1. Let M be a right R-module, and N a left $R-$ module.
(a) Describe an explicit construction of the tensor product $M \otimes_{R} N$ as a quotient of abelian groups.
(b) State the universal property of the tensor product.
(c) Verify that the explicit construction satisfies the universal property.
2. Let M be a right R-module, N a left R-module, and L an abelian group. Classify all functions $M \times N \rightarrow L$ that are both R-balanced and maps of abelian groups.
3. Let R and S be rings. Verify that the abelian group $R \otimes_{\mathbb{Z}} S$ has a ring structure with multiplication defined by $\left(r_{1} \otimes s_{1}\right)\left(r_{2} \otimes s_{2}\right)=\left(r_{1} r_{2}\right) \otimes\left(s_{1} s_{2}\right)$.
4. Let S and R be rings. Define an (R, S)-bimodule, and prove that an (R, S)-bimodule structure on an abelian group M is equivalent to a left module structure over the ring $R \otimes_{\mathbb{Z}} S^{\mathrm{op}}$.
5. Define extension of scalars to a ring R from a subring S. Show by example that an S-module M may embed into the R-module obtained by extension of scalars, and it may not embed.
6. (a) Suppose that S is a subring of R. Prove that if F is a free S-module on basis A, then $R \otimes_{S} F$ is a free R-module on basis $\{1 \otimes a \mid a \in A\} \cong A$.
(b) Conclude that if V is an n-dimensional real vector space on basis e_{1}, \ldots, e_{n}, then $\mathbb{C} \otimes_{\mathbb{R}} V$ is an n-dimensional complex vector space with basis $1 \otimes e_{1}, \ldots, 1 \otimes e_{n}$.
7. What is the complex dimension of the vector spaces $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}^{s} \otimes_{\mathbb{R}} \mathbb{R}^{t}$ and $\mathbb{C}^{t} \otimes_{\mathbb{R}} \mathbb{R}^{s}$?
8. Prove that any element of the tensor product $\mathbb{C}^{2} \otimes \mathbb{C}^{3}$ can be written as the sum of at most two simple tensors (Recall: a simple or pure tensor in $V \otimes_{R} W$ is an element of form $v \otimes w$).
9. Let V be a $\mathbb{C}[x]$-module where x acts by a linear transformation A, and let W be a $\mathbb{C}[x]$-module where x acts by a linear transformation B. If V and W have positive dimensions m and n over \mathbb{C}, is it possible that $V \otimes_{\mathbb{C}[x]} W$ could be zero? Is it possible that it could be $m n$-dimensional? Under what conditions could it be less than $n m$-dimensional?
10. Compute $(\mathbb{Z} / 15 \mathbb{Z} \oplus \mathbb{R}) \otimes_{\mathbb{Z}}(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Q}) \otimes_{\mathbb{Z}}(\mathbb{Z} / 3 \mathbb{Z})$.
11. Prove or disprove: Suppose S is a subring of the commutative ring R, and M and N are R-modules. Then the tensor product $M \otimes_{R} N$ is a quotient of the tensor product $M \otimes_{S} N$.
12. Let R be an integral domain and M an R-module. Suppose that x_{1}, \ldots, x_{n} is a maximal list of linearly independent elements. Prove that $R x_{1}+R x_{2}+\cdots+R x_{n}$ is isomorphic to R^{n}, and that $M /\left(R x_{1}+\right.$ $\left.R x_{2}+\cdots+R x_{n}\right)$ is a torsion R-module.
13. Let R be an integral domain.
(a) Suppose that A and B are R-modules of ranks a and b, respectively. Prove that $A \oplus B$ is an R-module of rank $a+b$.
(b) Let R be an integral domain, and consider a short exact sequence of finite-rank R-modules:

$$
0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0
$$

Show that $\operatorname{rank}(B)=\operatorname{rank}(A)+\operatorname{rank}(C)$.
14. Let R be an integral domain, and I any non-principal ideal of R. Determine the rank of I, and prove that I is not a free R-module.
15. Find the lists of invariant factors and of elementary divisors for the finitely generated abelian group

$$
M \cong \mathbb{Z}^{7} \oplus \frac{\mathbb{Z}}{20 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{18 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{75 \mathbb{Z}}
$$

16. Let $R=M_{n \times n}(\mathbb{Q})$ be the ring of rational $n \times n$ matrices. Let $S \cong \mathbb{Q}$ be the subring of scalar matrices. Show that $\operatorname{End}_{R}\left(\mathbb{Q}^{n}\right)=S$ and $\operatorname{End}_{S}\left(\mathbb{Q}^{n}\right)=R$.
17. Suppose the following diagram is commutative and has exact rows. Prove that if m and p are injective, and l is surjective, then n is injective.

