- 1. Let M be a right R-module, and N a left R-module.
 - (a) Describe an explicit construction of the tensor product $M \otimes_R N$ as a quotient of abelian groups.
 - (b) State the universal property of the tensor product.
 - (c) Verify that the explicit construction satisfies the universal property.
- 2. Let M be a right R-module, N a left R-module, and L an abelian group. Classify all functions $M \times N \to L$ that are both R-balanced and maps of abelian groups.
- 3. Let R and S be rings. Verify that the abelian group $R \otimes_{\mathbb{Z}} S$ has a ring structure with multiplication defined by $(r_1 \otimes s_1)(r_2 \otimes s_2) = (r_1 r_2) \otimes (s_1 s_2)$.
- 4. Let S and R be rings. Define an (R, S)-bimodule, and prove that an (R, S)-bimodule structure on an abelian group M is equivalent to a left module structure over the ring $R \otimes_{\mathbb{Z}} S^{\text{op}}$.
- 5. Define extension of scalars to a ring R from a subring S. Show by example that an S-module M may embed into the R-module obtained by extension of scalars, and it may not embed.
- 6. (a) Suppose that S is a subring of R. Prove that if F is a free S-module on basis A, then $R \otimes_S F$ is a free R-module on basis $\{1 \otimes a \mid a \in A\} \cong A$.
 - (b) Conclude that if V is an n-dimensional real vector space on basis e_1, \ldots, e_n , then $\mathbb{C} \otimes_{\mathbb{R}} V$ is an n-dimensional complex vector space with basis $1 \otimes e_1, \ldots, 1 \otimes e_n$.
- 7. What is the complex dimension of the vector spaces $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}^s \otimes_{\mathbb{R}} \mathbb{R}^t$ and $\mathbb{C}^t \otimes_{\mathbb{R}} \mathbb{R}^s$?
- 8. Prove that any element of the tensor product $\mathbb{C}^2 \otimes \mathbb{C}^3$ can be written as the sum of at most two simple tensors (Recall: a *simple* or *pure* tensor in $V \otimes_R W$ is an element of form $v \otimes w$).
- 9. Let V be a $\mathbb{C}[x]$ -module where x acts by a linear transformation A, and let W be a $\mathbb{C}[x]$ -module where x acts by a linear transformation B. If V and W have positive dimensions m and n over \mathbb{C} , is it possible that $V \otimes_{\mathbb{C}[x]} W$ could be zero? Is it possible that it could be mn-dimensional? Under what conditions could it be less than nm-dimensional?
- 10. Compute $(\mathbb{Z}/15\mathbb{Z} \oplus \mathbb{R}) \otimes_{\mathbb{Z}} (\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Q}) \otimes_{\mathbb{Z}} (\mathbb{Z}/3\mathbb{Z}).$
- 11. Prove or disprove: Suppose S is a subring of the commutative ring R, and M and N are R-modules. Then the tensor product $M \otimes_R N$ is a quotient of the tensor product $M \otimes_S N$.
- 12. Let R be an integral domain and M an R-module. Suppose that x_1, \ldots, x_n is a maximal list of linearly independent elements. Prove that $Rx_1 + Rx_2 + \cdots + Rx_n$ is isomorphic to R^n , and that $M/(Rx_1 + Rx_2 + \cdots + Rx_n)$ is a torsion R-module.
- 13. Let R be an integral domain.
 - (a) Suppose that A and B are R-modules of ranks a and b, respectively. Prove that $A \oplus B$ is an R-module of rank a + b.
 - (b) Let R be an integral domain, and consider a short exact sequence of finite-rank R-modules:

$$0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$$

Show that $\operatorname{rank}(B) = \operatorname{rank}(A) + \operatorname{rank}(C)$.

- 14. Let R be an integral domain, and I any **non-principal** ideal of R. Determine the rank of I, and prove that I is not a free R-module.
- 15. Find the lists of invariant factors and of elementary divisors for the finitely generated abelian group

$$M \cong \mathbb{Z}^7 \oplus \frac{\mathbb{Z}}{20\mathbb{Z}} \oplus \frac{\mathbb{Z}}{18\mathbb{Z}} \oplus \frac{\mathbb{Z}}{75\mathbb{Z}}.$$

- 16. Let $R = M_{n \times n}(\mathbb{Q})$ be the ring of rational $n \times n$ matrices. Let $S \cong \mathbb{Q}$ be the subring of scalar matrices. Show that $\operatorname{End}_R(\mathbb{Q}^n) = S$ and $\operatorname{End}_S(\mathbb{Q}^n) = R$.
- 17. Suppose the following diagram is commutative and has exact rows. Prove that if m and p are injective, and l is surjective, then n is injective.

