Reading: Dummit-Foote Ch 10.4, 10.5, 11.3.

Summary of definitions and main results

Definitions we've covered: Tensor products, R-balanced map, (S, R)-bimodule and R-bimodule, universal property of the tensor product, extension of scalars, tensor product of R-linear maps.

Main results: Hom_R(-, D) is left exact, explicit construction of $M \otimes_R N$, verification that it satisfies the universal property, $R/I \otimes_R N \cong N/IN$, tensor product distributes over direct sums, $R^n \otimes_R N \cong N^n$, tensor product is associative, hom-tensor adjunction.

Warm-Up Questions

- 1. Let R be a ring, let A be a right R-module and B a left R-module. Prove that the universal property of the tensor product defines $A \otimes_R B$ uniquely up to unique isomorphism.
- 2. Explain why, when R is commutative, a left R-module M will also be a right R-module under the action mr = rm, and conversely any right R-module N will also have an induced left R-module structure. Will these actions automatically give an R-bimodule structure? Why will these constructions generally not work when R is non-commutative?
- 3. Let R be a ring with right R-module M and left R-module N. Show that the natural map

$$M \times N \longrightarrow M \otimes_R N$$

is **not** a group homomorphism. What are the constraints on this map, as imposed by the defining relations of $M \otimes_R N$?

- 4. Let R and S be rings (possibly the same ring). Let M be a right R-module and N a left R-module. When will the tensor product $M \otimes_R N$ have the structure of an abelian group, and under what conditions will it additionally have the structure of an S-module?
- 5. Let R be a commutative ring. Let e_1, e_2, e_3 be a basis for the R^3 and let f_1, f_2, f_3, f_4 be a basis for R^4 . Expand the tensor

$$(a_1e_1 + a_2e_2 + a_3e_3) \otimes (b_1f_1 + b_2f_2 + b_3f_3 + b_4f_4) \in \mathbb{R}^3 \otimes_{\mathbb{R}} \mathbb{R}^4.$$

- 6. Let R be a ring with right R-module M and left R-module N. Which of the following maps are R-balanced? Which are homomorphisms of abelian groups? For the maps that are R-balanced, describe how they factor through the tensor product.
 - (a) The identity map $M \times N \longrightarrow M \times N$.
 - (b) The natural projections of $M \times N$ onto M and N.
 - (c) The natural map $M \times N \longrightarrow M \otimes_R N$.
 - (d) Suppose M and N are ideals of R. The multiplication map

$$\begin{aligned} M \times N &\longrightarrow R \\ (m,n) &\longmapsto mn \end{aligned}$$

(e) Suppose R is commutative. The matrix multiplication map

$$M_{n \times k}(R) \times M_{k \times m}(R) \longrightarrow M_{n \times m}(R)$$

 $(A, B) \longmapsto AB$

(f) Suppose R is commutative and M, N, P are R-modules. The composition map:

$$\operatorname{Hom}_R(M,N) \times \operatorname{Hom}_R(N,P) \longrightarrow \operatorname{Hom}_R(M,P)$$

 $(f,g) \longmapsto g \circ f$

(g) Suppose R is commutative. The dot product map:

$$R^n \times R^n \longrightarrow R$$

 $(v, w) \longmapsto v \cdot w$

(h) Suppose R is commutative. The cross product map:

$$R^3 \times R^3 \longrightarrow R^3$$

 $(v, w) \longmapsto v \times w$

(i) Suppose R is commutative. The determinant map:

$$\begin{array}{ccc} R^2 \times R^2 \longrightarrow R \\ \\ (v,w) \longmapsto \det \left[\begin{array}{ccc} | & | \\ v & w \\ | & | \end{array} \right] \end{array}$$

- 7. Let R be a ring with right R-module M and left R-module N.
 - (a) What is the additive identity in $M \otimes_R N$? Show that the simple tensors $0 \otimes n$ and $m \otimes 0$ will be zero in any tensor product $M \otimes_R N$.
 - (b) Show there are always maps of abelian groups $N \to M \otimes_R N$, but that these maps may not be injective.
- 8. Let $V \cong \mathbb{C}^2$ be a complex vector space, and let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a matrix with respect to the standard basis e_1, e_2 . Write down the matrix for the linear map induced by A on the four-dimensional vector space $V \otimes V$ with respect to the basis $e_1 \otimes e_1$, $e_1 \otimes e_2$, $e_2 \otimes e_1$, $e_2 \otimes e_2$.
- 9. Let V be a complex vector space. Let $T: V \to V$ be a diagonalizable linear map with eigenbasis $v_1, v_2, \ldots v_n$, and associated eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. What are the eigenvalues of the map induced by T on $V \otimes V$, and what are the associated eigenvectors?
- 10. Let R be a ring and S a subring.
 - (a) Give an example of R, S and an S-module that embeds into a R-module.
 - (b) Give an example of R, S, and an S-module that cannot embed into any R-module.
- 11. (a) Suppose that A is a finite abelian group. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} A = 0$.
 - (b) Suppose that B is a finitely-generated abelian group. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} B$ is a \mathbb{Q} -vector space. What determines its dimension?
- 12. Let M be a right R-module and N_1, \ldots, N_n a set of left R-modules. Verify that the tensor product distributes over direct sums (Dummit-Foote 10.4 Theorem 17). There is a unique group isomorphism

