- 1. Let F be an R-module and  $\iota: B \to F$  a map of sets. Show that if F (along with the data of the map  $\iota$ ) satisfies the universal property of the free R-module on B, then  $\iota$  must be injective.
- 2. Let R be an integral domain,  $a \in R$ , and M an R-module. Describe the R-module  $\operatorname{Hom}_R\left(\frac{R}{(a)}, M\right)$ .
- 3. Let M be a right R-module, and N a left R-module.
  - (a) Describe an explicit construction of the tensor product  $M \otimes_R N$  as a quotient of abelian groups.
  - (b) State the universal property of the tensor product.
  - (c) Verify that the explicit construction satisfies the universal property.
- 4. Let M be a right R-module, N a left R-module, and L an abelian group. Classify all functions  $M \times N \to L$  that are both R-balanced and maps of abelian groups.
- 5. Let M be an abelian group and R a ring. Show that an R-module structure on M defines a map of abelian groups  $R \otimes_{\mathbb{Z}} M \to M$ . Which maps  $R \otimes_{\mathbb{Z}} M \to M$  arise in this way?
- 6. Let R and S be rings.
  - (a) Verify that the abelian group  $R \otimes_{\mathbb{Z}} S$  has a ring structure with multiplication defined by

$$(r_1 \otimes s_1)(r_2 \otimes s_2) = (r_1 r_2) \otimes (s_1 s_2).$$

- (b) Define an (R, S)-bimodule, and prove that an (R, S)-bimodule structure on an abelian group M is equivalent to a left module structure over the ring  $R \otimes_{\mathbb{Z}} S^{\text{op}}$ .
- 7. Let  $S \subseteq R$  be a subring, and M an S-module.
  - (a) Define the extension of scalars of M from S to R.
  - (b) Let

$$\iota: M \longrightarrow R \otimes_S M$$
$$m \longmapsto 1 \otimes m$$

Show that  $\iota$  is a well-defined map of abelian groups, and moreover commutes with the action of S.

- (c) Let  $\mathcal{F} : R-\underline{\mathrm{Mod}} \to S-\underline{\mathrm{Mod}}$  be the forgetful functor that only remembers the action of the subring S. Show that the R-module  $R \otimes_S M$  is uniquely characterized by the following universal property: If L is an R-module, and  $\varphi : M \to \mathcal{F}(L)$  a map of S-modules, then  $\varphi$  factors uniquely through the map  $\iota$  to give a map of R-modules  $\Phi : R \otimes_S M \to L$ .
- (d) Conclude that there is a isomorphism of abelian groups

$$\operatorname{Hom}_{S}(M, \mathcal{F}(L)) \cong \operatorname{Hom}_{R}(R \otimes_{S} M, L)$$

Since this map is *natural*, the functors  $\mathcal{F}$  and  $R \otimes_S -$  are an adjoint pair.

- 8. Let  $S \subseteq R$  be a subring, and M an S-module. Show by example that an S-module M may embed into the R-module obtained by extension of scalars, and it may not embed.
- 9. Show that if V is an n-dimensional real vector space on basis  $e_1, \ldots, e_n$ , then  $\mathbb{C} \otimes_{\mathbb{R}} V$  is an n-dimensional complex vector space with basis  $1 \otimes e_1, \ldots, 1 \otimes e_n$ .
- 10. What is the complex dimension of the vector spaces  $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}^s \otimes_{\mathbb{R}} \mathbb{R}^t$  and  $\mathbb{C}^t \otimes_{\mathbb{R}} \mathbb{R}^s$ ?
- 11. Prove that any element of the tensor product  $\mathbb{C}^2 \otimes \mathbb{C}^3$  can be written as the sum of at most two simple tensors.