18. Let k be a field, and x, y indeterminates. Prove or disprove the following isomorphism of k-modules: $k[x, y] \cong k[x] \otimes_{k} k[y]$.
19. Let k be a field and let V, W be k-vector spaces. Show that there is a natural isomorphism of k-modules:

$$
\operatorname{Hom}_{k}(W, k) \otimes_{k} V \cong \operatorname{Hom}_{k}(W, V)
$$

(By "natural isomorphism", I mean the map can be defined without choosing a basis for W or V.)
20. Let R be commutative and let M, N be $R-$ modules. Show that there is a canonical isomorphism

$$
M \otimes_{R} N \cong N \otimes_{R} M
$$

21. Let M, M_{i} be right R-modules and N, N_{i} be left R-modules. Use the universal property of the tensor product and the universal property of the direct sum to prove the following isomorphisms of abelian groups:

$$
\left(M_{1} \oplus M_{2}\right) \otimes_{R} N \cong\left(M_{1} \otimes_{R} N\right) \oplus\left(M_{2} \otimes_{R} N\right) \quad M \otimes_{R}\left(N_{1} \oplus N_{2}\right) \cong\left(M \otimes_{R} N_{1}\right) \oplus\left(M \otimes_{R} N_{2}\right)
$$

22. Let V and W be vector spaces over a field \mathbb{F} with bases $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{f_{1}, \ldots, f_{m}\right\}$, respectively.
(a) Show that $\left\{e_{i} \otimes f_{j}\right\}_{i=1, j=1}^{n, m}$ is a basis for $V \otimes_{\mathbb{F}} W$.
(b) It follows from part (a) that any element α of $V \otimes_{\mathbb{F}} W$ can be written in the form $\alpha=\sum_{i, j} c_{i, j}\left(e_{i} \otimes f_{j}\right)$. Prove that α can be expressed as a simple tensor (that is, in the form $v \otimes w$ for $v \in V, w \in W$) if and only if the matrix $\left(c_{i, j}\right)$ has rank 1.
23. Classify (up to conjugacy) all linear maps $T: \mathbb{Q}^{5} \rightarrow \mathbb{Q}^{5}$ with characteristic polynomial $c(x)=x^{2}(x-2)^{3}$.
24. Let M be a finitely generated module over a PID R. Give necessary and sufficient conditions on the elementary divisors of M for M to irreducible.
25. Let M be a simple R-module. Prove that M is cyclic. If M is cyclic, must M be simple?
26. Let V be a finite dimensional complex vector space and $T: V \rightarrow V$ a linear map. Under what conditions is the associated $\mathbb{C}[x]$-module V completely reducible?
27. Prove that 3×3 matrices over a field k are similar if and only if they have the same minimal and characteristic polynomials. Is this true of 4×4 matrices?
28. Prove that any square matrix A is similar to its transpose A^{T}.
29. Determine the rational and Jordan canonical form of the matrix

