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1. Let M be an R–module.

(a) Prove that its annihilator ann(M) is a two-sided ideal of R, and that there is a well-defined action
of R/ann(M) on M .

(b) Prove that this action is faithful.

2. For each of the following, prove the statement or find a counterexample. Let M be an R–module, I a
(right) ideal of R, and N a R–submodule.

(a) If ann(N) = I, then ann(I) = N . (b) If ann(I) = N , then ann(N) = I.

3. (a) Let F be a field. Let V be an F[x] module where x acts by a linear transformation T . Under what
conditions will a linear map S be an element of EndF[x](V )?

(b) Let R = Z[
√

2] = {a +
√

2 | a, b ∈ Z} and consider R as a module over itself. As an abelian
group, M = Z[

√
2] is isomorphic to Z2 under the identification a+ b

√
2 with (a, b) ∈ Z2. Show that

EndZ(M) is the matrix ring M2×2(Z), and identify the subset of matrices EndR(M) ⊆ M2×2(Z)
that commute with the action of R.

4. State and prove the first isomorphism theorem for R–modules.

5. Give an example of an integral domain R and two non-isomorphic finitely generated torsion R–modules
with the same annihilators.

6. Let V be a C[x]–module such that V is finite dimensional as a vector space over C. Prove that V is a
torsion module.

7. Let φ : M → N be a homomorphism of R–modules. Let I be a right ideal of R. Let annM (I) denote
the annihilator of I in M , and annN (I) the annihilator of I in N . Prove or find a counterexample:
φ(annM (I)) ⊆ annN (I).

8. Let M and N be R–modules, and I an ideal of R contained in ann(M) and ann(N). Show that any map of
R–modules φ : M → N is also a map of (R/I)–modules. Conclude that HomR(M,N) = HomR/I(M,N).

9. (a) If a ∈ R, prove that Ra ∼= R/ann(a), where ann(a) denotes the annihilator of the left ideal generated
by a.

(b) Let M be an R–module. For a, b ∈ M , let A = {a, b}. Prove or disprove: RA ∼= R/I, where I is
the annihilator of the submodule generated by a and b.

10. Let G be a group. Give three definitions of a representation of G, and explain why they are equivalent.

11. Find a faithful representation of the circle group T ∼= R/2πZ into GL2(R).

12. Let G be a finite group, and consider the rational regular representation, the group ring Q[G] as a
module over itself. Prove that if |G| > 1 then the regular representation always contains a proper
nonzero G-invariant subrepresentation.

13. Let G be a finite group. Prove that all degree-1 representations of G are in bijective correspondence
with degree-1 representations of its abelianization Gab.

14. Let G be a finite cyclic group. Find all 1-dimensional representations of G, and determine which are
inequivalent.

15. Let φ : G→ GLn(F) be a representation of a group G. Show that composing with the determinant map
gives a map g → det(φ(g)) that is a degree-1 representation of G.

16. Let M be and R–module with submodules A and B. Prove that the map A × B −→ A + B is an
isomorphism if and only if A ∩B = {0}.
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17. Give an example of a finitely generated R–module M and a submodule that is not finitely generated.

18. Let S be the set of all sequences of integers (a1, a2, a3, . . .) that are nonzero in only finitely many
components (in other words, all functions N → Z with finite support). Verify that S is a ring (without
identity) under componentwise addition and multiplication. Is S a finitely generated S–module?

19. A student makes the following claim: “Since Z/2Z is a subring of Z/4Z, we can let Z/2Z act by left
multiplication to give Z/4Z the structure of a Z/2Z–module. Then Z/4Z is a Z/2Z–vector space with 4
elements, so it must be isomorphic as a vector space to Z/2Z⊕Z/2Z.” Prove that Z/4Z and Z/2Z⊕Z/2Z
are not even isomorphic as abelian groups, and find the flaw in this argument.

20. (a) Let M1, . . .Mn be R–modules, and Ni a submodule of Mi for all i. Prove that

M1 ×M2 × · · · ×Mn

N1 ×N2 × . . .×Nn

∼=
(
M1

N1

)
×
(
M2

N2

)
× · · · ×

(
Mn

Nn

)
.

(b) Let I be any left ideal of R, and let IRn = {finite sums
∑
aixi | ai ∈ I, xi ∈ Rn}. Prove that

Rn

IRn
∼=

R

IR
× R

IR
× · · · × R

IR
.

21. A central idempotent e in a ring R is an central element satisfying e2 = e.

(a) What are the central idempotents in Zn?

(b) What are the central idempotents in M2(Q), the 2× 2 rational matrices?

(c) Show that if e is a central idempotent in R and M an R–module, then M ∼= eM ⊕ (1− e)M .

22. Suppose that R is a ring and that S is a subring.

(a) Suppose that F is a free R–module. Prove or disprove: F is a free S–module after restriction of
scalars to S.

