
Math 122 Midterm II Review May 2017

1. Let F be an R–module and ι : B → F a map of sets. Show that if F (along with the data of the map ι)
satisfies the universal property of the free R–module on B, then ι must be injective.

2. Let R be an integral domain, a ∈ R, and M an R–module. Describe the R–module HomR

(
R

(a)
,M

)
.

3. Let M be a right R–module, and N a left R–module.

(a) Describe an explicit construction of the tensor product M ⊗R N as a quotient of abelian groups.

(b) State the universal property of the tensor product.

(c) Verify that the explicit construction satisfies the universal property.

4. Let M be a right R–module, N a left R–module, and L an abelian group. Classify all functions
M ×N → L that are both R–balanced and maps of abelian groups.

5. Let M be an abelian group and R a ring. Show that an R–module structure on M defines a map of
abelian groups R⊗Z M →M . Which maps R⊗Z M →M arise in this way?

6. Let R and S be rings.

(a) Verify that the abelian group R⊗Z S has a ring structure with multiplication defined by

(r1 ⊗ s1)(r2 ⊗ s2) = (r1r2)⊗ (s1s2).

(b) Define an (R,S)–bimodule, and prove that an (R,S)–bimodule structure on an abelian group M is
equivalent to a left module structure over the ring R⊗Z S

op.

7. Let S ⊆ R be a subring, and M an S–module.

(a) Define the extension of scalars of M from S to R.

(b) Let

ι : M −→ R⊗S M
m 7−→ 1⊗m

Show that ι is a well-defined map of abelian groups, and moreover commutes with the action of S.

(c) Let F : R–Mod → S–Mod be the forgetful functor that only remembers the action of the subring
S. Show that the R–module R⊗SM is uniquely characterized by the following universal property:
If L is an R–module, and ϕ : M → F(L) a map of S–modules, then ϕ factors uniquely through the
map ι to give a map of R–modules Φ : R⊗S M → L.

(d) Conclude that there is a isomorphism of abelian groups

HomS(M,F(L)) ∼= HomR(R⊗S M,L)

Since this map is natural, the functors F and R⊗S − are an adjoint pair.

8. Let S ⊆ R be a subring, and M an S–module. Show by example that an S–module M may embed into
the R–module obtained by extension of scalars, and it may not embed.

9. Show that if V is an n-dimensional real vector space on basis e1, . . . , en, then C⊗RV is an n-dimensional
complex vector space with basis 1⊗ e1, . . . , 1⊗ en.

10. What is the complex dimension of the vector spaces C⊗R Rs ⊗R Rt and Ct ⊗R Rs?

11. Prove that any element of the tensor product C2 ⊗C3 can be written as the sum of at most two simple
tensors.
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12. Let V be a C[x]–module where x acts by a linear transformation A, and let W be a C[x]–module where
x acts by a linear transformation B. If V and W have positive dimensions m and n over C, is it possible
that V ⊗C[x] W could be zero? Is it possible that it could be mn-dimensional? Give examples.

13. Compute (Z/15Z⊕ R)⊗Z (Z/6Z⊕Q)⊗Z (Z/3Z).

14. Prove that if a 6= b ∈ Q, then
Q[x, y]

(x− a)
⊗Q[x,y]

Q[x, y]

(x− b)
∼= 0.

15. Prove or disprove: Suppose S is a subring of the commutative ring R, and M and N are R–modules.
Then the tensor product M ⊗R N is a quotient of the tensor product M ⊗S N .

16. Let R be an integral domain and M an R–module. Suppose that x1, . . . , xn is a maximal list of linearly
independent elements. Prove that Rx1 + Rx2 + · · · + Rxn is isomorphic to Rn, and that M/(Rx1 +
Rx2 + · · ·+Rxn) is a torsion R–module.

17. Let R be an integral domain. Define the rank of an R–module M to be the maximal cardinality of
any list of linearly independent elements in M . Prove that the rank of a Z–module M is equal to the
dimension of Q⊗Z M .

18. Let R be an integral domain. Recall that the definition of rank from Question 17.

(a) Suppose that A and B are R–modules of ranks a and b, respectively. Prove that A ⊕ B is an
R–module of rank a+ b.

(b) Consider a short exact sequence of finite-rank R–modules:

0 −→ A
ψ−→ B

φ−→ C −→ 0

Show that rank(B) = rank(A)+ rank(C).

