\rangle=\overline{\langle y, x\rangle} \quad \forall x, y \in V
$$

(2) (Linearity in the first coordinate)

$$
\langle a x, y\rangle=a\langle x, y\rangle \quad \text { and } \quad\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle \quad \forall x, y, z \in V, a \in \mathbb{C}
$$

(3) (Positive definiteness)

$$
\langle x, x\rangle \geq 0 \quad \text { and } \quad\langle x, x\rangle=0 \Rightarrow x=0 \quad \forall x \in V
$$

Observe that (1) and (2) imply that the Hermitian inner product is antilinear in the second coordinate:

$$
\langle x, a y\rangle=\bar{a}\langle x, y\rangle \quad \text { and } \quad\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle \quad \forall x, y, z \in V, a \in \mathbb{C}
$$

(a) Suppose that there is set of vectors $e_{1}, e_{2}, \ldots, e_{n}$ in V that is orthonormal with respect to the inner product $\langle\cdot, \cdot\rangle$. This means

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Prove these vectors are linearly independent, and therefore form a basis for the space they span. (NB: We can always use the Gram-Schmidt algorithm to construct an orthonormal basis for V.)
(b) Let $v=a_{1} e_{1}+\cdots+a_{n} e_{n}$ and $w=b_{1} e_{1}+\cdots+b_{n} e_{n}$ be elements of V. Compute $\langle v, w\rangle$. Find in particular the values of $\left\langle v, e_{i}\right\rangle$ and $\langle v, v\rangle$.
(c) Show that the function

$$
\begin{aligned}
\|-\|: V & \longrightarrow \mathbb{R}_{\geq 0} \\
\|v\| & =\sqrt{\langle v, v\rangle}
\end{aligned}
$$

defines a norm on V, and hence the function

$$
\begin{aligned}
d: V \times V & \longrightarrow \mathbb{R}_{\geq 0} \\
d(v, w) & =\|v-w\|
\end{aligned}
$$

defines a metric on V.

Assignment Questions

1. (The functor $\operatorname{Hom}_{R}(-, D)$).
(a) Show that if D is any R-module, then there is a contravariant functor

$$
\begin{aligned}
& \operatorname{Hom}_{R}(-, D): R-\underline{\mathrm{Mod}} \longrightarrow \underline{\mathrm{Ab}} \\
& M \longmapsto \operatorname{Hom}_{R}(M, D) \\
& {[\phi: M \rightarrow N] } \longmapsto\left[\phi^{*}: \operatorname{Hom}_{R}(N, D) \longrightarrow \operatorname{Hom}_{R}(M, D)\right] \\
& f \longmapsto f \circ \phi
\end{aligned}
$$

(b) Show that $\operatorname{Hom}_{R}(-, D)$ is left exact. This means (for a contravariant functor) that for any short exact sequence

$$
0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \rightarrow 0
$$

the following is exact:

$$
0 \longrightarrow \operatorname{Hom}_{R}(C, D) \xrightarrow{\phi^{*}} \operatorname{Hom}_{R}(B, D) \xrightarrow{\psi^{*}} \operatorname{Hom}_{R}(A, D) .
$$

(c) Give an example of an injective R-module map $\phi: M \rightarrow N$ such that ϕ^{*} is not injective, and an example of an injective R-module map $\psi: M \rightarrow N$ such that ψ^{*} is not surjective.
Remark: An R-module I is called injective if $\operatorname{Hom}_{R}(-, I)$ is exact.
2. In this question, we will study a particularly important instance of the Hom functor. Let k be a field, and let k-vect denote the category of finite dimension k-vector spaces. Define the dual space functor by

$$
\begin{aligned}
k \text {-vect } & \longrightarrow k \text {-vect } \\
V & \longmapsto V^{*}:=\operatorname{Hom}_{k}(V, k)
\end{aligned}
$$