(b) Suppose that M is an R–module that is free as an S–module after restriction to S. Prove or
disprove: M must be a free R–module.

23. Let R be a ring.

(a) Give the definition of a free R–module on a set A.

(b) Given a set A, explain how to construct a free R–module F (A) on A.

(c) State the universal property for a free R–module.

(d) Verify that F (A) satisfies this universal property.

(e) Prove that the universal property determines F (A) uniquely up to unique isomorphism.

(f) Show that F defines a covariant functor from the category of sets to the category of R–modules.

24. Let R be a commutative ring, and let A,B,M be R–modules. Use the universal property of the direct
sum to prove the isomorphisms of R–modules:

(a) HomR(A⊕B,M) ∼= HomR(A,M)⊕HomR(B,M)

(b) HomR(M,A⊕B) ∼= HomR(M,A)⊕HomR(M,B)

25. Let R be a commutative ring. If M and N are free R–modules, will the R–module HomR(M,N) be
free? If HomR(M,N) is a free R–module, must M and N be free?

26. Find two non-equivalent extensions of the abelian groups Z/2Z by Z/6Z.

27. Prove that every short exact sequence of vector spaces splits.

28. State the definition of a category, and the definition of a covariant functor.
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29. Let C be a category. Prove that if X ∈ ob(C), then the identity morphism idX is unique. Further prove
that if f ∈ HomC(X,Y ), is an isomorphism, then its inverse f−1 is unique.

30. (a) Prove that in the category of sets, a map is monic iff it is injective, and epic iff it is surjective.

(b) Prove that in any category the composition of monomorphisms (respectively, epimorphisms, or
isomorphisms) is a monomorphisms (respectively, an epimorphism, or isomorphism).

(c) Prove that isomorphisms are both monic and epic.

31. Prove or disprove the following statements.

(a) If f : A→ B is a monomorphism (respectively, epimorphism) in a category C, then the image of f
under any (covariant) functor C → D must be a monomorphism (respectively, epimorphism) in D.

(b) If 0 → A → B → C → 0 is a short exact sequence in the category of R–modules, then its image
under any (covariant) functor R–Mod → R–Mod must be an exact sequence.

32. (Coproducts of families). Prove that the direct sum of R–modules
⊕

i∈I Mi, along with the inclusions
fi : Mi →

⊕
i∈I Mi, satisfies the following universal property: whenever there is a family of maps

{gi : Mi → Z | i ∈ I} there is a unique map u making the following diagrams commute:

Z

Mi

gi

;;

fi

//⊕Mi

u

OO

Explain why this universal property can be taken as the definition of the direct sum of R–modules.

33. Let R be an integral domain. Prove or disprove: The map of R–modules that takes an R–module M
to its R–submodule Tor(M) and takes a map f : M → N to its restriction f |Tor(M) defines an exact
covariant functor R–Mod→ R–Mod.

34. Let R be a ring. Define a functor on the category R–Mod that takes an R–module M to the R–module
M ⊕M . Verify that your construction is functorial.

35. Consider the category J that consists of 3 objects and 3 morphisms (plus the identity morphisms, which
are not shown):

a

f ��

h
// c

b

g

@@

with composition law h = g◦f . A functor from J to a category C determines a choice of 3 (not necessarily
distinct) objects A,B,C of C and morphisms F,G,H satisfying H = G ◦ F .

A

F ��

H
// C

B

G

??

Any such functor is called a diagram of shape J in C. More generally, some mathematicians define the
word diagram in a category C to mean a functor from a suitably chosen category J . Find a category J
so that diagrams of shape J in C encode the following data:
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(a) Any object in C
(b) Any morphism F : A→ B in C
(c) Any isomorphism F : A→ B in C

(d) Any commuting square in C
(e) An object in C with two commuting endomor-

phisms

36. Let R be a ring. Define the forgetful functor from R–modules to abelian groups, and show that it is an
exact functor.

37. Recall that a R–module I is called injective if the (contravariant) functor HomR(−, I) is exact. Prove
that Z/nZ is an injective Z/nZ–module, but is not an injective Z–module.

38. The rows of the following diagram are exact. Prove that if m and p are surjective and q is a injective,
then n is surjective.

B
g //

m

��

C
h //

n

��

D
j //

p

��

E

q

��
B′

s
// C ′

t
// D′

u
// E′

39. Let R be a ring and M a fixed R–module. Verify that the following maps each define a functor of
categories. Explain how to define the functor on morphisms, determine whether it is covariant or
contravariant, and verify that the map is functorial.

(a)

HomR(M,−) : R−Mod −→Ab

N 7−→HomR(M,N)

(b)

HomR(−,M) : R−Mod −→Ab

N 7−→HomR(N,M)

40. Determine whether the functor HomR(M,−) from R–modules to abelian groups is left exact, right exact,
both, or neither.
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