- 18. Let k be a field, and x, y indeterminates. Prove or disprove the following isomorphism of k-modules: $k[x, y] \cong k[x] \otimes_k k[y].$
- 19. Let k be a field and let V, W be k-vector spaces. Show that there is a natural isomorphism of k-modules:

$$\operatorname{Hom}_k(W, k) \otimes_k V \cong \operatorname{Hom}_k(W, V).$$

(By "natural isomorphism", I mean the map can be defined without choosing a basis for W or V.)

20. Let R be commutative and let M, N be R-modules. Show that there is a canonical isomorphism

$$M \otimes_R N \cong N \otimes_R M.$$

21. Let M, M_i be right *R*-modules and N, N_i be left *R*-modules. Use the universal property of the tensor product and the universal property of the direct sum to prove the following isomorphisms of abelian groups:

$$(M_1 \oplus M_2) \otimes_R N \cong (M_1 \otimes_R N) \oplus (M_2 \otimes_R N) \qquad \qquad M \otimes_R (N_1 \oplus N_2) \cong (M \otimes_R N_1) \oplus (M \otimes_R N_2)$$

- 22. Let V and W be vector spaces over a field \mathbb{F} with bases $\{e_1, \ldots, e_n\}$ and $\{f_1, \ldots, f_m\}$, respectively.
 - (a) Show that $\{e_i \otimes f_j\}_{i=1,j=1}^{n,m}$ is a basis for $V \otimes_{\mathbb{F}} W$.
 - (b) It follows from part (a) that any element α of $V \otimes_{\mathbb{F}} W$ can be written in the form $\alpha = \sum_{i,j} c_{i,j} (e_i \otimes f_j)$. Prove that α can be expressed as a simple tensor (that is, in the form $v \otimes w$ for $v \in V, w \in W$) if and only if the matrix $(c_{i,j})$ has rank 1.
- 23. Classify (up to conjugacy) all linear maps $T: \mathbb{Q}^5 \to \mathbb{Q}^5$ with characteristic polynomial $c(x) = x^2(x-2)^3$.
- 24. Let M be a finitely generated module over a PID R. Give necessary and sufficient conditions on the elementary divisors of M for M to *irreducible*.
- 25. Let M be a simple R-module. Prove that M is cyclic. If M is cyclic, must M be simple?
- 26. Let V be a finite dimensional complex vector space and $T: V \to V$ a linear map. Under what conditions is the associated $\mathbb{C}[x]$ -module V completely reducible?
- 27. Prove that 3×3 matrices over a field k are similar if and only if they have the same minimal and characteristic polynomials. Is this true of 4×4 matrices?
- 28. Prove that any square matrix A is similar to its transpose A^T .

29. Determine the rational and Jordan canonical form of the matrix

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Use these results to compute its characteristic and minimal polynomials, invariant factors, elementary divisors, eigenvalues, and dimensions of its (generalized) eigenspaces.