19. Let R be an integral domain, and I any non-principal ideal of R. Determine the rank of I, and prove
that I is not a free R–module.

20. Let R = Mn×n(Q) be the ring of rational n× n matrices. Let S ∼= Q be the subring of scalar matrices.
Show that EndR(Qn) = S and EndS(Qn) = R.

21. Let k be a field, and x, y indeterminates. Prove or disprove the following isomorphism of k–modules:
k[x, y] ∼= k[x]⊗k k[y].

22. Let R be commutative and let M,N be R–modules. Show that there is a canonical isomorphism

M ⊗R N ∼= N ⊗RM.

23. Let M,Mi be right R–modules and N,Ni be left R–modules. Use the universal property of the tensor
product and the universal property of the direct sum to prove the following isomorphisms of abelian
groups:

(M1 ⊕M2)⊗R N ∼= (M1 ⊗R N)⊕ (M2 ⊗R N) M ⊗R (N1 ⊕N2) ∼= (M ⊗R N1)⊕ (M ⊗R N2)

24. Let V be a vector space over F with basis x1, . . . , xn. Construct an isomorphism of F–algebras

Sym∗V ∼= F[x1, x2, . . . , xn]

(ie, an isomorphism of rings that commutes with scalar multiplication by F).

25. Let M be a simple R–module. Prove that M is cyclic. If M is cyclic, must M be simple?

26. Let V be a finite dimensional complex vector space and T : V → V a linear map. Under what conditions
is the associated C[x]–module V completely reducible?
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27. Let G be a group. Give three definitions of a representation of G.

28. Let k be a field and V a vector space over k. Prove that any group representation G→ GL(V ) extends
uniquely to a map of rings k[G]→ End(V ). Explain how this defines a k[G]–module structure on V .

29. Let G be a group and V an k[G]–module. Explain why any map of sets f : G→ V extends uniquely to
a map of k–modules k[G] → V . Under what (necessary and sufficient) conditions will this be a map of
G–representations?

30. Find a faithful representation of the circle group T ∼= R/2πZ into GL2(R).

31. Let G be a finite group. Prove that all degree-1 representations of G are in bijective correspondence
with degree-1 representations of its abelianization Gab.

32. For any n ≥ 2, define the Sn–representations Trv and Alt. Prove that these are the only 1-dimensional
Sn–representations.

33. Let G be a finite group, and F a field containing 1
|G| .

(a) State Maschke’s theorem.

(b) Show that Maschke’s theorem implies that every short exact sequence of F[G]–modules splits.

(c) Show by example that if |G| divides the characteristic of F, then not all G–representations over F
are completely reducible.

34. Prove that if U is a complex irreducible representation of G, and V = U ⊕ U , then there are infinitely
many ways that V can be decomposed into two copies of U . What is HomC[G](U, V )? HomC[G](V,U)?

35. Let V be an irreducible complex representation of a finite group G. Show that the multiplicity of V in
a G–representation U is equal to dimC HomC[G](V,U) = dimC HomC[G](U, V ).

36. (a) Let F be a field. Given any finite set B = {b1, . . . , bm}, with an action of G, show how to construct
a permutation representation by G on the vector space over F with basis B. Show that each G-orbit
of B corresponds to a G subrepresentation of V .

(b) Suppose that G acts transitively on the basis B (more generally, you can reply this result to the
span of each G-orbit of B). Show that the diagonal subspace D = 〈b1 + b2 + · · ·+ bm〉 is invariant
under G, and that G acts on it trivially. Show the orthogonal complement of D,

D⊥ =
{
a1b1 + . . .+ ambm

∣∣∣ ∑ ai = 0
}

is also invariant under the action of G, so that V decomposes as a direct sum of G subrepresentations
V ∼= D ⊕D⊥. Compute the degrees of D and D⊥.

(c) Suppose that G acts transitively on the basis B. Prove that D⊥ does not contain any vectors fixed
by G (and therefore does not contain any trivial subrepresentations).

(d) Show that the regular representation V ∼= F[G] decomposes into a direct sum of invariant subspaces:∑
g∈G

aeg

∣∣∣∣∣∣ a ∈ F

⊕
∑
g∈G

ageg

∣∣∣∣∣∣
∑
g∈G

ag = 0


(e) Use this decomposition and the averaging map to give a new proof that the multiplicity of the

trivial representation in F[G] is 1.

