Reading: Dummit–Foote Ch 10.1.

Please review the Math 122 Course Information posted on our webpage: http://web.stanford.edu/~jchw/2017Math122.

Summary of definitions and main results

Definitions we've covered: left *R*-module, right *R*-module, *R*-submodule, endomorphism, free *R*-module of rank n, annihilator of a submodule, annihilator of a (right) ideal.

Main results: Two equivalent definitions of an *R*-module; the submodule criterion, equivalence of vector spaces over a field \mathbb{F} and \mathbb{F} -modules; equivalence of abelian groups and \mathbb{Z} -modules; if I annihilates an *R*-module *M* then *M* inherits a (R/I)-module structure; structure of an $\mathbb{F}[x]$ -module for a field \mathbb{F} .

Warm-Up Questions

The "warm-up" questions do not need to be submitted (and won't be graded), however, you're encouraged to work out their solutions!

- 1. State the definition / axioms for a ring R (which we assume has unit 1).
- 2. In class we gave the definition of a left R-module. Formulate the definition of a right R-module M.
- 3. Let R be a ring with 1 and M a left R-module. Prove the following:
 - (a) 0m = 0 for all m in M. (c) If $r \in R$ has a left inverse, and $m \in M$, then rm = 0 only if m = 0.
 - (b) (-1)m = -m for all m in M.
- 4. Show that if R is a commutative ring, then a left R-module structure on an abelian group M also defines a right R-module on M and vice versa. Is this true for noncommutative rings R?
- 5. (Restriction of scalars). Let M be an R-module, and let S be any subring of R. Explain how the R-module structure on M also gives M the structure of an S-module. This operation is called *restriction* of scalars from R to the subring S.
- 6. Verify that the axioms for a vector space over a field \mathbb{F} are equivalent to the axioms for an \mathbb{F} -module.
- 7. Verify that the axioms for an abelian group M are equivalent to the axioms for a \mathbb{Z} -module structure on M. How does an integer n act on $m \in M$?
- 8. Let \mathbb{F} be a field, and x a formal variable. Prove that modules V over the polynomial ring $\mathbb{F}[x]$ are precisely \mathbb{F} -vector spaces V with a choice of linear map $T: V \to V$. In Assignment Problem 5 we will see that different maps T give different $\mathbb{F}[x]$ -module structures on V.
- 9. Prove the submodule criterion: If M is a left R-module and N a subset of M, then N is a left Rsubmodule if and only if

(i) $N \neq \emptyset$ (*ii*) $x + ry \in N$ for all $x, y \in N$ and all $r \in R$. and

- 10. Consider R as a module over itself. Prove that the R-submodules of the module R are precisely the left ideals I of R.
- 11. Let \mathbb{R}^n be the free module of rank n over R. Prove that the following are submodules:
 - (a) $I_1 \times I_2 \times \cdots \times I_n$, with I_i a left ideal of R.

- (b) The i^{th} direct summand R of R^n .
- (c) $\{(a_1, a_2, \dots, a_n) \in \mathbb{R}^n \mid a_1 + a_2 + \dots + a_n = 0\}.$
- 12. Let M be a left R-module. Show that the intersection of a (nonempty) collection of submodules is a submodule.
- 13. (a) Let M be an R-module and N an R-submodule. Prove that the annihilator ann(N) is a 2-sided ideal of R.
 - (b) Let M be an R-module and I a right ideal of R. Show that ann(I) is an R-submodule of M.
 - (c) Compute the annihilator of the ideal $3\mathbb{Z} \subseteq \mathbb{Z}$ in the \mathbb{Z} -module $\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z}$.
- 14. (a) For p prime, an elementary abelian p-group is an abelian group G where pg = 0 for all $g \in G$. Prove that an elementary abelian p-group is a $\mathbb{Z}/p\mathbb{Z}$ -module, equivalently, an \mathbb{F}_p -vector space.
 - (b) Conversely, show that any $\mathbb{Z}/p\mathbb{Z}$ -module M must satisfy pm = 0 for all $m \in M$, in other words, the underlying abelian group M must be an elementary abelian p-group.
- 15. A student makes the following claim: "Since Z/2Z is a subring of Z/4Z, we can let Z/2Z act by left multiplication to give Z/4Z the structure of a Z/2Z-module. Then Z/4Z is a Z/2Z-vector space with 4 elements, so it must be isomorphic as a vector space to Z/2Z⊕Z/2Z." Prove that Z/4Z and Z/2Z⊕Z/2Z are not even isomorphic as abelian groups, and find the flaw in this argument.
- 16. Let M be an R-module, and consider Tor(M) as defined in Assignment Question 4.
 - (a) Find $\operatorname{Tor}(\mathbb{Z}/7\mathbb{Z})$ if $\mathbb{Z}/7\mathbb{Z}$ is consider a module over (i) \mathbb{Z} , (ii) $\mathbb{Z}/7\mathbb{Z}$, or (iii) $\mathbb{Z}/21\mathbb{Z}$.
 - (b) Show that if R has zero divisors, then ever nonzero R-module has nonzero torsion elements.
- 17. (Group theory review) State the structure theorem for finitely generated abelian groups.

