1. Let M be an R-module.
(a) Prove that its annihilator $\operatorname{ann}(M)$ is a two-sided ideal of R, and that there is a well-defined action of $R / \operatorname{ann}(M)$ on M.
(b) Prove that this action is faithful.
2. For each of the following, prove the statement or find a counterexample. Let M be an $R-$ module, I a (right) ideal of R, and N a R-submodule.
(a) If $\operatorname{ann}(N)=I$, then $\operatorname{ann}(I)=N$.
(b) If $\operatorname{ann}(I)=N$, then $\operatorname{ann}(N)=I$.
3. (a) Let \mathbb{F} be a field. Let V be an $\mathbb{F}[x]$ module where x acts by a linear transformation T. Under what conditions will a linear map S be an element of $\operatorname{End}_{\mathbb{F}[x]}(V)$?
(b) Let $R=\mathbb{Z}[\sqrt{2}]=\{a+\sqrt{2} \mid a, b \in \mathbb{Z}\}$ and consider R as a module over itself. As an abelian group, $M=\mathbb{Z}[\sqrt{2}]$ is isomorphic to \mathbb{Z}^{2} under the identification $a+b \sqrt{2}$ with $(a, b) \in \mathbb{Z}^{2}$. Show that $\operatorname{End}_{\mathbb{Z}}(M)$ is the matrix ring $M_{2 \times 2}(\mathbb{Z})$, and identify the subset of matrices $\operatorname{End}{ }_{R}(M) \subseteq M_{2 \times 2}(\mathbb{Z})$ that commute with the action of R.
4. State and prove the first isomorphism theorem for R-modules.
5. Give an example of an integral domain R and two non-isomorphic finitely generated torsion R-modules with the same annihilators.
6. Let V be a $\mathbb{C}[x]$-module such that V is finite dimensional as a vector space over \mathbb{C}. Prove that V is a torsion module.
7. Let $\phi: M \rightarrow N$ be a homomorphism of $R-$ modules. Let I be a right ideal of R. Let $\operatorname{ann}_{M}(I)$ denote the annihilator of I in M, and $\operatorname{ann}_{N}(I)$ the annihilator of I in N. Prove or find a counterexample: $\phi\left(\operatorname{ann}_{M}(I)\right) \subseteq \operatorname{ann}_{N}(I)$.
8. Let M and N be R-modules, and I an ideal of R contained in $\operatorname{ann}(M)$ and $\operatorname{ann}(N)$. Show that any map of $R-$ modules $\phi: M \rightarrow N$ is also a map of (R / I)-modules. Conclude that $\operatorname{Hom}_{R}(M, N)=\operatorname{Hom}_{R / I}(M, N)$.
9. (a) If $a \in R$, prove that $R a \cong R / \operatorname{ann}(a)$, where $\operatorname{ann}(a)$ denotes the annihilator of the left ideal generated by a.
(b) Let M be an R-module. For $a, b \in M$, let $A=\{a, b\}$. Prove or disprove: $R A \cong R / I$, where I is the annihilator of the submodule generated by a and b.
10. Let G be a group. Give three definitions of a representation of G, and explain why they are equivalent.
11. Find a faithful representation of the circle group $T \cong \mathbb{R} / 2 \pi \mathbb{Z}$ into $\mathrm{GL}_{2}(\mathbb{R})$.
12. Let G be a finite group, and consider the rational regular representation, the group ring $\mathbb{Q}[G]$ as a module over itself. Prove that if $|G|>1$ then the regular representation always contains a proper nonzero G-invariant subrepresentation.
13. Let G be a finite group. Prove that all degree-1 representations of G are in bijective correspondence with degree-1 representations of its abelianization $G^{a b}$.
14. Let G be a finite cyclic group. Find all 1-dimensional representations of G, and determine which are inequivalent.
15. Let $\phi: G \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ be a representation of a group G. Show that composing with the determinant map gives a map $g \rightarrow \operatorname{det}(\phi(g))$ that is a degree-1 representation of G.
16. Let M be and R-module with submodules A and B. Prove that the map $A \times B \longrightarrow A+B$ is an isomorphism if and only if $A \cap B=\{0\}$.
17. Give an example of a finitely generated R-module M and a submodule that is not finitely generated.
18. Let S be the set of all sequences of integers $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ that are nonzero in only finitely many components (in other words, all functions $\mathbb{N} \rightarrow \mathbb{Z}$ with finite support). Verify that S is a ring (without identity) under componentwise addition and multiplication. Is S a finitely generated S-module?
19. A student makes the following claim: "Since $\mathbb{Z} / 2 \mathbb{Z}$ is a subring of $\mathbb{Z} / 4 \mathbb{Z}$, we can let $\mathbb{Z} / 2 \mathbb{Z}$ act by left multiplication to give $\mathbb{Z} / 4 \mathbb{Z}$ the structure of a $\mathbb{Z} / 2 \mathbb{Z}$-module. Then $\mathbb{Z} / 4 \mathbb{Z}$ is a $\mathbb{Z} / 2 \mathbb{Z}$-vector space with 4 elements, so it must be isomorphic as a vector space to $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$." Prove that $\mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ are not even isomorphic as abelian groups, and find the flaw in this argument.
20. (a) Let $M_{1}, \ldots M_{n}$ be R-modules, and N_{i} a submodule of M_{i} for all i. Prove that