37. Prove that a finite group G is abelian if and only if all its complex irreducible representations are
1-dimensional.
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38. It is a nonobvious fact that all values of the irreducible complex characters of the symmetric groups are
integer-valued. Prove that if V is an irreducible representation of Sn of degree at least 2, then there
must be at least one conjugacy class of Sn where χV takes on the value zero.

39. (a) Use character theory to decompose the S3–representation Alt ⊗CC3.Verify your computation by
finding an explicit basis for each irreducible constituent.

(b) The symmetric group S3 is the symmetry group of an equilateral triangle. If we inscribe the triangle
inside a regular hexagon as shown,

there is an induced action on the hexagon.

(i) In particular, there is an induced action on the set of vertices of the hexagon, and so an
action on the free C–module on this set. Compute the decomposition of the representation into
irreducible components.

(ii) Do the same for the free C–module on the set of edges of the hexagon.

Bonus: In both cases (i) and (ii), find explicit bases for the irreducible constituents.

40. Consider the complex S4–representation C4 ∼= Trv ⊕ Std.

(a) Prove that Std is irreducible.

(b) Compute the character table of S4.

(c) Compute the characters of ∧3C4, and compute its decomposition into irreducible representations.

(d) Compute the character of HomC(Std, Std), and its decomposition into irreducible representations.

(e) S4 is the group of rigid motions of an octahedron (acting on the four pairs of opposite faces).

There is an induced action on the set of 6 vertices of the octahedron, and therefore on the free
C–module on this set. Compute the decomposition of this representation into irreducibles.

41. Let V and W be complex reprsentations of a finite group G.

(a) Describe the G–representation structure on HomC(V,W ).

(b) Prove that HomC(V,W )G ∼= HomC[G](V,W ).

(c) Let ψav denote the averaging map, as applied to the representation HomC(V,W ). Prove that this
is a projection onto HomC[G](V,W ).

(d) Suppose that V and W are non-isomorphic irreducible representations, and let T ∈ HomC(V,W ).
What is ψav(T )?

(e) Now suppose that V ∼= W is irredcible. According to Schur’s Lemma, ψav(T ) must be scalar
multiplication. What is the scalar?

42. Let V be a nonzero representation of a finite group G. Show that HomC(V, V )G is nonzero, and describe
a basis of matrices in HomC(V, V ) for this subrepresentation.

43. Let A be a finite abelian group.

(a) Explain why the complex representations of A are precisely the set of group homomorphisms from
A to the multiplicative group of units C× of C.

(b) Let a ∈ A be an element of order k. What are the possible homomorphic images of a in C×?

(c) Find all 1-dimensional complex representations of A.
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(d) Classify the irreducible complex representations of A up to isomorphism.

(e) Write down the character tables for the groups Z/4Z and Z/2Z× Z/2Z.

44. Let G be a finite group and V a C[G]–module.

(a) Show that V is irreducible if and only if 〈χV , χV 〉G = 1.

(b) Prove V is the sum of two non-isomorphic irreducible representations if and only if 〈χV , χV 〉G = 2.

(c) What are the possibilities for the decomposition of V if 〈χV , χV 〉G = 3? 〈χV , χV 〉G = 4?

45. Let V be a complex G–representation. Show that χV ∗(g) = χV (g−1) for all g ∈ G.

46. Let V be a G–representation over a field F. Show that V is irreducible if and only if V ∗ is irreducible.

47. Let V be a G–representation over a field F. Show that V ∼= V ∗ as G–representations if and only if V
has a nondegenerate G–invariant bilinear form.

48. Let G be a finite group and V a complex G–representation. Find a formula for the character of the
G–representation

∧3
V (in the spirit of our formula for χ∧2 V ).

49. Let G be a finite group. Prove that for any irreducible complex representation V of G, dimC(V ) ≤
√
|G|.

For which G and V do we have equality?

50. Let G be a finite group, V an F–vector space, and ρ : G → GL(V ) a G–representation. You proved on
Homework #6 that if F = C, then ρ(g) is diagonalizable for every g ∈ G.

(a) Suppose F is a subfield of C. Using extension of scalars of F to C, what can you say about the
eigenvalues and trace of ρ(g)?

(b) Show by example that ρ(g) can fail to be diagonalizable (even after extending to the algebraic
closure F) when F has positive characteristic.
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