
Math 122 Homework #7 Due: 13 May 2016

Reading: Dummit–Foote Ch 10.4, 10.5, 11.5, 12.1, 12.2. We will not cover the computational algorithms.

Summary of definitions and main results

Definitions we’ve covered: Rank of a module, free rank, invariant factors, elementary divisors, charac-
teristic polynomial, minimal polynomial, companion matrix, rational canonical form.

Main results: D⊗R− is a right-exact covariant functor, how to use the universal property (or right exact-
ness) to compute tensor products in specific examples, fundamental theorem for finitely generated modules
over a PID (invariant factor form and elementary divisor form), matrices are classified up to conjugacy by
their rational canonical forms.

Warm-Up Questions

1. Use the universal property of the tensor product Z/12Z⊗Z Z/20Z to verify that 3⊗ 6 is nonzero.

2. Which of the following rings are PIDs? Let F denote a field.

F, F[x], F[x, y], Z, Z/nZ, Z⊕ Z, Z[i], Z[x], Mn(F), division ring, quotient of a PID

3. Compute the torsion submodules of the following:

(a) A finite abelian group G (as a Z–module)

(b) Z/5Z as a module over Z, and over Z/5Z
(c) The Z–modules Q, R, Q/Z, and R/Z

(d) A vector space V over a field F

(e) A free R–module F

4. Let R be an integral domain.

(a) Let N be an R–module. Show that if its annihilator Ann(N) is nonzero, then N is a torsion module.

(b) Is the converse true? If N is torsion, must its annihilator be nonzero? (You proved on Midterm I
that this is true when N is finitely generated.)

5. Suppose that R is a PID and M a finitely generated R–module with invariant factors a1, . . . , am. Show
that the annihilator of Tor(M) is the ideal generated by am.

6. Explain why the notions of torsion and linear independence in R–modules are better behaved when R
is an integral domain.

7. Let R be an integral domain, and M a finitely generated R–module Hint: Dummit–Foote 12.1 Prop. 3.

(a) Suppose {m1,m2, . . . ,mn} generates M . Prove that any linearly independent set in M must have
n or fewer elements.

(b) Show that the rank is well-defined for a finitely generated module over an integral domain, in the
following sense: If S and T are both finite linearly independent sets M , and each is maximal (in
the sense that adding any additional element of M would yield a linearly dependent set), then S
and T must have the same cardinality.

8. Let R be an integral domain. Suppose that F is a field containing R. Show that any linearly independent
set {m1, . . . ,mn} in an R–module M will yield a linearly independent set of vectors {1⊗m1, . . . , 1⊗mn}
in the F–vector space F⊗RM . Conclude that the rank(M)=dimF(F⊗RM).
Remark : When R is an integral domain, it is always possible to construct a field F containing R (its
field of fractions). The dimension dimF(F⊗RM) is sometimes taken as the definition of the rank of M .

9. Let R be an integral domain.

Page 1



Math 122 Homework #7 Due: 13 May 2016

(a) Conclude from Exercise 7 that any set of (n+1) elements in Rn are linearly dependent, and therefore
that Rn has rank n.

(b) Prove that any torsion R–module has rank zero.

(c) Show that for any R–module M , rank(M)=rank(M/Tor(M)).

10. Find the invariant factors and elementary divisors of the finitely generated abelian group

M ∼= Z12 ⊕ Z
2Z
⊕ Z

2Z
⊕ Z

4Z
⊕ Z

3Z
⊕ Z

9Z
⊕ Z

5Z
⊕ Z

18Z
⊕ Z

15Z
.

11. (a) Show that the ideal I = (2, x) ⊆ R = Z[x] is a finitely generated, torsion-free R–module, but not a
free R–module. What is the rank of I?

(b) In contrast, what can you say about finitely generated torsion-free modules over a PID?

12. (Linear algebra review.)

(a) 1. Define what it means for two matrices to be conjugate (or similar)

2. What is the conjugacy class of the zero matrix? The identity matrix? A scalar matrix?

3. Explain why two matrices are conjugate if and only if they represent the same linear map with
respect to different bases.

4. Show that conjugate matrices have the same determinant.

5. Show that (ABA−1)n = ABnA−1.

13. (Linear algebra review.) Let A : V → V be a linear map on a finite dimensional vector space V .

(a) Suppose A is a block diagonal matrix, ie, it has square matrices Ai (its blocks) on the diagonal:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An


eg.

