Reading: Dummit-Foote 18.1, 18.3, Fulton-Harris "Representation Theory: A first course", Ch 1.1-2.1.

Summary of definitions and main results

Definitions we've covered: V^{G}, class function, character, character table, the inner product $\langle-,-\rangle_{G}$
Main results: Schur's lemma; Maschke's theorem; induced $\mathbb{F}[G]$-modules structures on $V \oplus W, \operatorname{Hom}_{\mathbb{F}}(V, W)$, $V^{*}, V \otimes W, \wedge^{k} V, \operatorname{Sym}^{k}(V)$; linear independence of characters

Warm-Up Questions

1. Given an example of a ring R and an R-module M that is:
(a) irreducible
(c) decomposable, but not completely reducible
(b) reducible, but not decomposable
(d) completely reducible, but not irreducible
2. Let V be a representation of a group G, and recall that V^{G} denotes the set of vectors in V that are fixed pointwise by the action of every group element $g \in G$. Verify that V^{G} is a linear subspace of V.
3. Let V and W be representations of a group G over a field k. Define the induced action of G on the k-vector space $\operatorname{Hom}_{k}(V, W)$, and verify that it satisfies the definition of a representation of G.
4. Complete our proof of Maschke's Theorem: Show that if $\pi_{0}: V \rightarrow U$ is a projection map (in that π_{0} restricts to the identity on $U \subseteq V$), then the map $\pi=\frac{1}{|G|} \sum_{g \in G} g \pi_{0} g^{-1}$ is also a projection $V \rightarrow U$.
5. (a) Let $\mathbb{C}^{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ be the canonical representation of the symmetric group S_{n} by signed permutation matrices. Explicitly describe the action of the averaging map on \mathbb{C}^{n} :

$$
\begin{aligned}
\psi_{a v}: \mathbb{C}^{n} & \longrightarrow \mathbb{C}^{n} \\
v & \longmapsto \frac{1}{n!} \sum_{\sigma \in S_{n}} \sigma \cdot v
\end{aligned}
$$

(b) Suppose v is an element of the standard subrepresentation $\underline{\operatorname{Std}}=\left\{a_{1} e_{1}+\cdots+a_{n} e_{n} \mid \sum a_{i}=0\right\}$. What is $\psi_{a v}(v)$? Hint: First check $\psi_{a v}(v)$ on the basis vectors $v=\left(e_{1}-e_{i}\right)$ for Std.
(c) Interpret your answer to the previous question, given that we know $\psi_{a v}: V \rightarrow V$ is a linear projection onto V^{G}.
6. Let G be a finite group and $\phi: G \rightarrow G L(V)$ a G-representation over a field \mathbb{F} with character $\chi_{V}: G \rightarrow \mathbb{F}$. Prove that if V is 1-dimensional, then $\chi_{V}=\phi$. Show by example that if V is at least 2 dimensional, χ_{V} may not be a group homomorphism.
7. Recall the character table for the complex representations of the symmetric group S_{3}.

	$(\bullet)(\bullet)(\bullet)$	$(\bullet \bullet)(\bullet)$	$(\bullet \bullet \bullet)$
Trv	1	1	1
$\overline{\text { Alt }}$	1	-1	1
Std	2	0	-1

(a) Let \mathbb{C}^{3} denote the canonical permutation representation of S_{3}. Compute the characters of Sym ${ }^{2} \mathbb{C}^{3}$ and Alt $\otimes_{\mathbb{C}} \operatorname{Sym}^{2} \mathbb{C}^{3}$.
(b) Use the character table to decompose $\operatorname{Sym}^{2} \mathbb{C}^{3}$ and $\underline{\text { Alt }} \otimes_{\mathbb{C}} \operatorname{Sym}^{2} \mathbb{C}^{3}$ as a sum of irreducible representations (in the sense of finding the multiplicity of each irreducible representation in the decomposition).
8. Let V be a finite dimensional vector space over \mathbb{C}. Recall the definition and properties of a (Hermitian) inner product $\langle-,-\rangle: V \times V \rightarrow \mathbb{C}$ on V from the Warm-Up Problems on Homework $\# 6$.
Let $e_{1}, e_{2}, \ldots, e_{n}$ be an orthonormal basis V with respect to the inner product.
(a) Let $v=a_{1} e_{1}+\cdots+a_{n} e_{n}$ be an element of V. Show that

$$
\left\langle v, e_{i}\right\rangle=a_{i} \quad \text { and } \quad\langle v, v\rangle=\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots+\left|a_{n}\right|^{2}
$$

