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1. Let M be a right R–module, and N a left R–module.

(a) Describe an explicit construction of the tensor product M ⊗R N as a quotient of abelian groups.

(b) State the universal property of the tensor product.

(c) Verify that the explicit construction satisfies the universal property.

2. Let M be a right R–module, N a left R–module, and L an abelian group. Classify all functions
M ×N → L that are both R–balanced and maps of abelian groups.

3. Let R and S be rings. Verify that the abelian group R ⊗Z S has a ring structure with multiplication
defined by (r1 ⊗ s1)(r2 ⊗ s2) = (r1r2)⊗ (s1s2).

4. Let S and R be rings. Define an (R,S)–bimodule, and prove that an (R,S)–bimodule structure on an
abelian group M is equivalent to a left module structure over the ring R⊗Z S

op.

5. Define extension of scalars to a ring R from a subring S. Show by example that an S–module M may
embed into the R–module obtained by extension of scalars, and it may not embed.

6. (a) Suppose that S is a subring of R. Prove that if F is a free S–module on basis A, then R⊗S F is a
free R–module on basis {1⊗ a | a ∈ A} ∼= A.

(b) Conclude that if V is an n-dimensional real vector space on basis e1, . . . , en, then C ⊗R V is an
n-dimensional complex vector space with basis 1⊗ e1, . . . , 1⊗ en.

7. What is the complex dimension of the vector spaces C⊗R Rs ⊗R Rt and Ct ⊗R Rs?

8. Prove that any element of the tensor product C2 ⊗C3 can be written as the sum of at most two simple
tensors (Recall: a simple or pure tensor in V ⊗RW is an element of form v ⊗ w).

9. Let V be a C[x]–module where x acts by a linear transformation A, and let W be a C[x]–module where
x acts by a linear transformation B. If V and W have positive dimensions m and n over C, is it possible
that V ⊗C[x] W could be zero? Is it possible that it could be mn-dimensional? Under what conditions
could it be less than nm–dimensional?

10. Compute (Z/15Z⊕ R)⊗Z (Z/6Z⊕Q)⊗Z (Z/3Z).

11. Prove or disprove: Suppose S is a subring of the commutative ring R, and M and N are R–modules.
Then the tensor product M ⊗R N is a quotient of the tensor product M ⊗S N .

12. Let R be an integral domain and M an R–module. Suppose that x1, . . . , xn is a maximal list of linearly
independent elements. Prove that Rx1 + Rx2 + · · · + Rxn is isomorphic to Rn, and that M/(Rx1 +
Rx2 + · · ·+Rxn) is a torsion R–module.

13. Let R be an integral domain.

(a) Suppose that A and B are R–modules of ranks a and b, respectively. Prove that A ⊕ B is an
R–module of rank a+ b.

(b) Let R be an integral domain, and consider a short exact sequence of finite-rank R–modules:

0 −→ A
ψ−→ B

φ−→ C −→ 0

Show that rank(B) = rank(A)+ rank(C).

14. Let R be an integral domain, and I any non-principal ideal of R. Determine the rank of I, and prove
that I is not a free R–module.

15. Find the lists of invariant factors and of elementary divisors for the finitely generated abelian group

M ∼= Z7 ⊕ Z
20Z

⊕ Z
18Z

⊕ Z
75Z

.
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16. Let R = Mn×n(Q) be the ring of rational n× n matrices. Let S ∼= Q be the subring of scalar matrices.
Show that EndR(Qn) = S and EndS(Qn) = R.

17. Suppose the following diagram is commutative and has exact rows. Prove that if m and p are injective,
and l is surjective, then n is injective.

A
f //

l

��

B
g //

m

��

C h //

n

��

D

p

��
A′

r
// B′

s
// C ′

t
// D′

18. Let k be a field, and x, y indeterminates. Prove or disprove the following isomorphism of k–modules:
k[x, y] ∼= k[x]⊗k k[y].

19. Let k be a field and let V,W be k-vector spaces. Show that there is a natural isomorphism of k–modules:

Homk(W,k)⊗k V ∼= Homk(W,V ).

(By “natural isomorphism”, I mean the map can be defined without choosing a basis for W or V .)

20. Let R be commutative and let M,N be R–modules. Show that there is a canonical isomorphism

M ⊗R N ∼= N ⊗RM.

21. Let M,Mi be right R–modules and N,Ni be left R–modules. Use the universal property of the tensor
product and the universal property of the direct sum to prove the following isomorphisms of abelian
groups:

(M1 ⊕M2)⊗R N ∼= (M1 ⊗R N)⊕ (M2 ⊗R N) M ⊗R (N1 ⊕N2) ∼= (M ⊗R N1)⊕ (M ⊗R N2)

22. Let V and W be vector spaces over a field F with bases {e1, . . . , en} and {f1, . . . , fm}, respectively.

(a) Show that {ei ⊗ fj}n,mi=1,j=1 is a basis for V ⊗F W .

(b) It follows from part (a) that any element α of V⊗FW can be written in the form α =
∑
i,j ci,j(ei⊗fj).

Prove that α can be expressed as a simple tensor (that is, in the form v ⊗ w for v ∈ V,w ∈ W ) if
and only if the matrix (ci,j) has rank 1.