1 2 0 0
3 1 0 0
0 0 4 2
0 0 6 4

 has A1 =
[
1 2
3 1

]
and A2 =

[
4 2
6 4

]
,

1 0 0 0
0 2 5 0
0 3 4 0
0 0 0 4

 has A1 = [1] ,A2 =
[
2 5
3 4

]
and A3 = [4]


Explain how the blocks of A correspond to a decomposition of V into a direct sum of subspaces
V = V1 ⊕ · · · ⊕ Vn where each Vi is invariant under the action of A. (The matrix A is sometimes
called the direct sum of its blocks A = A1 ⊕A2 ⊕ · · · ⊕An.)

(b) Conversely, explain why, if V decomposes into a direct sum of subspaces that are invariant under
A, then the corresponding matrix for A will be block diagonal. (What are the sizes of the blocks?)

(c) Observe that Trace(A) =Trace(A1) + · · ·+Trace(An), and Det(A) =Det(A1) · · ·Det(An).

(d) What is the product of two block diagonal matrices (assuming blocks of the same sizes)?

(e) Show that for any exponent p ∈ Z≥0, the matrix Ap is block diagonal with blocks Ap
1, . . . ,A

p
m.

14. Let T : V → V be a linear map. Show that T is the zero map if and only if Tv = 0 for all v ∈ V .
Conclude in particular that T satisfies a polynomial p(x) if and only if p(T )v = 0 for all v ∈ V .

15. (a) Let A be an n × n matrix. Show that A satisfies its minimal polynomial (ie, mA(A) is the zero
matrix), and that it is the smallest-degree monic polynomial that vanishes at A.

(b) Let T be a linear map. Show that mT (A) = 0 for any matrix representation A of T , and that the
minimal polynomial mT (x) is the smallest-degree polynomial with this property.
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(c) Show that the matrix

[
1 1
2 0

]
satisfies the polynomial x2 − x − 2. Conclude that this polynomial

must be in the ideal (mT (x)) and therefore a multiple of the minimal polynomial mT (x). What are
the possibilities for mT (x)?

16. Let A be an n × n square matrix and B the 2n × 2n block diagonal matrix

[
A 0
0 A

]
. Let cA(x) and

mA(x) be the characteristic and minimal polynomials of A. What are the characteristic and minimal
polynomials of B? Observe in particular that the minimal polynomial of B can have degree at most n.

17. Prove that the minimal polynomial of

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An


is the least common multiple of the minimal polynomials of the blocks Ai.

18. Prove that conjugate matrices have the same characteristic polynomial and the same minimal polynomial.

19. Let F be a field and all matrices taken over F.

(a) Show that 2× 2 matrices that are not scalar matrices are conjugate iff they have the same charac-
teristic polynomial.

(b) Show that 3×3 matrices are conjugate iff they have the same characteristic and minimal polynomials.

(c) Write down two nonconjugate 4×4 matrices with the same minimal and characteristic polynomials.

20. Let T : V → V be a linear map on a finite dimensional F–vector space V . Describe how to construct an
F[x]–module corresponding to T . Explain the relationship between T and this F[x]–module, and explain
what we can infer about T from the invariant factor decomposition of this F[x]–module.

21. What is the characteristic polynomial of a companion matrix Ca(x)?

22. Suppose that V is an F[x]–module that is n dimensional over the field F. Let T be the linear map on V
given by multiplication by x.

(a) What does the dimension of V imply about the degrees of the invariant factors a1(x), a2(x),
. . . , am(x)? About the degree of the characteristic polynomial of T?

(b) Show in particular that the minimal polynomial of T has degree at most n.

(c) If mT (x) has degree n, what does this tell you about the invariant-factor decomposition of V ?

(d) Conversely, suppose that V is a cyclic F[x]–module. What can you conclude about mT (x)?

23. A linear map L : V → V is called nilpotent if Lk = 0 for some positive k ∈ Z. Show that the following
n× n matrices J0,n are nilpotent, and find the minimal k such that Jk0,n = 0.

J0,1 =
[
0
]

J0,2 =

[
0 1
0 0

]
J0,3 =

0 1 0
0 0 1
0 0 0

 J0,4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



J0,n =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0


J0,2 0 0

0 J0,2 0
0 0 J0,3

 (here 0 denotes the zero matrix).
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Assignment Questions

1. (The functor D ⊗R − is right exact.) Let R be any ring, and D a right R–module.