- 12. Let V be a  $\mathbb{C}[x]$ -module where x acts by a linear transformation A, and let W be a  $\mathbb{C}[x]$ -module where x acts by a linear transformation B. If V and W have positive dimensions m and n over  $\mathbb{C}$ , is it possible that  $V \otimes_{\mathbb{C}[x]} W$  could be zero? Is it possible that it could be mn-dimensional? Give examples.
- 13. Compute  $(\mathbb{Z}/15\mathbb{Z} \oplus \mathbb{R}) \otimes_{\mathbb{Z}} (\mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Q}) \otimes_{\mathbb{Z}} (\mathbb{Z}/3\mathbb{Z}).$
- 14. Prove that if  $a \neq b \in \mathbb{Q}$ , then  $\frac{\mathbb{Q}[x,y]}{(x-a)} \otimes_{\mathbb{Q}[x,y]} \frac{\mathbb{Q}[x,y]}{(x-b)} \cong 0$ .
- 15. Prove or disprove: Suppose S is a subring of the commutative ring R, and M and N are R-modules. Then the tensor product  $M \otimes_R N$  is a quotient of the tensor product  $M \otimes_S N$ .
- 16. Let R be an integral domain and M an R-module. Suppose that  $x_1, \ldots, x_n$  is a maximal list of linearly independent elements. Prove that  $Rx_1 + Rx_2 + \cdots + Rx_n$  is isomorphic to  $R^n$ , and that  $M/(Rx_1 + Rx_2 + \cdots + Rx_n)$  is a torsion R-module.
- 17. Let R be an integral domain. Define the rank of an R-module M to be the maximal cardinality of any list of linearly independent elements in M. Prove that the rank of a Z-module M is equal to the dimension of  $\mathbb{Q} \otimes_{\mathbb{Z}} M$ .
- 18. Let R be an integral domain. Recall that the definition of rank from Question 17.
  - (a) Suppose that A and B are R-modules of ranks a and b, respectively. Prove that  $A \oplus B$  is an R-module of rank a + b.
  - (b) Consider a short exact sequence of finite-rank *R*-modules:

$$0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\phi} C \longrightarrow 0$$

Show that  $\operatorname{rank}(B) = \operatorname{rank}(A) + \operatorname{rank}(C)$ .

- 19. Let R be an integral domain, and I any **non-principal** ideal of R. Determine the rank of I, and prove that I is not a free R-module.
- 20. Let  $R = M_{n \times n}(\mathbb{Q})$  be the ring of rational  $n \times n$  matrices. Let  $S \cong \mathbb{Q}$  be the subring of scalar matrices. Show that  $\operatorname{End}_R(\mathbb{Q}^n) = S$  and  $\operatorname{End}_S(\mathbb{Q}^n) = R$ .
- 21. Let k be a field, and x, y indeterminates. Prove or disprove the following isomorphism of k-modules:  $k[x, y] \cong k[x] \otimes_k k[y].$
- 22. Let R be commutative and let M, N be R-modules. Show that there is a canonical isomorphism

$$M \otimes_R N \cong N \otimes_R M.$$

23. Let  $M, M_i$  be right *R*-modules and  $N, N_i$  be left *R*-modules. Use the universal property of the tensor product and the universal property of the direct sum to prove the following isomorphisms of abelian groups:

$$(M_1 \oplus M_2) \otimes_R N \cong (M_1 \otimes_R N) \oplus (M_2 \otimes_R N) \qquad \qquad M \otimes_R (N_1 \oplus N_2) \cong (M \otimes_R N_1) \oplus (M \otimes_R N_2)$$

24. Let V be a vector space over  $\mathbb{F}$  with basis  $x_1, \ldots, x_n$ . Construct an isomorphism of  $\mathbb{F}$ -algebras

$$\operatorname{Sym}^* V \cong \mathbb{F}[x_1, x_2, \dots, x_n]$$

(ie, an isomorphism of rings that commutes with scalar multiplication by  $\mathbb{F}$ ).

- 25. Let M be a simple R-module. Prove that M is cyclic. If M is cyclic, must M be simple?
- 26. Let V be a finite dimensional complex vector space and  $T: V \to V$  a linear map. Under what conditions is the associated  $\mathbb{C}[x]$ -module V completely reducible?