(b) Suppose that $v=a_{1} e_{1}+\cdots+a_{n} e_{n}$ for nonnegative integer coefficients a_{i}. Show that

$$
\langle v, v\rangle=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}
$$

and conclude that $\langle v, v\rangle=1$ if and only if $v=e_{i}$ for some i.
(c) Suppose you have a function $\langle-,-\rangle: V \times V \rightarrow \mathbb{C}$ which you know satisfies the conjugate-symmetry and linearity properties of an inner product. Show that, if V has an basis that is orthonormal with respect to the function, then it must be positive definite.

Assignment Questions

1. Let G be a finite abelian group, and V a finite-dimensional complex representation of G. Show that V decomposes into a direct sum of 1-dimensional G-representations. Conclude that the image of G in $G L(V)$ is simultaneously diagonalizable, that is, there is some basis for V with respect to which every matrix is diagonal.
2. Let G be a finite group and \mathbb{F} a field.
(a) Suppose that A and B are finite order (therefore diagonalizable) endomorphisms of finite dimensional vector spaces V and W over an algebraically closed field \mathbb{F}. Show that the trace of $A \otimes B$ on $V \otimes_{\mathbb{F}} W$ is the product Trace $(A) \operatorname{Trace}(B)$.
Remark: This result also holds when A and B are not diagonalizable, and can be proven (with a little more effort) by considering the bases for V and W putting A and B into Jordan canonical form. It can also be proven for arbitrary fields, using extension of scalars to the algebraic closure.
(b) Let V and W be finite-dimensional representations of G over an algebraically closed field \mathbb{F}. Conclude that the character $\chi_{V \otimes_{\mathbb{F}} W}(g)=\chi_{V}(g) \chi_{W}(g)$ for all $g \in G$.
(c) Let $\phi: G \rightarrow \mathrm{GL}(V)$ a finite dimensional representation of G over \mathbb{C}. Show that for every $g \in G$, we have $\lambda^{-1}=\bar{\lambda}$ for all eigenvalues λ of $\phi(g)$. Hint: The element g has finite order.
(d) Let V be a finite dimensional representation of G over \mathbb{C}, and V^{*} its dual. Prove that $\chi_{V^{*}}(g)=$ $\chi_{V}(g)$ for all $g \in G$. (You may quote properties of matrix transposes without proof).
(e) Let \mathbb{F} be any field, and again let V and W be finite-dimensional representations of G over a field \mathbb{F}. Construct an isomorphism of G-representations $\operatorname{Hom}_{\mathbb{F}}(V, W) \cong V^{*} \otimes_{\mathbb{F}} W$. This isomorphism should be natural, that is, it should not require a choice of basis for V or W.
(f) Suppose $\mathbb{F}=\mathbb{C}$. Show that the character of $\operatorname{Hom}_{\mathbb{C}}(V, W)$ is $\chi_{\operatorname{Hom}_{\mathbb{C}}(V, W)}(g)=\overline{\chi_{V}(g)} \chi_{W}(g)$. Remark: This will be a key result in our development of character theory!
3. Let G be a finite group. In this question we will consider finite-dimensional complex G-representations.
(a) Let $\left\{V_{i}\right\}$ be a finite set of irreducible G-representations. Let $U=\bigoplus V_{i}^{\oplus a_{i}}$ and let $W=\bigoplus V_{j}^{\oplus b_{j}}$ for $a_{i}, b_{j} \in \mathbb{Z}_{\geq 0}$. Compute $\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(U, W)$. Hint: Homework \#4 Question 1 and Schur's Lemma.
(b) Show that $\left\langle\chi_{W}, \chi_{U}\right\rangle_{G}:=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(U, W)$ extends to a Hermitian inner product on the \mathbb{C} vector space spanned by the characters of G (under pointwise scalar multiplication and addition). (We will later show that the characters span the whole space of \mathbb{C}-valued class functions on G.)
(c) Show that the characters of irreducible representations are orthonormal.
(d) Conclude that the characters of irreducible representations are linearly independent.
(e) Conclude that V is an irreducible representation if and only if $\left\langle\chi_{V}, \chi_{V}\right\rangle_{G}=1$.