(a) Show that the following map of categories is well-defined and a covariant functor:

D ⊗R − : R–Mod −→ Ab

M 7−→ D ⊗RM

{f : M → N} 7−→
[
f∗ : D⊗RM −→ D⊗RN
f∗(d⊗m) = d⊗f(m)

]
(b) Show that the functor D ⊗R − is right exact.

Hint: Dummit-Foote 10.5 Theorem 39. An alternate argument on p402 uses the Hom-tensor adjunction.

2. For any ring R and right R–module D, the functor D ⊗R − is right exact. A similar argument shows
that for any left R–module D the functor − ⊗R D is right exact. In this question, we will use the
right-exactness of these functors together with a presentation of an R–module M to compute D ⊗RM
or M ⊗R D.

(a) Use the right-exactness of the functor Z/mZ⊗Z − and the short exact sequence of Z–modules

0 −→ Z n−→ Z −→ Z/nZ −→ 0

to (re)compute Z/mZ⊗Z Z/nZ.
(b) More generally, let R be a ring and I a two-sided ideal. Use the right exactness of −⊗RN and the

short exact sequence of R–modules

0 −→ I −→ R −→ R/I −→ 0

to (re)prove the result: R/I ⊗R N ∼= N/IN.

(c) Let k be a field and let R = k[x, y]. Give simple descriptions of the following tensor products, and
determine their dimensions over k.

R

(x)
⊗R

R

(x− y)

R

(x)
⊗R

R

(x− 1)

R

(y − 1)
⊗R

R

(x− y)

3. Let F be a field (not of characteristic 2) and V a vector space over F with basis {x1, . . . , xn}.
(a) Verify that Symk(V ) is a vector space over F with basis given by the set of monomials in the

variables {x1, x2, . . . , xn} of total degree k. (Remark: There are
(
n+k−1
n−1

)
such monomials).

(b) Verify that ∧kV is isomorphic to the F–vector space with a basis given by elements of the form
xi1xi2 · · ·xik with i1 < i2 < · · · < ik. (Remark: There are

(
n
k

)
such elements).

Hint for (a) and (b): To show these elements are linearly independent, is enough to use the
universal property to define a symmetric or alternating multilinear map V k → C that factors
through SymkV or ∧kV such that it takes value 1 on one basis element and 0 on all others.

(c) Show that the additive groups

T ∗V :=

∞⊕
i=0

V ⊗i Sym∗V :=

∞⊕
i=0

Symi(V ) ∧∗ V :=

∞⊕
i=0

∧iV

each have a natural ring structure. You do not need to check the axioms for a ring, but define
and briefly describe the multiplication in each case, and identify the multiplicative identity. The
multiplication on T ∗V is called noncommutative, the multiplication on Sym∗V is commutative, and
the multiplication on ∧∗V is called anti-commutative.
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(d) Show that you can identify Sym∗V , and ∧∗V as subspaces of T ∗V via the maps

x1x2 · · ·xk 7−→
1

k!

∑
σ∈Sk

σ(x1⊗x2⊗· · ·⊗xk) and x1∧x2∧· · ·∧xk 7−→
1

k!

∑
σ∈Sk

sgn(σ)σ(x1⊗x2⊗· · ·⊗xk)

(e) Show that V ⊗F V ∼= Sym2(V )⊕ ∧2V .

(f) Show that V ⊗F V ⊗F V % Sym3(V )⊕ ∧3V .

4. (a) Let H be a subgroup of a group G. Show by example that there may be elements in H which are
not conjugate in H, but are conjugate in G. What is the relationship between the conjugacy classes
in H and the conjugacy classes in G?

(b) Let E be a field and F a subfield of E. Let A and B be n × n matrices with coefficients in F. Use
the theory of rational canonical form to show that A and B are conjugate in Mn(E) if and only if
they are conjugate in Mn(F).

Remark. This implies:

• If two matrices A and B are conjugate, then they are conjugate by a matrix with coefficients in the
smallest field over which the entries of A and B are defined.

• Matrices that are not conjugate in Mn(F) cannot become conjugate when we extend scalars to a
field extension.

• Suppose F is a field that is not algebraically closed (like Q, R, or Fq). Two linear maps over F are
conjugate if and only if they have the same Jordan canonical form (over the algebraic closure of F)
– even if their Jordan canonical form is not defined over F.
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