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Use these results to compute its characteristic and minimal polynomials, invariant factors, elementary divisors, eigenvalues, and dimensions of its (generalized) eigenspaces.
30. Determine representatives for all the conjugacy classes of $G L_{2}\left(\mathbb{F}_{3}\right)$.
31. Let k be a field and V a vector space over k. Prove that any group representation $G \rightarrow G L(V)$ extends uniquely to a map of rings $k[G] \rightarrow \operatorname{End}(V)$. Explain how this defines a $k[G]$-module structure on V.
32. Prove that there is a bijective correspondence between degree-1 representations of a group G, and degree1 representations of its abelianization $G /[G, G]$.
33. Let G be a finite group, and \mathbb{F} a field containing $\frac{1}{|G|}$.
(a) State Maschke's theorem.
(b) Show by example that if $|G|$ divides the characteristic of \mathbb{F}, then not all G-representations over \mathbb{F} are completely reducible.
34. Let \mathbb{F} be a field, G a finite group with order $|G|$ invertible in \mathbb{F}. Show that Maschke's theorem implies that every short exact sequence of $\mathbb{F}[G]$-modules splits.
35. Prove that isomorphic G-representations have the same character.
36. Let V be a G-representation. Show that the action of a group element $g \in G$ on V is G-equivariant if and only if g is in the center of G.
37. Prove that if U is a complex irreducible representation of G, and $V=U \oplus U$, then there are infinitely many ways that V can be decomposed into two copies of U. What is $\operatorname{Hom}_{\mathbb{C}[G]}(U, V)$? $\operatorname{Hom}_{\mathbb{C}[G]}(V, U)$?
38. Let V be an irreducible complex representation of a finite group G. Show that the multiplicity of V in a G-representation U is equal to $\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(V, U)=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(U, V)$.
39. (a) Let \mathbb{F} be a field. Given any finite set $B=\left\{b_{1}, \ldots, b_{m}\right\}$, with an action of G, show how to construct a permutation representation by G on the vector space over \mathbb{F} with basis B. Show that each G-orbit of B corresponds to a G subrepresentation of V.
(b) Suppose that G acts transitively on the basis B (more generally, you can reply this result to the span of each G-orbit of B). Show that the diagonal subspace $D=\left\langle b_{1}+b_{2}+\cdots+b_{m}\right\rangle$ is invariant under G, and that G acts on it trivially. Show the orthogonal complement of D,

$$
D^{\perp}=\left\{a_{1} b_{1}+\ldots+a_{m} b_{m} \mid \sum a_{i}=0\right\}
$$

is also invariant under the action of G, so that V decomposes as a direct sum of G subrepresentations $V \cong D \oplus D^{\perp}$. Compute the degrees of D and D^{\perp}.
(c) Suppose that G acts transitively on the basis B. Prove that D^{\perp} does not contain any vectors fixed by G (and therefore does not contain any trivial subrepresentations).
(d) Show that the regular representation $V \cong \mathbb{F}[G]$ decomposes into a direct sum of invariant subspaces:

$$
\left\{\sum_{g \in G} a e_{g} \mid a \in \mathbb{F}\right\} \bigoplus\left\{\sum_{g \in G} a_{g} e_{g} \mid \sum_{g \in G} a_{g}=0\right\}
$$

(e) Use this decomposition and the averaging map to give a new proof that the multiplicity of the trivial representation in $\mathbb{F}[G]$ is 1 .
40. Let V be a vector space over \mathbb{F} with basis x_{1}, \ldots, x_{n}. Construct an isomorphism of rings $\operatorname{Sym}^{*} V \cong$ $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ that commutes with scalar multiplication by \mathbb{F}.
41. Let M be a module over a commutative ring R. Show that the constructions $T^{*} M, \operatorname{Sym}^{*} M$, and $\wedge^{*} M$ define functors from R-modules to rings (in fact, R-algebras).
42. Prove that a finite group G is abelian if and only if all its complex irreducible representations are 1-dimensional.
43. (a) Let g be a diagonalizable linear transformation acting on a vector space V, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Describe the set of eigenvalues of the map induced by g on the spaces $V \otimes V, V \otimes V \otimes V$, $\wedge^{2} V, \wedge^{3} V, \mathrm{Sym}^{2} V$, and $\mathrm{Sym}^{3} V$.
(b) Suppose G is a finite group, and V a representation of G. Derive formulas for the characters of the representations $V \otimes V, V \otimes V \otimes V, \wedge^{2} V, \wedge^{3} V, \operatorname{Sym}^{2} V$, and $\mathrm{Sym}^{3} V$ in terms of the character χ_{V} for V.
44. Let G be a group. When are two 1-dimensional representations of G isomorphic?
45. Let A be a finite abelian group.
(a) Explain why the complex representations of A are precisely the set of group homomorphisms from A to the multiplicative group of units \mathbb{C}^{\times}of \mathbb{C}.
(b) Let $a \in A$ be an order of element k. What are the possible homomorphic images of a in \mathbb{C}^{\times}?
(c) Let A be a finite cyclic group of order n. State the number of non-isomorphic representations of A, and describe these explicitly.
(d) Let ξ_{n} denote an $n^{t h}$ root of unity. Write down the character tables for the groups $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