$$M \otimes_R (N_1 \oplus \cdots \oplus N_n) \cong (M \otimes_R N_1) \oplus \cdots \oplus (M \otimes_R N_n).$$

Conclude that if N is a left R-module, $R^n \otimes_R N \cong N^n$.

13. (a) Let R be a ring, I a left ideal of R, and N a left R-module. Prove that $R/I \otimes_R N \cong N/IN$.

(b) Let R be a commutative ring with ideals I and J. Prove the isomorphism of R-modules:

$$R/I \otimes_R R/J \longrightarrow R/(I+J)$$

 $(r+I) \otimes (s+J) \longmapsto rs + (I+J)$

- 14. Verify the associativity of the tensor product (Dummit-Foote 10.4 Theorem 14).
- 15. (Linear Algebra Review). Let V be a finite dimensional vector space over \mathbb{C} . Recall that a Hermitian inner product on V is a function

$$\langle -, - \rangle : V \times V \to \mathbb{C}$$

satisfying the following properties:

(1) (Conjugate symmetry)

$$\langle x, y \rangle = \overline{\langle y, x \rangle} \qquad \forall x, y \in V$$

(2) (Linearity in the first coordinate)

$$\langle ax,y\rangle = a\langle x,y\rangle \qquad \text{and} \qquad \langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle \qquad \forall x,y,z\in V, a\in\mathbb{C}$$

(3) (Positive definiteness)

$$\langle x, x \rangle \ge 0$$
 and $\langle x, x \rangle = 0 \Rightarrow x = 0$ $\forall x \in V$

Observe that (1) and (2) imply that the Hermitian inner product is antilinear in the second coordinate:

$$\langle x,ay\rangle = \overline{a}\langle x,y\rangle \qquad \text{and} \qquad \langle x,y+z\rangle = \langle x,y\rangle + \langle x,z\rangle \qquad \forall x,y,z\in V, a\in\mathbb{C}$$

(a) Suppose that there is set of vectors e_1, e_2, \ldots, e_n in V that is *orthonormal* with respect to the inner product $\langle \cdot, \cdot \rangle$. This means

$$\langle e_i, e_j \rangle = \left\{ \begin{array}{ll} 1, & i = j \\ 0, & i \neq j \end{array} \right.$$

Prove these vectors are linearly independent, and therefore form a basis for the space they span. (NB: We can always use the Gram-Schmidt algorithm to construct an orthonormal basis for V.)

- (b) Let $v = a_1 e_1 + \cdots + a_n e_n$ and $w = b_1 e_1 + \cdots + b_n e_n$ be elements of V. Compute $\langle v, w \rangle$. Find in particular the values of $\langle v, e_i \rangle$ and $\langle v, v \rangle$.
- (c) Show that the function

$$||-||: V \longrightarrow \mathbb{R}_{\geq 0}$$

 $||v|| = \sqrt{\langle v, v \rangle}$

defines a norm on V, and hence the function

$$d: V \times V \longrightarrow \mathbb{R}_{\geq 0}$$
$$d(v, w) = ||v - w||$$

defines a metric on V.

Assignment Questions

- 1. (The functor $Hom_R(-,D)$).
 - (a) Show that if D is any R-module, then there is a **contravariant** functor

$$\begin{array}{c} \operatorname{Hom}_R(-,D): R-\underline{\operatorname{Mod}} \longrightarrow \underline{\operatorname{Ab}} \\ M \longmapsto \operatorname{Hom}_R(M,D) \\ [\phi:M \to N] \longmapsto \begin{bmatrix} \phi^*: \operatorname{Hom}_R(N,D) {\longrightarrow} \operatorname{Hom}_R(M,D) \\ f \longmapsto f \circ \phi \end{bmatrix} \end{array}$$

(b) Show that $\operatorname{Hom}_R(-,D)$ is left exact. This means (for a contravariant functor) that for any short exact sequence

$$0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \to 0$$

the following is exact:

$$0 \longrightarrow \operatorname{Hom}_R(C, D) \xrightarrow{\phi^*} \operatorname{Hom}_R(B, D) \xrightarrow{\psi^*} \operatorname{Hom}_R(A, D).$$