- 27. Let G be a group. Give three definitions of a *representation* of G.
- 28. Let k be a field and V a vector space over k. Prove that any group representation  $G \to GL(V)$  extends uniquely to a map of rings  $k[G] \to End(V)$ . Explain how this defines a k[G]-module structure on V.
- 29. Let G be a group and V an k[G]-module. Explain why any map of sets  $f: G \to V$  extends uniquely to a map of k-modules  $k[G] \to V$ . Under what (necessary and sufficient) conditions will this be a map of G-representations?
- 30. Find a faithful representation of the circle group  $T \cong \mathbb{R}/2\pi\mathbb{Z}$  into  $\operatorname{GL}_2(\mathbb{R})$ .
- 31. Let G be a finite group. Prove that all degree-1 representations of G are in bijective correspondence with degree-1 representations of its abelianization  $G^{ab}$ .
- 32. For any  $n \ge 2$ , define the  $S_n$ -representations <u>Trv</u> and <u>Alt</u>. Prove that these are the only 1-dimensional  $S_n$ -representations.
- 33. Let G be a finite group, and  $\mathbb{F}$  a field containing  $\frac{1}{|G|}$ .
  - (a) State Maschke's theorem.
  - (b) Show that Maschke's theorem implies that every short exact sequence of  $\mathbb{F}[G]$ -modules splits.
  - (c) Show by example that if |G| divides the characteristic of  $\mathbb{F}$ , then not all *G*-representations over  $\mathbb{F}$  are completely reducible.
- 34. Prove that if U is a complex irreducible representation of G, and  $V = U \oplus U$ , then there are infinitely many ways that V can be decomposed into two copies of U. What is  $\operatorname{Hom}_{\mathbb{C}[G]}(U, V)$ ?  $\operatorname{Hom}_{\mathbb{C}[G]}(V, U)$ ?
- 35. Let V be an irreducible complex representation of a finite group G. Show that the multiplicity of V in a G-representation U is equal to  $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(V, U) = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(U, V)$ .
- 36. (a) Let  $\mathbb{F}$  be a field. Given any finite set  $B = \{b_1, \ldots, b_m\}$ , with an action of G, show how to construct a permutation representation by G on the vector space over  $\mathbb{F}$  with basis B. Show that each G-orbit of B corresponds to a G subrepresentation of V.
  - (b) Suppose that G acts transitively on the basis B (more generally, you can reply this result to the span of each G-orbit of B). Show that the diagonal subspace  $D = \langle b_1 + b_2 + \cdots + b_m \rangle$  is invariant under G, and that G acts on it trivially. Show the orthogonal complement of D,

$$D^{\perp} = \left\{ a_1 b_1 + \ldots + a_m b_m \mid \sum a_i = 0 \right\}$$

is also invariant under the action of G, so that V decomposes as a direct sum of G subrepresentations  $V \cong D \oplus D^{\perp}$ . Compute the degrees of D and  $D^{\perp}$ .

- (c) Suppose that G acts transitively on the basis B. Prove that  $D^{\perp}$  does not contain any vectors fixed by G (and therefore does not contain any trivial subrepresentations).
- (d) Show that the regular representation  $V \cong \mathbb{F}[G]$  decomposes into a direct sum of invariant subspaces:

$$\left\{\sum_{g\in G} ae_g \ \middle| \ a\in \mathbb{F}\right\} \bigoplus \left\{\sum_{g\in G} a_g e_g \ \middle| \ \sum_{g\in G} a_g = 0\right\}$$

- (e) Use this decomposition and the averaging map to give a new proof that the multiplicity of the trivial representation in  $\mathbb{F}[G]$  is 1.
- 37. Prove that a finite group G is abelian if and only if all its complex irreducible representations are 1-dimensional.

- 38. It is a nonobvious fact that all values of the irreducible complex characters of the symmetric groups are integer-valued. Prove that if V is an irreducible representation of  $S_n$  of degree at least 2, then there must be at least one conjugacy class of  $S_n$  where  $\chi_V$  takes on the value zero.
- 39. (a) Use character theory to decompose the  $S_3$ -representation <u>Alt</u>  $\otimes_{\mathbb{C}} \mathbb{C}^3$ . Verify your computation by finding an explicit basis for each irreducible constituent.
  - (b) The symmetric group  $S_3$  is the symmetry group of an equilateral triangle. If we inscribe the triangle inside a regular hexagon as shown,



there is an induced action on the hexagon.

- (i) In particular, there is an induced action on the set of vertices of the hexagon, and so an action on the free C-module on this set. Compute the decomposition of the representation into irreducible components.
- (ii) Do the same for the free  $\mathbb{C}$ -module on the set of edges of the hexagon.

Bonus: In both cases (i) and (ii), find explicit bases for the irreducible constituents.

- 40. Consider the complex  $S_4$ -representation  $\mathbb{C}^4 \cong \underline{\mathrm{Trv}} \oplus \underline{\mathrm{Std}}$ .
  - (a) Prove that <u>Std</u> is irreducible.
  - (b) Compute the character table of  $S_4$ .
  - (c) Compute the characters of  $\wedge^3 \mathbb{C}^4$ , and compute its decomposition into irreducible representations.
  - (d) Compute the character of  $\operatorname{Hom}_{\mathbb{C}}(\operatorname{\underline{Std}}, \operatorname{\underline{Std}})$ , and its decomposition into irreducible representations.
  - (e)  $S_4$  is the group of rigid motions of an octahedron (acting on the four pairs of opposite faces).