18. (Linear algebra review)

- (a) Define the following terms (as they apply to finite dimensional vector spaces)
 - vector space over \mathbb{F} ; vector subspace
 - linear dependence and linear independence of a set of vectors
 - *spanning set* of vectors for a vector subspace
 - *basis* and *dimension* of a vector subspace
 - the *direct sum* of vector subspaces
- (b) If you have not already seen proofs that
 - linearly independent sets of vectors in a finite dimensional vector space V can be extended to a basis, and
 - all bases for V have the same cardinality so $\dim(V)$ is well-defined
 - then take a look at Dummit-Foote Chapter 11.1.
- (c) Let T be a linear transformation on a finite-dimensional \mathbb{F} -vector space V. Define an *eigenvector* of T and its associated *eigenvalue*. Find all eigenvectors and eigenvalues of the following matrices, over \mathbb{R} and over \mathbb{C} .

$\boxed{2}$	0	$\begin{bmatrix} 3 & 4 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 \end{bmatrix}$
0	1	$\begin{bmatrix} 4 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 \end{bmatrix}$

(d) If T has a basis of eigenvectors, then such as basis is called an *eigenbasis*. What can you say about the structure of a matrix with an eigenbasis, and why is this important? Which of the above four matrices have eigenbases over \mathbb{R} , or over \mathbb{C} ?

Assignment Questions

The following questions should be handed in.

- 1. (Group theory review) Suppose $m, n \ge 2$ are integers.
 - (a) Prove that there is an injective map of abelian groups $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ if and only if m|n.
 - (b) Prove that if this map exists, it is unique up to pre-composing with an automorphism of $\mathbb{Z}/m\mathbb{Z}$. This means if $g, g' : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ are injective maps, then $g' = g \circ f$ for some $f : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$. Conclude in particular that the image of an injective map is a uniquely determined subset of $\mathbb{Z}/n\mathbb{Z}$.
 - (c) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$ is an abelian group under pointwise addition of maps. Compute this group (in terms of the classification of finitely generated abelian groups).
- 2. Let M be an abelian group (with addition), and R a ring.
 - (a) Define an *endomorphism* of M, and show that the set of endomorphisms End(M) of M form a ring under composition and pointwise addition.
 - (b) Prove that a left *R*-module structure on *M* is equivalent to the data of a homomorphisms of rings $R \to \text{End}(M)$. Use this result to formulate an alternative definition of a left *R*-module.
 - (c) What should the analogous definition be for right R-modules?
 - (d) We have another name for the kernel of the map $R \to \text{End}(M)$. What is it?
- 3. Let M be an R-module, and $\phi : S \to R$ a homomorphism of rings. Show how the map ϕ can be used to define an S-module structure on M. Explain why restriction of scalars is a special case of this construction. (Warm up Problem 5.)
- 4. An element m in an R-module M is called a *torsion element* if rm = 0 for some nonzero $r \in R$. The set of torsion elements is denoted

 $Tor(M) := \{ m \in M \mid rm = 0 \text{ for some nonzero } r \in R \}.$

Prove that if R is an integral domain, then Tor(M) is submodule of M. Remark: For commutative rings R, some sources only define Tor(M) with respect to elements $r \in R$ that are not zero divisors.

- 5. Let V be a module over the polynomial ring $\mathbb{F}[x]$. For each of the following, classify all submodules of V. You may give your answer as a list (without proof), but be sure you understand how you could justify your solutions!
 - (a) $V = \mathbb{F}^2$, and x acts by scalar multiplication by 5.
 - (b) $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^2$, and x acts by rotation by $\frac{\pi}{3}$.
 - (c) $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^3$, and x acts by a diagonalizable matrix with eigenvalues 0, 1, 2. (Recall: A matrix is *diagonalizable* iff it has a basis of eigenvectors, equivalently, iff it is conjugate to a diagonal matrix.)
 - (d) $V = \mathbb{F}[x]$, and x acts by multiplication by x as usual.
 - (e) $V = \mathbb{F}[x]/(x^3)$, and x acts by multiplication by x as usual.
- 6. Bonus (Optional). For the following problem, you may assume (without proof) the structure theorem for finitely generated abelian groups. Let's call a subgroup M of the free abelian group \mathbb{Z}^n splittable if there is some (not necessarily unique) submodule $C \subseteq \mathbb{Z}^n$ so that $M \oplus C = \mathbb{Z}^n$. For example, $M = \text{span}\{(1,1)\} \subseteq \mathbb{Z}^2$ is splittable and has complement $C = \text{span}\{(1,0)\}$. In contrast $M = \text{span}\{(2,4)\} \subseteq \mathbb{Z}^2$ is not splittable since $M \oplus C$ can never contain (1,2) for any $C \subseteq \mathbb{Z}^2$.
 - (a) Prove that $M \subseteq \mathbb{Z}^n$ is splittable if and only if \mathbb{Z}^n/M is torsion-free.
 - (b) Prove or find a counterexample: If A and B are splittable subgroups of \mathbb{Z}^n , then $A \cap B$ is splittable.