$$
\frac{M_{1} \times M_{2} \times \cdots \times M_{n}}{N_{1} \times N_{2} \times \ldots \times N_{n}} \cong\left(\frac{M_{1}}{N_{1}}\right) \times\left(\frac{M_{2}}{N_{2}}\right) \times \cdots \times\left(\frac{M_{n}}{N_{n}}\right) .
$$

(b) Let I be any left ideal of R, and let $I R^{n}=\left\{\right.$ finite sums $\left.\sum a_{i} x_{i} \mid a_{i} \in I, x_{i} \in R^{n}\right\}$. Prove that

$$
\frac{R^{n}}{I R^{n}} \cong \frac{R}{I R} \times \frac{R}{I R} \times \cdots \times \frac{R}{I R}
$$

21. A central idempotent e in a ring R is an central element satisfying $e^{2}=e$.
(a) What are the central idempotents in \mathbb{Z}^{n} ?
(b) What are the central idempotents in $\mathrm{M}_{2}(\mathbb{Q})$, the 2×2 rational matrices?
(c) Show that if e is a central idempotent in R and M an R-module, then $M \cong e M \oplus(1-e) M$.
22. Suppose that R is a ring and that S is a subring.
(a) Suppose that F is a free R-module. Prove or disprove: F is a free S-module after restriction of scalars to S.
(b) Suppose that M is an R-module that is free as an S-module after restriction to S. Prove or disprove: M must be a free $R-$ module.
23. Let R be a ring.
(a) Give the definition of a free R-module on a set A.
(b) Given a set A, explain how to construct a free R-module $F(A)$ on A.
(c) State the universal property for a free R-module.
(d) Verify that $F(A)$ satisfies this universal property.
(e) Prove that the universal property determines $F(A)$ uniquely up to unique isomorphism.
(f) Show that F defines a covariant functor from the category of sets to the category of R-modules.
24. Let R be a commutative ring, and let A, B, M be R-modules. Use the universal property of the direct sum to prove the isomorphisms of R-modules:
(a) $\operatorname{Hom}_{R}(A \oplus B, M) \cong \operatorname{Hom}_{R}(A, M) \oplus \operatorname{Hom}_{R}(B, M)$
(b) $\operatorname{Hom}_{R}(M, A \oplus B) \cong \operatorname{Hom}_{R}(M, A) \oplus \operatorname{Hom}_{R}(M, B)$
25. Let R be a commutative ring. If M and N are free R-modules, will the R-module $\operatorname{Hom}_{R}(M, N)$ be free? If $\operatorname{Hom}_{R}(M, N)$ is a free $R-$ module, must M and N be free?
26. Find two non-equivalent extensions of the abelian groups $\mathbb{Z} / 2 \mathbb{Z}$ by $\mathbb{Z} / 6 \mathbb{Z}$.
27. Prove that every short exact sequence of vector spaces splits.
28. State the definition of a category, and the definition of a covariant functor.
29. Let \mathcal{C} be a category. Prove that if $X \in \operatorname{ob}(\mathcal{C})$, then the identity morphism $i d_{X}$ is unique. Further prove that if $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$, is an isomorphism, then its inverse f^{-1} is unique.
30. (a) Prove that in the category of sets, a map is monic iff it is injective, and epic iff it is surjective.
(b) Prove that in any category the composition of monomorphisms (respectively, epimorphisms, or isomorphisms) is a monomorphisms (respectively, an epimorphism, or isomorphism).
(c) Prove that isomorphisms are both monic and epic.
31. Prove or disprove the following statements.
(a) If $f: A \rightarrow B$ is a monomorphism (respectively, epimorphism) in a category \mathcal{C}, then the image of f under any (covariant) functor $\mathcal{C} \rightarrow \mathcal{D}$ must be a monomorphism (respectively, epimorphism) in \mathcal{D}.
(b) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence in the category of R-modules, then its image under any (covariant) functor $R-$ Mod $\rightarrow R-$ Mod must be an exact sequence.
32. (Coproducts of families). Prove that the direct sum of R-modules $\bigoplus_{i \in I} M_{i}$, along with the inclusions $f_{i}: M_{i} \rightarrow \bigoplus_{i \in I} M_{i}$, satisfies the following universal property: whenever there is a family of maps $\left\{g_{i}: M_{i} \rightarrow Z \mid i \in I\right\}$ there is a unique map u making the following diagrams commute:

Explain why this universal property can be taken as the definition of the direct sum of R-modules.
33. Let R be an integral domain. Prove or disprove: The map of R-modules that takes an R-module M to its R-submodule $\operatorname{Tor}(M)$ and takes a map $f: M \rightarrow N$ to its restriction $\left.f\right|_{\operatorname{Tor}(M)}$ defines an exact covariant functor $R-\underline{\text { Mod }} \rightarrow R-\underline{\text { Mod. }}$
34. Let R be a ring. Define a functor on the category R-Mod that takes an R-module M to the R-module $M \oplus M$. Verify that your construction is functorial.
35. Consider the category J that consists of 3 objects and 3 morphisms (plus the identity morphisms, which are not shown):

with composition law $h=g \circ f$. A functor from J to a category \mathcal{C} determines a choice of 3 (not necessarily distinct) objects A, B, C of \mathcal{C} and morphisms F, G, H satisfying $H=G \circ F$.

Any such functor is called a diagram of shape J in \mathcal{C}. More generally, some mathematicians define the word diagram in a category \mathcal{C} to mean a functor from a suitably chosen category J. Find a category J so that diagrams of shape J in \mathcal{C} encode the following data:
(a) Any object in \mathcal{C}
(d) Any commuting square in \mathcal{C}
(b) Any morphism $F: A \rightarrow B$ in \mathcal{C}
(e) An object in \mathcal{C} with two commuting endomorphisms
36. Let R be a ring. Define the forgetful functor from R-modules to abelian groups, and show that it is an exact functor.
37. Recall that a R-module I is called injective if the (contravariant) functor $\operatorname{Hom}_{R}(-, I)$ is exact. Prove that $\mathbb{Z} / n \mathbb{Z}$ is an injective $\mathbb{Z} / n \mathbb{Z}$-module, but is not an injective \mathbb{Z}-module.
38. The rows of the following diagram are exact. Prove that if m and p are surjective and q is a injective, then n is surjective.

39. Let R be a ring and M a fixed R-module. Verify that the following maps each define a functor of categories. Explain how to define the functor on morphisms, determine whether it is covariant or contravariant, and verify that the map is functorial.
(a)

$$
\begin{aligned}
\operatorname{Hom}_{R}(M,-): R-\underline{\operatorname{Mod}} & \longrightarrow \underline{\mathrm{Ab}} \\
N & \longmapsto \operatorname{Hom}_{R}(M, N)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Hom}_{R}(-, M): R-\underline{\operatorname{Mod}} & \longrightarrow \underline{\mathrm{Ab}} \\
N & \longmapsto \operatorname{Hom}_{R}(N, M)
\end{aligned}
$$

40. Determine whether the functor $\operatorname{Hom}_{R}(M,-)$ from R-modules to abelian groups is left exact, right exact, both, or neither.