- (c) Give an example of an injective R-module map $\phi: M \to N$ such that ϕ^* is not injective, and an example of an injective R-module map $\psi: M \to N$ such that ψ^* is not surjective. Remark: An R-module I is called injective if $\operatorname{Hom}_R(-, I)$ is exact.
- 2. In this question, we will study a particularly important instance of the Hom functor. Let k be a field, and let k-vect denote the category of finite dimension k-vector spaces. Define the dual space functor by

$$k-\underline{\text{vect}} \longrightarrow k-\underline{\text{vect}}$$

$$V \longmapsto V^* := \text{Hom}_k(V, k)$$

Throughout this question, let A^T or v^T denote the transpose of a matrix A or column vector v.

(a) Let V be a finite dimensional k-vector space. Given a choice of basis $B = \{b_1, \ldots, b_n\}$ for V, define a nondegenerate symmetric bilinear form (-,-) on V such that

$$(b_i, b_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

(Note that this is slightly different than the inner product defined in Warm-up Problem 15. The form (-,-) has the advantage over $\langle -,-\rangle$ that it is linear in both coordinates, but the disadvantage that it is not positive definite when $k=\mathbb{C}$.)

Let $v, u \in V$. Show that this definition completely determines the value of (v, u), and moreover that (v, u) is equal to the *dot product* $v^T u$ of v and u when they are expressed with respect to the basis B.

(b) For each i = 1, ..., n, define the map $b^i : V \to k$ by

$$b^{i}(v) := (b_{i}, v).$$

Check that b^i is a functional, ie, a k-linear map $V \to k$, and show moreover that the map $b_i \mapsto b^i$ extends to a k-linear map

$$V \longrightarrow V^*$$

$$w \longmapsto [v \mapsto (w, v)]$$

(c) Show that the functionals b^1, \ldots, b^n are linearly independent and span V^* , and therefore form a basis B^* (called the *dual basis* to B). Conclude that a choice of basis for V defines an isomorphism of vector spaces $V \cong V^*$.

Remark: Although V and V^* are isomorphic as abstract vector spaces, they are not naturally isomorphic in the sense that any isomorphism involves a choice of basis or choice of bilinear form. There is, however, a natural isomorphism between V and $(V^*)^*$.

(d) Show that if $A: V \to W$ is a linear map given by a matrix with respect to orthonormal bases B_V and B_W . Show that

$$(w, Av)_W = (A^T w, v)_V.$$

Hint: Use the formula $(u, u') = u^T u'$. This should be a one-line solution.

- (e) Show that if $A: V \to W$ is a linear map given by a matrix with respect to bases B_V and B_W , then the induced map $W^* \to V^*$ is given by the matrix A^T with respect to the dual bases B_V^* and B_W^* .
- (f) Suppose G is a group with a linear action on a k-vector space V given by $\rho: G \to GL(V)$. Then we can construct an associated representation of G on V^* , called the dual representation ρ^* of ρ . Define ρ^* by

$$\rho^*(g): \phi \longmapsto \left[v \mapsto \phi \Big(\rho(g)^{-1}(v) \Big) \right] \qquad \forall \ \phi \in V^*, \ g \in G$$

Verify that ρ^* defines a linear representation of G. If A is the matrix representing the action of a group element $g \in G$ on V with respect to a basis B, show that the matrix for g on V^* with respect to B^* is given by $(A^{-1})^T$, the inverse transpose of A.

- 3. (a) For integers m, n > 1, compute the abelian groups $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ and $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$.
 - (b) For integer n > 1, compute the abelian groups $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$ and $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$.
 - (c) Compute the rational vector space $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$.
 - (d) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are **not** isomorphic as vector spaces over \mathbb{R} .
 - (e) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic as vector spaces over \mathbb{Q} .

Note: By "compute" an abelian group I mean describe the group in terms of the classification of finitely generated abelian groups, as a product of cyclic groups. By "compute" a vector space I mean determine its dimension.

4. (The tensor-hom adjunction.) Let S, R by rings. Let A be an (S, R)-bimodule, B a left R-module, and C a left S-module. Prove that there is a (well-defined) isomorphism of abelian groups

$$\operatorname{Hom}_{S}(A \otimes_{R} B, C) \xrightarrow{\cong} \operatorname{Hom}_{R}(B, \operatorname{Hom}_{S}(A, C))$$
$$[f : a \otimes b \longmapsto f(a \otimes b)] \longmapsto [b \longmapsto [a \longmapsto f(a \otimes b)]]$$