Throughout this question, let A^{T} or v^{T} denote the transpose of a matrix A or column vector v.
(a) Let V be a finite dimensional k-vector space. Given a choice of basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ for V, define a nondegenerate symmetric bilinear form $(-,-)$ on V such that

$$
\left(b_{i}, b_{j}\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

(Note that this is slightly different than the inner product defined in Warm-up Problem 15. The form $(-,-)$ has the advantage over $\langle-,-\rangle$ that it is linear in both coordinates, but the disadvantage that it is not positive definite when $k=\mathbb{C}$.)
Let $v, u \in V$. Show that this definition completely determines the value of (v, u), and moreover that (v, u) is equal to the dot product $v^{T} u$ of v and u when they are expressed with respect to the basis B.
(b) For each $i=1, \ldots, n$, define the map $b^{i}: V \rightarrow k$ by

$$
b^{i}(v):=\left(b_{i}, v\right)
$$

Check that b^{i} is a functional, ie, a k-linear map $V \rightarrow k$, and show moreover that the map $b_{i} \mapsto b^{i}$ extends to a k-linear map

$$
\begin{aligned}
& V \longrightarrow V^{*} \\
& w \longmapsto[v \mapsto(w, v)]
\end{aligned}
$$

(c) Show that the functionals b^{1}, \ldots, b^{n} are linearly independent and span V^{*}, and therefore form a basis B^{*} (called the dual basis to B). Conclude that a choice of basis for V defines an isomorphism of vector spaces $V \cong V^{*}$.
Remark: Although V and V^{*} are isomorphic as abstract vector spaces, they are not naturally isomorphic in the sense that any isomorphism involves a choice of basis or choice of bilinear form. There is, however, a natural isomorphism between V and $\left(V^{*}\right)^{*}$.
(d) Show that if $A: V \rightarrow W$ is a linear map given by a matrix with respect to orthonormal bases B_{V} and B_{W}. Show that

$$
(w, A v)_{W}=\left(A^{T} w, v\right)_{V}
$$

Hint: Use the formula $\left(u, u^{\prime}\right)=u^{T} u^{\prime}$. This should be a one-line solution.
(e) Show that if $A: V \rightarrow W$ is a linear map given by a matrix with respect to bases B_{V} and B_{W}, then the induced map $W^{*} \rightarrow V^{*}$ is given by the matrix A^{T} with respect to the dual bases B_{V}^{*} and B_{W}^{*}.
(f) Suppose G is a group with a linear action on a k-vector space V given by $\rho: G \rightarrow G L(V)$. Then we can construct an associated representation of G on V^{*}, called the dual representation ρ^{*} of ρ. Define ρ^{*} by

$$
\rho^{*}(g): \phi \longmapsto\left[v \mapsto \phi\left(\rho(g)^{-1}(v)\right)\right] \quad \forall \phi \in V^{*}, g \in G
$$

Verify that ρ^{*} defines a linear representation of G. If A is the matrix representing the action of a group element $g \in G$ on V with respect to a basis B, show that the matrix for g on V^{*} with respect to B^{*} is given by $\left(A^{-1}\right)^{T}$, the inverse transpose of A.

(c) Compute the rational vector space $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} / \mathbb{Z}$.
(d) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic as vector spaces over \mathbb{R}.
(e) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as vector spaces over \mathbb{Q}.

Note: By "compute" an abelian group I mean describe the group in terms of the classification of finitely generated abelian groups, as a product of cyclic groups. By "compute" a vector space I mean determine its dimension.
4. (The tensor-hom adjunction.) Let S, R by rings. Let A be an (S, R)-bimodule, B a left R-module, and C a left S-module. Prove that there is a (well-defined) isomorphism of abelian groups

$$
\begin{array}{r}
\operatorname{Hom}_{S}\left(A \otimes_{R} B, C\right) \stackrel{\cong}{\cong} \operatorname{Hom}_{R}\left(B, \operatorname{Hom}_{S}(A, C)\right) \\
{[f: a \otimes b \longmapsto f(a \otimes b)] \longmapsto[b \longmapsto[a \longmapsto f(a \otimes b)]]}
\end{array}
$$