23. Classify (up to conjugacy) all linear maps T : Q5 → Q5 with characteristic polynomial c(x) = x2(x−2)3.

24. Let M be a finitely generated module over a PID R. Give necessary and sufficient conditions on the
elementary divisors of M for M to irreducible.

25. Let M be a simple R–module. Prove that M is cyclic. If M is cyclic, must M be simple?

26. Let V be a finite dimensional complex vector space and T : V → V a linear map. Under what conditions
is the associated C[x]–module V completely reducible?

27. Prove that 3 × 3 matrices over a field k are similar if and only if they have the same minimal and
characteristic polynomials. Is this true of 4× 4 matrices?

28. Prove that any square matrix A is similar to its transpose AT .
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29. Determine the rational and Jordan canonical form of the matrix
1 2 0 0
0 1 2 0
0 0 1 0
0 0 0 1


Use these results to compute its characteristic and minimal polynomials, invariant factors, elementary
divisors, eigenvalues, and dimensions of its (generalized) eigenspaces.

30. Determine representatives for all the conjugacy classes of GL2(F3).

31. Let k be a field and V a vector space over k. Prove that any group representation G→ GL(V ) extends
uniquely to a map of rings k[G]→ End(V ). Explain how this defines a k[G]–module structure on V .

32. Prove that there is a bijective correspondence between degree-1 representations of a group G, and degree-
1 representations of its abelianization G/[G,G].

33. Let G be a finite group, and F a field containing 1
|G| .

(a) State Maschke’s theorem.

(b) Show by example that if |G| divides the characteristic of F, then not all G–representations over F
are completely reducible.

34. Let F be a field, G a finite group with order |G| invertible in F. Show that Maschke’s theorem implies
that every short exact sequence of F[G]–modules splits.

35. Prove that isomorphic G–representations have the same character.

36. Let V be a G-representation. Show that the action of a group element g ∈ G on V is G–equivariant if
and only if g is in the center of G.

37. Prove that if U is a complex irreducible representation of G, and V = U ⊕ U , then there are infinitely
many ways that V can be decomposed into two copies of U . What is HomC[G](U, V )? HomC[G](V,U)?

38. Let V be an irreducible complex representation of a finite group G. Show that the multiplicity of V in
a G–representation U is equal to dimC HomC[G](V,U) = dimC HomC[G](U, V ).

39. (a) Let F be a field. Given any finite set B = {b1, . . . , bm}, with an action of G, show how to construct
a permutation representation by G on the vector space over F with basis B. Show that each G-orbit
of B corresponds to a G subrepresentation of V .

(b) Suppose that G acts transitively on the basis B (more generally, you can reply this result to the
span of each G-orbit of B). Show that the diagonal subspace D = 〈b1 + b2 + · · ·+ bm〉 is invariant
under G, and that G acts on it trivially. Show the orthogonal complement of D,

D⊥ =
{
a1b1 + . . .+ ambm

∣∣∣ ∑ ai = 0
}

is also invariant under the action of G, so that V decomposes as a direct sum of G subrepresentations
V ∼= D ⊕D⊥. Compute the degrees of D and D⊥.

(c) Suppose that G acts transitively on the basis B. Prove that D⊥ does not contain any vectors fixed
by G (and therefore does not contain any trivial subrepresentations).

(d) Show that the regular representation V ∼= F[G] decomposes into a direct sum of invariant subspaces:∑
g∈G

aeg

∣∣∣∣∣∣ a ∈ F

⊕
∑
g∈G

ageg

∣∣∣∣∣∣
∑
g∈G

ag = 0
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(e) Use this decomposition and the averaging map to give a new proof that the multiplicity of the
trivial representation in F[G] is 1.

40. Let V be a vector space over F with basis x1, . . . , xn. Construct an isomorphism of rings Sym∗V ∼=
F[x1, x2, . . . , xn] that commutes with scalar multiplication by F.

41. Let M be a module over a commutative ring R. Show that the constructions T ∗M , Sym∗M , and ∧∗M
define functors from R–modules to rings (in fact, R–algebras).

42. Prove that a finite group G is abelian if and only if all its complex irreducible representations are
1-dimensional.

43. (a) Let g be a diagonalizable linear transformation acting on a vector space V , with eigenvalues
λ1, . . . , λn. Describe the set of eigenvalues of the map induced by g on the spaces V ⊗V , V ⊗V ⊗V ,
∧2V , ∧3V , Sym2V , and Sym3V .

(b) Suppose G is a finite group, and V a representation of G. Derive formulas for the characters of the
representations V ⊗ V , V ⊗ V ⊗ V , ∧2V , ∧3V , Sym2V , and Sym3V in terms of the character χV
for V .

44. Let G be a group. When are two 1-dimensional representations of G isomorphic?

45. Let A be a finite abelian group.

(a) Explain why the complex representations of A are precisely the set of group homomorphisms from
A to the multiplicative group of units C× of C.

(b) Let a ∈ A be an order of element k. What are the possible homomorphic images of a in C×?

(c) Let A be a finite cyclic group of order n. State the number of non-isomorphic representations of A,
and describe these explicitly.

(d) Let ξn denote an nth root of unity. Write down the character tables for the groups Z/4Z and
Z/2Z× Z/2Z.
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