- 30. Determine representatives for all the conjugacy classes of $GL_2(\mathbb{F}_3)$.
- 31. Let k be a field and V a vector space over k. Prove that any group representation $G \to GL(V)$ extends uniquely to a map of rings $k[G] \to End(V)$. Explain how this defines a k[G]-module structure on V.
- 32. Prove that there is a bijective correspondence between degree-1 representations of a group G, and degree-1 representations of its abelianization G/[G, G].
- 33. Let G be a finite group, and \mathbb{F} a field containing $\frac{1}{|G|}$.
 - (a) State Maschke's theorem.
 - (b) Show by example that if |G| divides the characteristic of \mathbb{F} , then not all *G*-representations over \mathbb{F} are completely reducible.
- 34. Let \mathbb{F} be a field, G a finite group with order |G| invertible in \mathbb{F} . Show that Maschke's theorem implies that every short exact sequence of $\mathbb{F}[G]$ -modules splits.
- 35. Prove that isomorphic G-representations have the same character.
- 36. Let V be a G-representation. Show that the action of a group element $g \in G$ on V is G-equivariant if and only if g is in the center of G.
- 37. Prove that if U is a complex irreducible representation of G, and $V = U \oplus U$, then there are infinitely many ways that V can be decomposed into two copies of U. What is $\operatorname{Hom}_{\mathbb{C}[G]}(U, V)$? $\operatorname{Hom}_{\mathbb{C}[G]}(V, U)$?
- 38. Let V be an irreducible complex representation of a finite group G. Show that the multiplicity of V in a G-representation U is equal to $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(V, U) = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(U, V)$.
- 39. (a) Let \mathbb{F} be a field. Given any finite set $B = \{b_1, \ldots, b_m\}$, with an action of G, show how to construct a permutation representation by G on the vector space over \mathbb{F} with basis B. Show that each G-orbit of B corresponds to a G subrepresentation of V.
 - (b) Suppose that G acts transitively on the basis B (more generally, you can reply this result to the span of each G-orbit of B). Show that the diagonal subspace $D = \langle b_1 + b_2 + \cdots + b_m \rangle$ is invariant under G, and that G acts on it trivially. Show the orthogonal complement of D,

$$D^{\perp} = \left\{ a_1 b_1 + \ldots + a_m b_m \mid \sum a_i = 0 \right\}$$

is also invariant under the action of G, so that V decomposes as a direct sum of G subrepresentations $V \cong D \oplus D^{\perp}$. Compute the degrees of D and D^{\perp} .

- (c) Suppose that G acts transitively on the basis B. Prove that D^{\perp} does not contain any vectors fixed by G (and therefore does not contain any trivial subrepresentations).
- (d) Show that the regular representation $V \cong \mathbb{F}[G]$ decomposes into a direct sum of invariant subspaces:

$$\left\{\sum_{g\in G} ae_g \ \middle| \ a\in\mathbb{F}\right\} \bigoplus \left\{\sum_{g\in G} a_g e_g \ \middle| \ \sum_{g\in G} a_g = 0\right\}$$

- (e) Use this decomposition and the averaging map to give a new proof that the multiplicity of the trivial representation in $\mathbb{F}[G]$ is 1.
- 40. Let V be a vector space over \mathbb{F} with basis x_1, \ldots, x_n . Construct an isomorphism of rings $\text{Sym}^* V \cong \mathbb{F}[x_1, x_2, \ldots, x_n]$ that commutes with scalar multiplication by \mathbb{F} .
- 41. Let M be a module over a commutative ring R. Show that the constructions T^*M , Sym^*M , and \wedge^*M define functors from R-modules to rings (in fact, R-algebras).
- 42. Prove that a finite group G is abelian if and only if all its complex irreducible representations are 1-dimensional.
- 43. (a) Let g be a diagonalizable linear transformation acting on a vector space V, with eigenvalues $\lambda_1, \ldots, \lambda_n$. Describe the set of eigenvalues of the map induced by g on the spaces $V \otimes V, V \otimes V \otimes V, \Lambda^2 V, \Lambda^3 V, \operatorname{Sym}^2 V$, and $\operatorname{Sym}^3 V$.
 - (b) Suppose G is a finite group, and V a representation of G. Derive formulas for the characters of the representations $V \otimes V$, $V \otimes V \otimes V$, $\wedge^2 V$, $\wedge^3 V$, $\operatorname{Sym}^2 V$, and $\operatorname{Sym}^3 V$ in terms of the character χ_V for V.
- 44. Let G be a group. When are two 1-dimensional representations of G isomorphic?
- 45. Let A be a finite **abelian** group.
 - (a) Explain why the complex representations of A are precisely the set of group homomorphisms from A to the multiplicative group of units \mathbb{C}^{\times} of \mathbb{C} .
 - (b) Let $a \in A$ be an order of element k. What are the possible homomorphic images of a in \mathbb{C}^{\times} ?
 - (c) Let A be a finite cyclic group of order n. State the number of non-isomorphic representations of A, and describe these explicitly.
 - (d) Let ξ_n denote an n^{th} root of unity. Write down the character tables for the groups $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.