There is an induced action on the set of 6 vertices of the octahedron, and therefore on the free  $\mathbb{C}$ -module on this set. Compute the decomposition of this representation into irreducibles.

- 41. Let V and W be complex representations of a finite group G.
  - (a) Describe the G-representation structure on  $\operatorname{Hom}_{\mathbb{C}}(V, W)$ .
  - (b) Prove that  $\operatorname{Hom}_{\mathbb{C}}(V, W)^G \cong \operatorname{Hom}_{\mathbb{C}[G]}(V, W)$ .
  - (c) Let  $\psi_{av}$  denote the averaging map, as applied to the representation  $\operatorname{Hom}_{\mathbb{C}}(V, W)$ . Prove that this is a projection onto  $\operatorname{Hom}_{\mathbb{C}[G]}(V, W)$ .
  - (d) Suppose that V and W are non-isomorphic irreducible representations, and let  $T \in \text{Hom}_{\mathbb{C}}(V, W)$ . What is  $\psi_{av}(T)$ ?
  - (e) Now suppose that  $V \cong W$  is irredcible. According to Schur's Lemma,  $\psi_{av}(T)$  must be scalar multiplication. What is the scalar?
- 42. Let V be a nonzero representation of a finite group G. Show that  $\operatorname{Hom}_{\mathbb{C}}(V, V)^G$  is nonzero, and describe a basis of matrices in  $\operatorname{Hom}_{\mathbb{C}}(V, V)$  for this subrepresentation.
- 43. Let A be a finite **abelian** group.
  - (a) Explain why the complex representations of A are precisely the set of group homomorphisms from A to the multiplicative group of units  $\mathbb{C}^{\times}$  of  $\mathbb{C}$ .
  - (b) Let  $a \in A$  be an element of order k. What are the possible homomorphic images of a in  $\mathbb{C}^{\times}$ ?
  - (c) Find all 1-dimensional complex representations of A.

- (d) Classify the irreducible complex representations of A up to isomorphism.
- (e) Write down the character tables for the groups  $\mathbb{Z}/4\mathbb{Z}$  and  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ .
- 44. Let G be a finite group and V a  $\mathbb{C}[G]$ -module.
  - (a) Show that V is irreducible if and only if  $\langle \chi_V, \chi_V \rangle_G = 1$ .
  - (b) Prove V is the sum of two non-isomorphic irreducible representations if and only if  $\langle \chi_V, \chi_V \rangle_G = 2$ .
  - (c) What are the possibilities for the decomposition of V if  $\langle \chi_V, \chi_V \rangle_G = 3? \langle \chi_V, \chi_V \rangle_G = 4?$
- 45. Let V be a complex G-representation. Show that  $\chi_{V^*}(g) = \chi_V(g^{-1})$  for all  $g \in G$ .
- 46. Let V be a G-representation over a field  $\mathbb{F}$ . Show that V is irreducible if and only if  $V^*$  is irreducible.
- 47. Let V be a G-representation over a field  $\mathbb{F}$ . Show that  $V \cong V^*$  as G-representations if and only if V has a nondegenerate G-invariant bilinear form.
- 48. Let G be a finite group and V a complex G-representation. Find a formula for the character of the G-representation  $\bigwedge^{3} V$  (in the spirit of our formula for  $\chi_{\bigwedge^{2} V}$ ).
- 49. Let G be a finite group. Prove that for any irreducible complex representation V of G,  $\dim_{\mathbb{C}}(V) \leq \sqrt{|G|}$ . For which G and V do we have equality?
- 50. Let G be a finite group, V an  $\mathbb{F}$ -vector space, and  $\rho: G \to \operatorname{GL}(V)$  a G-representation. You proved on Homework #6 that if  $\mathbb{F} = \mathbb{C}$ , then  $\rho(g)$  is diagonalizable for every  $g \in G$ .
  - (a) Suppose  $\mathbb{F}$  is a subfield of  $\mathbb{C}$ . Using extension of scalars of  $\mathbb{F}$  to  $\mathbb{C}$ , what can you say about the eigenvalues and trace of  $\rho(g)$ ?
  - (b) Show by example that  $\rho(g)$  can fail to be diagonalizable (even after extending to the algebraic closure  $\overline{\mathbb{F}}$ ) when  $\mathbb{F}$  has positive characteristic.